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Abstract. Many statisticians have considered various symmetry and asym-
metry models to analyze square contingency tables with ordinal categories. We
propose a generalized model, which indicates the asymmetric structure for cell
probabilities. This model is the closest to the symmetry model in terms of
the f -divergence under certain conditions. Then we decompose the symmetry
model using the proposed model, and partition the likelihood-ratio chi-square
test statistics for the symmetry model. The decomposition is useful to deduce
the reason for a poor fit of the symmetry model.
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§1. Introduction

In a square contingency table with ordinal row and column classifications,
determining the structure symmetry is important since the independence be-
tween the row and column classifications is unlikely to hold. Many statisti-
cians have proposed various symmetry and asymmetry models such as those
by Bowker (1948), Stuart (1955), Caussinus (1965), Bhapkar (1966), and
McCullagh (1978). Moreover, Kateri and Papaioannou (1997), Kateri and
Agresti (2007), and Tahata (2019) proposed asymmetry models based on the
f -divergence. In this paper, we propose an asymmetry model based on the f -
divergence, which generalizes various symmetry and asymmetry models, and
show that the proposed model is the closest to the symmetry model in terms
of the f -divergence under certain conditions.

Caussinus (1965) provided a theorem that the symmetry model holds if and
only if both the symmetry of the odds ratios and the homogeneity of marginal
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distribution hold. A theorem may be useful to determine the reason for a
poor fit of the symmetry model. Hence, we also consider the decomposition
of symmetry using our proposed model.

Aitchison (1962), Darroch and Silvey (1963), Lang and Agresti (1994),
and Tomizawa and Tahata (2007) argued for orthogonality of the model. It
means that a test statistic for the goodness-of-fit of model M1 is asymptotically
equivalent to the sum of the test statistics for model M2 and model M3 when
model M1 can be decomposed into model M2 and model M3. When it holds, an
incompatible situation, where both model M2 and model M3 are accepted but
model M1 is rejected, would not arise. In this paper, we give the orthogonal
decomposition where the test statistic for the symmetry model is equal to the
sum of those for the decomposed models.

The present paper is organized as follows. Section 2 proposes our new
model. Section 3 gives the decomposition of the symmetry model. Section
4 partitions the test statistic. Section 5 gives numerical examples. Section 6
concludes this paper.

§2. Models

Consider an r×r square contingency table with the same row and column clas-
sifications. Let πij denote the probability that an observation will fall in the
ith row and the jth column of the table (i = 1, . . . , r; j = 1, . . . , r), and let πi+
and π+i denote the row and column marginal probabilities (i = 1, . . . , r), re-
spectively. Bowker (1948) proposed the symmetry (S) model, which is defined
as

πij = πji (i = 1, . . . , r; j = 1, . . . , r).

This indicates that the probability of an observation falling in the (i, j) cell, i ̸=
j, is equal to the probability of the observation falling in the symmetric (j, i)
cell. As a model that has a weaker restriction, Caussinus (1965) considered
the quasi-symmetry (QS) model, which is defined as

πij = µαiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji. The QS model indicates the symmetry with respect to the
odds ratios. Note that the QS model with {αi = βi} is the S model.

When the S model fits a given dataset poorly, applying an asymmetry
model may be more appropriate. For a square contingency table with ordinal
categories, McCullagh (1978) proposed the conditional symmetry (CS) model,
which is defined as

πij = γπji (i < j).
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The CS model indicates that the probability of an observation falling in the
(i, j) cell, i < j, is γ times higher than that in the symmetric (j, i) cell. The
CS model with γ = 1 is the S model.

Agresti (1983) proposed the linear diagonals-parameter symmetry (LDPS)
model, which is defined as

πij = θj−iπji (i < j).

The LDPS model indicates that the ratios of symmetric cells increase or de-
crease exponentially as the difference j − i. A special case of this model with
θ = 1 is the S model.

Tahata, Naganawa, and Tomizawa (2016) proposed the extended kth linear
asymmetry (ELSk) model, which is defined for a fixed k (k = 1, . . . , r − 1) as

πij =

(
γ

k∏
l=1

θj
l−il

l

)
πji (i < j).

The ELSk model indicates that the log-ratios of symmetric cells are expressed
as the polynomial. The ELSk model includes various models such as those
proposed by Bowker (1948), McCullagh (1978), Agresti (1983), and Tomizawa
(1987).

