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§1. Main theorem

Let G be a commutative algebraic group defined over a field k. We fix a
separable closure k of k once for all and assume that all separable extensions
of k lie inside k. Suppose that there is a separable isogeny

(1.1) λ : G −→ G

defined over k. From the associated exact sequence

1 −→ ker(λ) −→ G
λ−→ G −→ 1,

we have an induced exact sequence of Galois cohomology groups:

1 −→ G(k)/λG(k) −→ H1(k, ker(λ)) −→ H1(k,G)[λ].

Here we abbreviate H1(Gal(k̄/k), V (k̄)) as H1(k, V ) for any algebraic group V
defined over k. Assume further that the points in the kernel of λ are k-rational:

(1.2) ker(λ)(k) = ker(λ)(k)

and that we have a weaker version of Hilbert’s theorem 90:

(1.3) H1(k,G)[λ] = 1,
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then we have a Kummer duality

(1.4) G(k)/λG(k) ∼= Homcont(Gal(k/k), ker(λ)(k)),

where the right hand side is the group of continuous homomorphisms. The iso-
morphism (1.4) is induced by the connecting homomorphism, which is explic-
itly given by the following way: For P ∈ G(k), we choose Q ∈ G(k) such that
λ(Q) = P and define a homomorphism χP ∈ Homcont(Gal(k/k), ker(λ)(k))
corresponding to P by χP (τ) = Qτ−1 for τ ∈ Gal(k/k).

In this framework, the classical Kummer theory is recovered by taking
G = Gm, k and the m-th power map for λ if k contains the group of m-th roots
of unity and the characteristic of k is prime to m.

If we have the Kummer duality (1.4), then all cyclic extensions of degree
m over k are of the form k(λ−1(P )) with some P ∈ G(k). Since the Galois
action on λ−1(P ) is given by the multiplication by the elements in kerλ, we
can expect that their arithmetic properties such as decomposition law of prime
ideals are easy to describe.

In our previous papers [4] and [6], we considered the case where G is an
algebraic torus and proved Kummer dualities over certain fields without roots
of unity. To be more specific, we used the Weil restriction of multiplicative
group in [6] and norm algebraic tori in [4].

The aim of this paper is to extend the results in [4] and to prove a Kummer
duality for algebraic tori of relative norm. An advantage of this duality theo-
rem over the previous theorems is that we need algebraic varieties of smaller
dimension to parameterize cyclic extensions over a base field. For example, we
can show that all quintic cyclic extensions over the field of rational numbers are
obtained as “Kummer extensions” associated to certain 2-dimensional rational
algebraic torus (see Example 4.3). This dimension 2 agrees with the known
minimal number of parameters we need to parameterize such cyclic quintic
extensions (the essential dimension for C5 in the language of [3]). Moreover,
the required isogeny in λ in (1.1) is easier to find in our current setting than
in the previous ones.

Throughout this paper, we use the following notation: for a positive integer
n > 1 and a positive divisor s of n, let R(n, s) be the set of positive divisors
of n which do not divide s:

(1.5) R(n, s) = {d ∈ Z>0 : d | n, d ∤ s}.

For r ∈ R(n, s), we denote by ζr a primitive r-th root of unity.
Our main theorem is as follows.

Theorem 1.1. Let m be a positive integer greater than 1 and n a positive
divisor of φ(m) which is prime to m and s a positive divisor of n.
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Suppose that there exist a polynomial

(1.6) P(t) = c1 + c2t+ · · ·+ cn−s−1t
n−s−1 ∈ Z[t]

of degree less than or equal to n − s − 1, a subset R of R(n, s), and a set of
pairwise coprime integers {mr | r ∈ R} indexed by R satisfying the following
properties:

• n = lcm{r | r ∈ R};

•
∏
r∈R

mr = m;

• if r ∈ R, then there is an isomorphism

(1.7) Z[ζr]/(P(ζr)) ∼= Z/mrZ;

• if r ∈ R(n, s)\R, then

(1.8) P(ζr) ∈ Z[ζr]×.