Let p = (pij) and q = (qij) be two discrete finite bivariate probability
distributions. The f -divergence between p and q is defined as

I(p||q) =
∑
i

∑
j

qijf

(
pij
qij

)
,

where f is a convex function on (0,∞) with f(1) = 0, f(0) = limt→0 f(t),
0 · f(0/0) = 0, and 0 · f(a/0) = a limt→∞(f(t)/t). For details, see Csiszár and
Shields (2004). Many divergences, such as the Kullback-Leibler divergence,
Pearson χ2 divergence, and power divergence (Read and Cressie, 1988) are
special cases of the f -divergence.

Let f be a twice-differentiable and strictly convex function, and let F (t) =
df(t)/dt for all t. Kateri and Papaioannou (1997) introduced the quasi-
symmetry (QS[f ]) model based on the f -divergence defined as

πij = πSijF
−1(αi + γij) (i = 1, . . . , r; j = 1, . . . , r),

where γij = γji and π
S
ij = (πij+πji)/2. It is proved that the QS[f ] model is the

closest model to the S model in terms of the f -divergence under the conditions
where the row or column marginals πi+ (or π+i) for i = 1, . . . , r as well as the
sums πij + πji for i = 1, . . . , r; j = 1, . . . , r are given. If f(t) = t log t, t > 0,
then the f -divergence is reduced to the Kullback-Leibler divergence, and the
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QS[f ] model is equivalent to the QS model. Under these conditions, the QS
model is the closest model to the S model in terms of the Kullback-Leibler
divergence.

Let {ui} denote the known scores assigned to the row and column categories
where u1 ≤ u2 ≤ · · · ≤ ur and u1 < ur. Kateri and Agresti (2007) proposed the
ordinal quasi-symmetry (OQS[f ]) model, which is based on the f -divergence
and is defined as

πij = πSijF
−1(αui + γij) (i = 1, . . . , r; j = 1, . . . , r),

where γij = γji and πSij = (πij + πji)/2. The OQS[f ] model is the closest
model to the S model in terms of the f -divergence under the conditions that
the sums πij+πji for i = 1, . . . , r; j = 1, . . . , r and marginal mean

∑
i uiπi+ (or∑

i uiπ+i) are given. The OQS[f ] model is a special case of the QS[f ] model.

We propose an asymmetry model based on the f -divergence. The condi-
tional symmetry (CS[f ]) model based on the f -divergence is defined as

πij = πSijF
−1(γij) (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0+γji (i < j) and πSij = (πij +πji)/2. The CS model is a special
case of the CS[f ] model. In an analogous manner to Kateri and Papaioannou
(1997), we can obtain the following theorem:

Theorem 2.1. The CS[f ] model is the closest to the S model in terms of the
f -divergence under the conditions where the sums {πij + πji} and

∑∑
i<j πij

(or
∑∑

i<j πji) are given.

Proof. We assume that the total upper-diagonal cell probabilities are given.
I(π||πS) is minimized under the constraints of∑∑

i<j

πij = δ,

and

πij + πji = tij (i = 1, . . . , r; j = 1, . . . , r),

where δ and {tij} are constants. Note that {πSij} satisfies the structure of

symmetry. Namely, πSij = πSji. This is a constraint minimization problem,
which can be solved by the method of Lagrange multipliers. The Lagrange
function is

L = I(π||πS) + ψ

∑∑
i<j

πij − δ

+
r∑

i=1

r∑
j=1

ϕij(πij + πji − tij),
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where ψ and {ϕij} are the Lagrange multipliers. Equating the partial deriva-
tive of L with respect to πij to 0, we obtain

F

(
πij

πSij

)
+ ϕij + ϕji + ψ = 0 (i < j),

F

(
πij

πSij

)
+ ϕij + ϕji = 0 (i ≥ j).

The existence of F−1 is ensured because f is strictly convex. With α0 = −ψ
and γij = −(ϕij+ϕji), we obtain the CS[f ] model. The proof is complete.

Let {ui} denote the known scores u1 < u2 < · · · < ur and also let gik
denote the function of (α0, . . . , αk) for a fixed k (k = 0, . . . , r − 1), where

gik(α) =


0 (k = 0),
k∑

h=1

uhi αh (k = 1, . . . , r − 1).