Let k be a field of characteristic prime to m such that the ring isomorphisms
(1.7) induce a group isomorphism

(1.9) νk : Gal(k(ζm)/k)
∼→ ⟨ζr mod P(ζr) | r ∈ R⟩.

Let K = k(ζm) and M an intermediate field of K/k such that [M : k] = s.
Under these conditions, there exists a cyclic self-isogeny λ of degree m on

the algebraic torus

Ts := ker(NK/M : RK/kGm −→ RM/kGm)

for which we have kerλ ∼= Z/mZ with trivial Galois action and the exact
sequence attached to the isogeny λ

1 −−−−→ kerλ −−−−→ Ts
λ−−−−→ Ts −−−−→ 1

induces the Kummer duality

(1.10) κk : Ts(k)/λTs(k)
∼→ Homcont(Gal(k̄/k), kerλ(k̄)).

The algebraic torus Ts is defined as the kernel of the induced map from
the relative norm map NK/M : K× −→ M×. Thus we call an algebraic torus
isomorphic to Ts for some K/M/k an algebraic torus of relative norm. When

s = 1, we haveM = k and T1 is the norm torusR
(1)
kc/k

Gm. The Kummer duality
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for R
(1)
kc/k

Gm proved in [4] readily follows from our theorem. Even in this case,
we relax conditions for the existence of required isogeny by introducing the
set R. This set R enables us to find explicit examples easier than before (see
examples in Section 4). Since

dimTs = n− s ≤ n− 1 = dimR
(1)
K/kGm < dimRK/kGm,

our theorem requires a smaller variety to parameterize all cyclic extensions
over k.

The rest of the paper is organized as follows. We shall study the endomor-
phisms of Ts in the next section. The proof of the main theorem will be given
in Section 3. In Section 4 we give some explicit examples.

Remark 1.2. In proving the corresponding main theorem in our previous paper
[6], we did need the condition (m,n) = 1, which was not explicitly mentioned
in the paper. In this occasion, we include this correction here.

§2. The endomorphism ring of Ts

In this section, we compute endomorphisms of Ts in a general setting.
Let K/k be a cyclic extension of degree n with Galois group G = Gal(K/k)

generated by τ . Let s be a divisor of [K : k] and M the fixed field of ⟨τ s⟩. We
have

[M : k] = s and Gal(K/M) = ⟨τ s⟩.

Let d = n/s. As before we define

Ts = ker(NK/M : RK/kGm −→ RM/kGm),

where NK/M is the map induced by the relative norm map x 7→
∏d−1

i=0 τ six.
The algebraic torus Ts is defined over k and splits over K. The dimension of
Ts is n− s.

The character module of an algebraic k-torus T splitting over K is T̂ =
HomK-gr(T ×k K,Gm,K) by definition. The character module T̂ is a free Z-
module of rank dimT on which Gal(K/k) acts.

Let G = Gal(K/k) = ⟨τ⟩ and H = Gal(K/M) = ⟨τ s⟩. We start with the
exact sequence

1 −−−−→ IG/H −−−−→ Z[G]
εG/H−−−−→ Z[G/H] −−−−→ 1,

where εG/H is the augmentation map defined by

n∑
i=1

aiτ
i 7→

s−1∑
i=0

 ∑
τ j∈τ iH

aj

 τ iH



ALGEBRAIC EXTENSIONS ATTACHED TO ALGEBRAIC TORI 99

and IG/H is the kernel of εG/H . The inner sum is taken for all j such that
τ j ∈ τ iH. The dual of the sequence is

1 −→ Hom(Z[G/H],Z) v−→ Hom(Z[G],Z) −→ Hom(IG/H ,Z) −→ 1,

which is also exact. The map v is given by

τ iH 7→ τ i(1 + τ s + · · ·+ τn−s)

under the canonical identifications

Hom(Z[G/H],Z) ∼= Z[G/H] and Hom(Z[G],Z) ∼= Z[G].

Since this map v is the dual of

NK/M : RK/kGm −→ RM/kGm,

we obtain
T̂s

∼= Hom(IG/H ,Z)

as G-modules. The n− s elements

eij = τ i(τ js − τ (j−1)s) (i = 0, . . . , s− 1, j = 1, . . . , d− 1)

form a basis of IG/H . By computing the dual action of τ on the basis

(e01, . . . , es−1,1, . . . , e0,d−1, . . . , es−1,d−1),

we obtain the following representation matrix with respect to the canonical
dual basis:

(2.1) S =



0s−1 −1 0s−1 −1 · · · 0s−1 −1
1

1
. . . O

. . .

O
. . .

1 0


,

where 0s−1 is the (s− 1)-dimensional row zero vector.

Proposition 2.1. The endomorphism ring of the character module T̂s is iso-
morphic to the polynomial ring in S with coefficients in Z:

End⟨τ⟩(T̂s) ∼= Z[S].
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We shall first show that the characteristic polynomial of S is separable.

Lemma 2.2. The characteristic polynomial of S is

xn−s + xn−2s + · · ·+ xs + 1 =
∏

r∈R(n,s)

Φr(x),

where R(n, s) is defined by (1.5) and Φr is the r-th cyclotomic polynomial.

Proof. The first expression follows from a general formula∣∣∣∣∣∣∣∣∣∣∣∣

x ak−1 ak−2 · · · a1 a0
−1 x 0 · · · 0

. . .
. . .

. . .

0
. . .

. . .
. . .

−1 x

∣∣∣∣∣∣∣∣∣∣∣∣
= xk + ak−1x

k−1 + · · ·+ a1x+ a0,

which is deduced from the cofactor expansion by the first row of the matrix.
As for the second expression, since

xn − 1 =
∏
r|n

Φr(x) and xs − 1 =
∏
r|s

Φr(x),

we have

xn−s + xn−2s + · · ·+ xs + 1 =
xn − 1

xs − 1
=

∏
r|n, r∤s

Φr(x).

This completes the proof of the lemma.

From Lemma 2.2 it follows that the characteristic polynomial is separable.
Now we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. We fix the basis of T̂s chosen in the above. Then
the matrices corresponding to the G-endomorphisms of the character module
agree with the matrices which commute with S. We have shown that the
characteristic polynomial of S is separable. In this situation, it is more or less
known that such matrices are polynomials in S. This completes the proof of
the proposition.

By Proposition 2.1, for an endomorphism Λ of T̂s, we can find a polynomial

P(t) = c1 + c2t+ · · ·+ cn−s−1t
n−s−1 ∈ Z[t]

such that Λ = P(S). Since the size of S is (n−s)× (n−s), we can choose the
polynomial P(t) of degree less than or equal to n−s−1. Since the eigenvalues
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of S are the primitive r-th root ζr of unity with r ∈ R(n, s) by Lemma 2.2, the
eigenvalues of Λ are P(ζr). Furthermore, it is easy to find a corresponding
eigenvector, since it coincides with an eigenvector vr of S with eigenvalue ζr.
In fact, the eigenvector vr can be computed directly from (2.1) and we have

(2.2) vr =
t(ζn−s−1

r , ζn−s−2
r , . . . , ζr, 1).

Note that the constraint −(1 + ζsr + · · ·+ ζ
s(d−2)
r ) = ζ

s(d−1)
r from the first row

of S holds because all r ∈ R(n, s) divide n.

Proposition 2.3. Let Λ = P(S) ∈ Z[S] be an endomorphism of T̂s. Assume
that each ideal generated by P(ζr) in Z[ζr] (r ∈ R(n, s)) is prime to n. Then
we have

cokerΛ ∼=
⊕

r∈R(n,s)

Z[ζr]/(P(ζr)).

Proof. The proof is similar to that of [6, Proposition 2.2] (see the remark
below) and involves diagonalizing Λ over the rings of cyclotomic integers.