As an extension of the CS[f ] model, we also propose a new model defined for
a fixed k (k = 0, . . . , r − 1) as

πij = πSijF
−1 (gik(α) + γij) (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and πSij = (πij + πji)/2. We refer to this model
as the extended kth asymmetry model based on the f -divergence denoted by
EAk[f ]. We note that the EA0[f ] model is the CS[f ] model. As a special
case of this model, the EAk[f ] model with α0 = 0 is the kth asymmetry
model based on the f -divergence proposed by Tahata (2019). Note that (i)
the EAk[f ] model is the S model when α0 = α1 = · · · = αk = 0 for any f , (ii)
the EAk[f ] model is the QS[f ] model when k = r− 1 and α0 = 0, and (iii) the
EAk[f ] model is the OQS[f ] model when k = 1 and α0 = 0.

The EAk[f ] model can be expressed as

F (2πcij) = gik(α) + γij (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and πcij = πij/(πij + πji). Note that πcij is the
conditional probability of an observation falling in the (i, j) cell under the
condition that the observation falls in the (i, j) cell or (j, i) cell.

If f(t) = t log t, t > 0, then the f -divergence is reduced to the Kullback-
Leibler divergence, F−1(t) = exp(t− 1), and the EAk[f ] model becomes

(2.1) πij = πSij exp (gik(α) + γij − 1) (i = 1, . . . , r; j = 1, . . . , r),
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where γij = α0 + γji (i < j) and πSij = (πij + πji)/2. From equation (2.1), we
obtain that for i < j,

(2.2)
πij
πji

=


β0 (k = 0),

β0

k∏
h=1

β
uh
i −uh

j

h (k = 1, . . . , r − 1),

where βl = exp(αl) (l = 0, 1, . . . , k). Equation (2.2) with {ui = i} is identical
to the ELSk model. Therefore, the EAk[f ] model generalizes the aforemen-
tioned models.

If f(t) = (1−t)2, then F−1(t) = (t/2)+1, and the EAk[f ] model is reduced
to

(2.3) πij = πSij

(
gik(α) + γij

2
+ 1

)
(i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and πSij = (πij + πji)/2. This model can be
expressed as, for i < j,

πcij − πcji =


β0 (k = 0),

β0 +
k∑

h=1

(uhi − uhj )βh (k = 1, . . . , r − 1),

where βl = αl/4 (l = 0, 1, . . . , k). This model is based on the Pearson χ2

divergence. We refer to this model as the Pearsonian extended kth asymmetry
(PEAk) model.

Moreover, consider f(t) = (λ(λ+ 1))−1(tλ+1 − t), t > 0, where λ is a real-
valued parameter. It is defined by the continuous limits as λ→ 0 and λ→ −1
for λ = 0 and λ = −1. In this case, the f -divergence is reduced to the power
divergence, F−1(t) = (λt+ (λ+1)−1)1/λ for λ ̸= 0,−1, and the EAk[f ] model
becomes

πij = πSij(λ(gik(α) + γij) + (λ+ 1)−1)
1
λ (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and πSij = (πij + πji)/2. This model can be
expressed as

(2.4) πij =


πSij (1 + λψij)

1
λ (k = 0),

πSij

(
1 + λ

(
k∑

h=1

uhi αh + ψij

)) 1
λ

(k = 1, . . . , r − 1),

for i = 1, . . . , r; j = 1, . . . , r, where ψij = γij − (λ+ 1)−1 and ψij = α0 + ψji

(i < j). Equation (2.4) with λ → 0 can be expressed as equation (2.1),
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and equation (2.4) with λ = 1 is equivalent to equation (2.3) by replacing
αh = α′

h/2 and ψij = ψ′
ij/2.

Similarly, we obtain the following theorem with respect to the EAk[f ]
model:

Theorem 2.2. For any k (k = 1, . . . , r − 1), the EAk[f ] model is the closest
to the S model in terms of the f -divergence under the conditions that the sums
{πij + πji}, the hth moment

∑
i u

h
i πi+ (or

∑
i u

h
i π+i) (h = 1, . . . , k), and∑∑

i<j πij (or
∑∑

i<j πji) are given.

From Theorem 2.2, the ELSk model is the closest model to the S model in
terms of the Kullback-Leibler divergence under these conditions.

§3. Decomposition of symmetry

Let X1 and X2 denote the row and column variables, respectively, and let {us}
(s = 1, . . . , r) be a set of known scores. We consider a model defined for a
fixed k (k = 1, . . . , r − 1) as

E(Xh
1 ) = E(Xh

2 ) (h = 1, . . . , k),

where E(Xh
1 ) =

∑
i u

h
i πi+ and E(Xh

2 ) =
∑

j u
h
j π+j . We refer to this model as

the marginal kth moment equality (MEk) model.
The global symmetry (GS) model is defined as

δU = δL,

where δU =
∑∑

i<j πij and δL =
∑∑

i<j πji (see Read, 1977). Then, we
obtain the following theorem.