For r ∈ R(n, s), we define

fr : Z⊕(n−s) −→ Z[ζr] by (a1, · · · , an−s) 7→ (a1, · · · , an−s)vr,

where vr is the eigenvector given by (2.2). Since the eigenvalue of Λ cor-
responding to vr is P(ζr), we have the following commutative diagram of
Z-modules:

Z⊕(n−s) Λ−−−−→ Z⊕(n−s)

⊕fr

y y⊕fr⊕
r∈R(n,s) Z[ζr]

×P(ζr)−−−−−→
⊕

r∈R(n,s) Z[ζr]

.

From this diagram, we have an induced map

F : cokerΛ −→
⊕

r∈R(n,s)

Z[ζr]/(P(ζr))

and the map makes the following diagram commutative and exact in rows:

Z⊕(n−s) Λ−−−−→ Z⊕(n−s) −−−−→ cokerΛ

⊕fi

y y⊕fi

yF⊕
Z[ζr]

×P(ζr)−−−−−→
⊕

Z[ζr] −−−−→
⊕

r∈R(n,s) Z[ζr]/(P(ζr))

.

If P is a diagonalizing matrix of Λ arising from eigenvectors vr in (2.2), then
we have

P−1ΛP = diagr∈R(n,s),ζr∈Ur
(P(ζr)),
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where Ur is the set of all r-th roots of unity. Therefore we have

detΛ =
∏

r∈R(n,s),ζr∈Ur

P(ζr) =
∏

r∈R(n,s)

NQ(ζr)/QP(ζr)

where NQ(ζr)/Q is the norm map from Q(ζr) to Q.
On the other hand, the determinant of P is a product of ζr−ζr′ (r, r

′ ∈ R).
Hence detP is a divisor of n. By our assumption, detΛ is prime to detP .
Hence the module sturucture is preserved by F . This completes the proof of
the proposition.

Remark 2.4. In the statement of [6, Proposition 2.2], the corresponding as-
sumption (detΛ, n) = 1 is needed.

The exsitence of cyclic self-isogeny on Ts follows from the following corol-
lary.

Corollary 2.5. Let m be an integer prime to n. An endomorphism Λ = P(S)
of T̂s defines a cyclic self-isogeny of degree m on the algebraic torus Ts if and
only if there exist a subset R of R(n, s) and a set {mr | r ∈ R} of pairwise
coprime integers whose product is m such that

r ∈ R =⇒ Z[ζr]/P(ζr) ∼= Z/mrZ,
r ̸∈ R =⇒ P(ζr) ∈ (Z[ζr])×.

Proof. Let λ be a self-isogeny of Ts corresponding to Λ. The kernel of λ is
isomorphic to cokernel of Λ. Hence the kernel is cyclic if and only if each
factor has pairwise coprime order. This proves the corollary.

Remark 2.6. In his article [8], especially in Section 2, Suwa showed the iso-
morphism

(2.3) T̂s
∼= JG/H ,

where JG/H is defined as follows. Let νG/H : Z[G/H] −→ Z[G] be a left
Z[G]-module homomorphism given by g 7→

∑
h∈H gh. Then JG/H is defined

as Coker(νG/H). He also pointed me out that the endomorphism ring of Ts

can be deduced from (2.3) by standard calculation of Z[G]-modules.

§3. Proof of the main theorem

In this section, we shall give a proof of the main theorem (Theorem 1.1). We
use the notation in the statement of the theorem. Hence K = k(ζm) and M
is an intermediate field such that [M : k] = s.
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If P(t) ∈ Z[t] is a polynomial of degree less than or equal to n− s− 1 and
S is the matrix defined by (2.1), then Λ = P(S) defines an endomorphism
of the character module of the algebraic torus Ts = ker(NK/M : RK/kGm −→
RM/kGm) by Proposition 2.1. By Corollary 2.5, the endomorphism Λ cor-
responds to a cyclic isogeny λ from Ts to itself of degree m. The isogeny
λ is defined over k, because Λ is compatible with the Galois action (see [7,
Proposition 1.2.3]). If we write Λ = (αij), then the isogeny λ is defined by

(3.1) (X1, X2, . . . , Xn−s) 7→

n−s∏
j=1

X
αj1

j , . . . ,

n−s∏
j=1

X
αj,n−s

j


on the split torus Gn−s

m,K of Ts.
Now we have a cyclic isogeny λ on Ts. If we can show that λ satisfies (1.2)

and (1.3), then the Kummer duality (1.10) for Ts holds as we explained in
Section 1. We first consider (1.2). Namely we shall show that every point in
ker(λ)(k) is defined over k. Recall that the matrix Λ = P(S) has an eigenvalue
P(ζr) with r ∈ R(n, s) and the corresponding eigenvector vr is given by (2.2):

(3.2) Λvr = P(ζr)vr.

We may assume that r ∈ R ⊂ R(n, s). Then reducing (3.2) modulo P(ζr), we
find vr mod P(ζr) is in the kernel of Λ mod mr under the isomorphism φr :
Z[ζr]/(P(ζr)) ∼= Z/mrZ of (1.7). Let tr = φr(ζr). By our assumption r ∈ R,
the additive group of the ring Z[ζr]/(P(ζr)) is cyclic. Since, in particular, m
is prime to n, this implies that the principal ideal generated by P(ζr) is a
product of prime ideals of degree one with different residue characteristic (see
[2, Theorem 4.2.10]). Therefore if p is a prime number dividing mr, then we
have p ≡ 1 (mod r) for all r ∈ R by the assumption (m,n) = 1. Moreover,
the order of tr modulo mr is r. By Chinese remainder theorem, we can find
an integer t satisfying t ≡ tr (mod mr) for all r ∈ R. The order of t mod m
is n = lcmr∈R r. As a result, we see

Λ


tn−s−1

...
t
1

 ≡ 0 (mod m).

Simple calculation yields
tSwr = ζrwr,

where the eigenvector wr = (wr
(i)) is given by

wr
(i) = −ζd+1

r

c∑
j=0

ζsjr , where i− 1 = sc+ d, 0 ≤ d < s.
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Note that wr
(n−s) = 1. By similar calculation as for Λ, we can show tΛw ≡ 0

(mod m) with

(3.3) w =

(
−td+1

c∑
j=0

tsj
)

1≤i≤n−s

.

Let us write w = (wi)1≤i≤n−s. Since the degree of λ is m, it follows from (3.1)
that Z = (ζwi

m )1≤i≤n−s ∈ Gn−s
m,K

∼= Ts ×k K is contained in the kernel of λ. To
prove Z ∈ Ts(k), we use [7, Proposition 1.2.2]. It claims that Z ∈ Ts(K) is k-
rational if and only if the map T̂s −→ K× defined by y 7→ y(Z) is a G-module
homomorphism. By the assumption (1.9), the inverse image σt of t generates
the Galois group G = Gal(K/k) of order n = lcmr∈R r. Therefore the claim
of the proposition is equivalent to

(3.4) (Sy)(w) = σt(y(w)) for all y ∈ T̂s.

By linearity, it is enough to show (3.4) when y is a standard basis vector
ej (1 ≤ j ≤ n− s). We compute

the left hand side of (3.4) =

{
wj+1 if j ̸≡ 0 (mod s)

−w1 + wj+1 if j ≡ 0 (mod s)

and

the right hand side of (3.4) = twj .

The verification of these formulas is easy if we use (3.3). Thus we conclude
kerλ(k) = kerλ(k).

We next show a weak version of Hilbert’s theorem 90 (1.3). Taking Galois
cohomology of the exact sequence

1 −→ kerλ −→ Ts
λ−→ Ts −→ 1,

we obtain

Ts(k)
λ−→ Ts(k) −→ H1(k, kerλ) −→ ker

(
λ : H1(k, Ts) −→ H1(k, Ts)

)
.