Theorem 3.1. For any k (k = 1, . . . , r − 1), the S model holds if and only if
the EAk[f ], GS, and MEk models simultaneously hold.

Proof. If the S model holds, then for any k, the EAk[f ], GS, and MEk models
simultaneously hold. Assuming that all the EAk[f ], GS, and MEk models hold
for some k, then we prove that the S model holds. Let {π̃ij} denote the cell
probabilities satisfying all the EAk[f ], GS, and MEk models hold. From the
EAk[f ] model, we obtain

F

(
π̃ij

π̃Sij

)
=

k∑
h=1

uhi αh + γij (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and π̃Sij = (π̃ij + π̃ji)/2. From this equation, we
obtain

F

(
π̃ij

π̃Sij

)
− F

(
π̃ji

π̃Sji

)
= α0 +

k∑
h=1

(uhi − uhj )αh (i < j).



46 K. FUJISAWA AND K. TAHATA

The MEk model can be expressed as

µh1 = µh2 ,

where µh1 =
∑∑

i<j(u
h
i − uhj )πij and µh2 =

∑∑
i<j(u

h
i − uhj )πji. Assuming

that the GS and MEk models hold, we can see that

∑∑
i<j

(π̃ij − π̃ji)

(
F

(
π̃ij

π̃Sij

)
− F

(
π̃ji

π̃Sji

))
= 0.

Therefore, the S model holds because the monotonicity of F is ensured.

Note that this theorem generalizes the results of Caussinus (1965), Kateri
and Papaioannou (1997), and Tahata et al. (2016).

When k = 0, we can obtain the following corollary.

Corollary 3.1. The S model holds if and only if both the EA0[f ] and GS
models hold.

§4. Partition of test statistics

For the r × r contingency tables, let nij denote the observed frequency in the
(i, j)th cell of the table and mij denote the corresponding expected frequency
with n =

∑∑
nij (i = 1, . . . , r; j = 1, . . . , r). Assume that {nij} has a

multinomial distribution. {m̂ij} denotes the maximum likelihood estimate
(MLE) of {mij} under a model. The likelihood ratio chi-squared statistic for
the goodness-of-fit of the model M is defined as

G2(M) = 2

r∑
i=1

r∑
j=1

nij log

(
nij
m̂ij

)
.

The numbers of degrees of freedom (df) for testing the goodness-of-fit under
the EAk[f ], GS, and MEk models are r(r−1)/2−k−1, 1, and k, respectively.
The number of df for the S model is equal to the sum of the numbers of df for
the EAk[f ], GS, and MEk models.

Considering the model where both the GS and MEk models hold, which is
denoted by GMk, we can obtain the following theorem.

Theorem 4.1. Under the S model, for any k (k = 1, . . . , r − 1), the test
statistic G2(S) is asymptotically equivalent to the sum of G2(EAk[f ]) and
G2(GMk).
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Proof. For a fixed k (k = 1, . . . , r− 1), the EAk[f ] model may be expressed as

F (2πcij) =

k∑
h=1

(uhi − uhj )ϕh + γij (i = 1, . . . , r; j = 1, . . . , r),

where γij = α0 + γji (i < j) and ϕh = αh/2 (h = 1, . . . , k). Let

π = (π11, . . . , π1r, π21, . . . , π2r, . . . , πrr)
′,

F (2πc) = (F (2πc11), . . . , F (2π
c
1r), F (2π

c
21), . . . , F (2π

c
2r), . . . , F (2π

c
rr))

′,

β = (α0, ϕ1, . . . , ϕk,γ)
′,

where γ = (γ11, . . . , γr1, γ22, . . . , γr2, . . . , γrr). Then the EAk[f ] model is ex-
pressed as

F (2πc) = Xβ = (x0,x1, . . . ,xk,Xk+1)β,

where

x0 = (v1, . . . ,vr)
′,

xl = J l
r ⊗ 1r − 1r ⊗ J l

r (l = 1, . . . , k),

and Xk+1 is the r2×r(r+1)/2 matrix of 1 or 0 elements determined from the
structure of the EAk[f ] model. Note that 1s is the s× 1 vector of 1 element,
vt is the 1 × r vector of 0 for the first t elements and the others are 1, J l

r =
(ul1, . . . , u

l
r)