On the other hand, the exact sequence

1 −−−−→ Ts −−−−→ RK/kGm

NK/M−−−−→ RM/kGm −−−−→ 1

yields the exact sequence

RK/kGm(k)
NK/M−−−−→ RM/kGm(k) −−−−→ H1(k, Ts) −−−−→ H1(k,RK/kGm).
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By Shapiro’s lemma and Hilbert’s theorem 90, we have

H1(k,RK/kGm) ∼= H1(K,Gm,K) = 1.

Therefore under the natural isomorphism RK/kGm(k) ∼= K×, we obtain

H1(k, Ts) ∼= M×/NK/MK×.

Since m = deg λ is prime to n, it is also prime to s = [K : M ]. Thus we obtain
ker
(
λ : H1(k, Ts) −→ H1(k, Ts)

)
= 1. Thus we have proved (1.3) for Ts.

Combining all these, we have a Kummer duality

Ts(k)/λTs(k)
∼→ Homcont(Gal(k̄/k), kerλ(k̄)).

This completes the proof of the main theorem.

Remark 3.1. A scheme-theoretic description of the kernel of λ is given in [8,
Remark 3.5].

§4. Examples

In this section, we shall use Theorem 1.1 to construct all cyclic extensions of
degreem over certain proper subfields of them-th cyclotomic fieldK = Q(ζm).
The base field k will be taken such that K/k is a cyclic extension of degree n
and M is an intermediate field of K/k satisfying s = [M : k].

Example 4.1. Our first example is a simplest case where n = 4 and s = 2.
We have R(4, 2) = {4}. We want to find a linear polynomial P(t) such that

(4.1) φ4 : Z[ζ4]/(P(ζ4)) ∼= Z/mZ

for some integer m. We may assume m > 2. If m is of the from p0p1 · · · pr
where p0 = 1 or 2 and pi (r ≥ i ≥ 1) are distinct odd primes congruent to
1 modulo 4, then we can find P(t) satisfying (4.1), since Z[ζ4] is a unique
factorization domain. Once we find such P(t) and m, we can choose the base
field k as a fixed subfield of the group generated by φ4(ζ4) in K = Q(ζm)
under the natural isomorphism Gal(K/Q) ∼= (Z/mZ)×. Then we obtain an
isomorphism corresponding to νk in (1.9).

Explicit examples of P(t) with small coefficients are given in the following
table:

P(t) m φ4(ζ4) k = Q(ζm)⟨φ4(ζ4)⟩ Irr(αi,Q, x)

2t+ 1 5 2 Q
3t+ 2 13 8 Q(α1) x3 − x2 − 4x− 1
4t+ 1 17 4 Q(α2) x4 − x3 − 6x2 + x+ 1
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Now let M be an intermediate field of K/k fixed by φ4(ζ4)
2. In our case,

we always have φ4(ζ4)
2 = −1, since m is a square-free integer. Therefore our

field M is the maximal real subfield of Q(ζm).
The Kummer duality of the 2-dimensional torus

T2 = ker(NK/M : RK/kGm −→ RM/kGm)

implies that every cyclic extension of k of degree m is of the form k(λ−1(P )),
where P ∈ T2(k) and λ is a self-isogeny of T2 corresponding to the charac-

ter module homomorphism P(S), where S =

[
0 −1
1 0

]
in this case. Since

all 2-dimensional algebraic tori are rational varieties (see [9]), we can find a
rational parameterization of T2(k). Fixing an isomorphism T2(k) into K, let
aζm + bζm

−1 ∈ T2(k) (a, b ∈ M). Then NK/M (aζm + bζm
−1) = 1 defines a

conic and has a rational point (a, b) = (1, 0). Using this point, we obtain a
parameterization

(4.2) (a, b) =

(
u2 − v2

u2 + (ζm
2 + ζm

−2)uv + v2
,

2uv + (ζm
2 + ζm

−2)v2

u2 + (ζm
2 + ζm

−2)uv + v2

)
with u, v ∈ k.

Example 4.2. We study the case m = 5 in the previous example more
closely. We write ζ for ζ5 for simplicity. Let σ be the element of Gal(K/k)
corresponding to φ4(ζ4) = 2. Namely we have ζσ = ζ2. On the split

torus G2
m,K of T2, the matrix P(S) =

[
1 −2
2 1

]
defines an endomorphism

(X1, X2) 7→ (X1X2
2, X1

−2X2). If P ∈ T2(Q) corresponds to α ∈ K satisfy-
ing NK/Mα = 1, then L = Q(λ−1(P )) is characterized as a unique quintic

subfield over Q inside Q(ζ5,
5
√
α2ασ). A defining polynomial of L over Q with

simple Galois action can be computed by the method in [5, Section 5] using
the relations

X1X3 = 1 and X2X4 = 1.

More precisely, for α1 = aζ + bζ−1, α2 = σ(α1) = aσζ2 + bσζ−2, a defining
polynomial is

F (Y ) =Y 5 − Y 3 +Tr(ξ2α1)Y
2 +

(
2

25
+ Tr(ξ1α1α2)

)
Y

+
(
Tr(ξ01α1

2α2) + Tr(ξ02α2)
)
,

where Tr is the trace map from K(α1, α2) to k(α1, α2) and

ξ2 =
1

25
(2ζ − ζ2 − 2ζ4 + ζ3), ξ1 =

1

25
(ζ + ζ4),
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ξ01 =
1

625
(ζ − 2ζ2 − ζ4 + 2ζ3), ξ02 =

1

125
(ζ4 − ζ).

This polynomial from the Kummer theory of T2 is simpler than the polynomial

in [5, Section 5] obtained from that of R
(1)
K/kGm. Substituting (4.2), we obtain

a 2-parameter polynomial defining all cyclic quintic extensions over Q:

Y 5 − Y 3 +
−2u4 + 5u3v − 3u2v2 + uv3 + v4

5(u4 − u3v + u2v2 − uv3 + v4)
Y 2

+
2u3v − u2v2 − 2uv3 + v4

5(u4 − u3v + u2v2 − uv3 + v4)
Y

+
u8 + u7v − 18u6v2 + 13u5v3 + 30u4v4 − 44u3v5 + 6u2v6 + 17uv7 − 7v8

125(u4 − u3v + u2v2 − uv3 + v4)2
.

As we note in Section 1, our dimension 2 = dimT2 is the smallest dimension
to parameterize all quintic cyclic extensions over Q (see [3]).

Example 4.3. We consider the case where n = 6. There are two choices
of s > 1. If we choose a smaller s, then the degree of P(t) may be larger.
Note, however, the degree of the base field over the prime field is unchanged
whichever s we choose. Here we take s = 3 and we have R(6, 3) = {2, 6}. Let
R = {6}. We find the following examples:

P(t) m φ6(ζ6) k

t+ 2 7 5 Q
t2 − 2t− 2 13 10 Q(

√
13)

In both case, we have P(ζ2) = 1.

Example 4.4. We give an example using multiple moduli. In the case where
n = 6 and s = 1, the torus is a norm torus T1. We have R(6, 1) = {2, 3, 6}.
For the quartic polynomial P(t) = t4 + t3 + 2t2 + 3t+ 2, we take R = {3, 6}
and we evaluate

P(−1) = 1, P(ζ3) = 2ζ3 + 1, P(ζ6) = 4ζ6 − 1.

Thus we obtain

Z[ζ3]/(2ζ3 + 1) ∼= Z/3Z, ζ3 7→ 1,

Z[ζ6]/(4ζ6 − 1) ∼= Z/13Z, ζ6 7→ 10.

This polynomial satisfies the conditions of Theorem 1.1. Let k be the field fixed
by ζ39 7→ ζ39

10 in Q(ζ39), which is explicitly defined by x4+x3−11x2+9x+3.

The isogeny on T1 = R
(1)
Q(ζ39)/k

Gm associated to P(t) gives all cyclic extensions
of degree 39 over k.
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We use a computer algebra system Magma [1] to compute the examples in
this section.
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