′, and “⊗” denotes the Kronecker product. Xk+11r(r+1)/2 = 1r2

holds, and the r2×K matrixX is full column rank whereK = k+1+r(r+1)/2.
We denote the linear space spanned by the columns of the matrix X by

S(X) with the dimensionK. Let U be an r2×d1, where d1 = r(r−1)/2−k−1,
the full column rank matrix such that the linear space spanned by the column
of U , that is, S(U) is the orthogonal complement of the space S(X). Thus,
U ′X is the d1 ×K zero matrix.

Let h1(π) be a vector of functions defined by h1(π) = U ′F (2πc). Addi-
tionally, let h2(π) be a vector of functions defined by h2(π) = Mπ with

M =


(2x0 − 1r2 +w1 +w2 + · · ·+wr)

′

x′
1
...
x′
k

 : the d2 × r2 matrix,

where d2 = k + 1 and wi (i = 1, . . . , r) is the r2 × 1 vector, being one of
column vectors in Xk+1 corresponding γii. We note that M ′ belongs to the
space S(X), namely, S(M ′) ⊂ S(X). The EAk[f ] model is equivalent to the
hypothesis h1(π) = 0d1 , where 0d1 is the d1 × 1 zero vector. Similarly, the
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GMk model is equivalent to the hypothesis h2(π) = 0d2 . From Theorem 3.1,
the S model is equivalent to the hypothesis h3(π) = 0d3 , where h3 = (h′

1,h
′
2)

′

and d3 = d1 + d2 = r(r − 1)/2.
Let Σ(π) = diag(π)−ππ′, where diag(π) denotes a diagonal matrix with

the ith component of π as the ith diagonal component. Let p denote π with
πij replaced by pij , where pij = nij/n. Then

√
n(p − π) has an asymptotic

normal distribution with mean 0r2 and covariance matrix Σ(π). Using the
delta method,

√
n(h3(p)−h3(π)) has an asymptotic normal distribution with

mean 0d3 and covariance matrix

H3(π)Σ(π)H ′
3(π) =

(
H1(π)Σ(π)H ′

1(π) H1(π)Σ(π)H ′
2(π)

H2(π)Σ(π)H ′
1(π) H2(π)Σ(π)H ′

2(π)

)
,

where Hs(π) = ∂hs(π)/∂π
′ (s = 1, 2, 3). Then

H1(π) = U ′(diag(a) + Jdiag(b)),

where

a = (a11, . . . , a1r, a21, . . . , a2r, . . . , ar1, . . . , arr)
′,

b = (b11, . . . , b1r, b21, . . . , b2r, . . . , br1, . . . , brr)
′,

with

aij =
∂

∂πij
F
(
2πcij

)
, bij =

∂

∂πij
F
(
2πcji

)
,

and J denotes the r2 × r2 matrix such that

Jπ = (π11, . . . , πr1, π12, . . . , πr2, . . . , π1r, . . . , πrr)
′.

Additionally, we can obtain H2(π) = M . Under the hypothesis h3(π) = 0d3 ,

H1(π)Σ(π)H ′
2(π) = H1(π)(diag(π)− ππ′)M ′,

= H1(π)diag(π)M
′,

because Mπ is the d2 × 1 zero vector. Then

H1(π)diag(π) =
F̄ (1)

2
U ′(I − J),

where F̄ (u) = dF (u)/du. We obtain H1(π)Σ(π)H ′
2(π) is the d1 × d2 zero

matrix since JM ′ = −M ′. Thus,

W3 =W1 +W2,

where
Ws = nhs(p)

′(Hs(p)Σ(p)H ′
s(p))

−1hs(p).
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The Wald statistic Ws has an asymptotic chi-squared distribution with ds
degrees of freedom. That is, (i) W1 is the Wald statistic for the EAk[f ] model.
(ii) W2 is that for the GMk model. (iii) W3 is that for the S model. The proof
is completed from the asymptotic equivalence of the Wald statistic and the
likelihood ratio statistic proved by Rao (1973).

When k = 0, we obtain the following corollary.

Corollary 4.1. Under the S model, the test statistic G2(S) is asymptotically
equivalent to the sum of G2(EA0[f ]) and G2(GS).

§5. Example

The data in Table 1 from Bishop, Fienberg, and Holland (1975, p.210), are
constructed from the occupational status of 2,391 father-son pairs in Denmark.
The categories are ordinal from (1) to (5) (high to low). For a fixed k (k =
0, 1, . . . , r − 1), the PEAk model is applied to the data in Table 1 with the
integer score. Table 2 gives the value of the likelihood ratio statistic G2 for
each model.

The S model fits the data in Table 1 poorly, whereas the PEA3, PEA4,
and GM2 models fit well. We consider the hypothesis that the PEA3 model
holds assuming that the PEA4 model holds, namely, α4 = 0. Using a test
based on the difference between the likelihood ratio chi-square statistic, this
hypothesis is accepted at the 0.05 significance level because the difference
between two likelihood ratio chi-square values is 0.871 with 1 df. Therefore,
the PEA3 model is preferable to the PEA4 model, that is, it is reasonable
that the difference of the conditional probabilities is expressed as cubic than
quartic with respect to {ui}.

The values of MLEs of α0, α1, α2, and α3 for the PEA3 model are 0.086,
4.131, −1.358, and 0.133, respectively. We estimate the difference between
two conditional probabilities as π̂cij − π̂cji = (0.086 + 4.131(i− j)− 1.358(i2 −
j2) + 0.133(i3 − j3))/4 for i < j. The estimated differences between two
conditional probabilities π̂c1j − π̂cj1 (j = 2, . . . , 5) are all negative. In this case,
the conditional probability that the son’s status belongs to (1) under condition
that the son’s status belongs to (1) and the father’s status belongs to (j) or the
son’s status belongs to (j) and the father’s status belongs to (1) is estimated
to be higher than the conditional probability that the father’s status belongs
to (1) under same condition. By contrast, the estimated differences between
two conditional probabilities π̂cij− π̂cji (i = 2, 3, 4; j > i) are all positive. In this
case, the conditional probability that the father’s status belongs to (i) under
condition that the father’s status belongs to (i) and the son’s status belongs
to (j) or the father’s status belongs to (j) and the son’s status belongs to (i) is
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estimated to be higher than the conditional probability that the son’s status
belongs to (i) under same condition.

We are interested in inferring the reason for the poor fit of the S model.
According to Theorem 3.1, the S model can be separated into the PEA3 model
and the GM3 model. The PEA3 model fits very well, but the GM3 model fits
very poorly. Hence, we deduce that the lack of structure of the GM3 model is
responsible for the poor fit of the S model.

§6. Discussion

We propose an asymmetry model based on the f -divergence, which includes
various asymmetry models. We discuss the choice of f . The EAk[f ] model is
concerned with conditional probabilities. Considering the interpretable model,
we can easily interpret the PEAk model because the PEAk model can be ex-
pressed as the difference between πcij and πcji. However, it is difficult to inter-
pret models based on power-divergence, except the ELSk and PEAk models.
The PEAk model is useful to analyze square contingency tables with ordinal
categories.
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Table 1: Occupational status for father-son pairs; taken directly from Bishop
et al. (1975, p.210)

Father’s Son’s status
status (1) (2) (3) (4) (5) Total

(1) 18 17 16 4 2 57
a18.000 15.861 15.704 5.499 3.630
b18.000 14.795 15.524 5.300 3.549

(2) 24 105 109 59 21 318
25.139 105.000 101.616 62.867 16.751
26.205 105.000 105.614 63.807 17.192

(3) 23 84 289 217 95 708
23.296 91.384 289.000 221.985 92.134
23.476 87.386 289.000 217.015 91.121

(4) 8 49 175 348 198 778
6.501 45.133 170.015 348.000 201.974
6.700 44.193 174.985 348.000 204.300

(5) 6 8 69 201 246 530
4.370 12.249 71.866 197.026 246.000
4.451 11.808 72.879 194.700 246.000

Total 79 263 658 829 562 2391
Notes: aEstimated expected frequencies from the PEA3 model.

bEstimated expected frequencies from the PEA4 model.
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Table 2: Likelihood ratio chi-square values G2 for each model applied to the
data in Table 1

Model Degree of freedom G2

S 10 24.802∗

PEA0 9 18.819∗

PEA1 8 18.682∗

PEA2 7 17.227∗

PEA3 6 7.337
PEA4 5 6.466
GS 1 5.983∗

GM1 2 6.120∗

GM2 3 7.576
GM3 4 17.465∗

GM4 5 18.336∗

Notes: ∗Significant at the 0.05 level
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