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Abstract. In this work, we provide a g-generalization of flexible algebras
and related bialgebraic structures, including center-symmetric (also called anti-
flexible) algebras, and their bialgebras. Their basic properties are derived and
discussed. Their connection with known algebraic structures, previously de-
veloped in the literature, is established. A ¢-Myung theorem is given. Main
properties related to bimodules, matched pairs and dual bimodules as well as
their algebraic consequences are investigated and analyzed. Besides, the equiva-
lence between g-generalized flexible algebras, their Manin triple and bialgebras
is established. Finally, various remarkable identities are established for the
octonion algebra.
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§1. Introduction

Alternative algebras were introduced by Zorn [29] who established their fun-
damental identities, studied their nucleus by modifying the characteristics of
the field, and investigated their Lie admissibility using the corresponding Ja-
cobi identity. Furthermore, Zorn derived their power associativity conditions.
Later, Schafer [26] gave a new formulation of these algebras in terms of left
and right multiplication operators, and in terms of division algebras of degree
two. He also provided the isotopes of these algebras. Santilli [27] introduced
Lie admissible algebras and gave their basic properties. He extended his study
to mutation algebras, examined their relation to associative algebras, Lie al-
gebras, Jordan and special Jordan algebras, and established the passage from
one type of algebra to another by using a hexahedron with oriented edges.
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Radicals of flexible Lie admissible algebras were introduced, and some of their
properties were established and discussed in [6]. Classes of flexible Lie ad-
missible algebras were also investigated and discussed in [IR]. Albert in [1]
elaborated fundamental concepts, and studied the isotropy of nonassociative
algebras. Simple and semi-simple algebras, and their characterization from
nonassociative algebraic structures were developed and discussed in [2]. For
more details, see a self-contained book by Schafer [75] addressing a nice com-
pilation of basic properties of nonassociative algebras.

Contrarily to Lie algebras, and except for some classification based on the
characteristics of closed fields (see [@] and references therein), a full classifica-
tion of nonassociative algebras still remains a tremendous task. Some inter-
esting properties and algebraic identities of anti-flexible structures were inves-
tigated and discussed in [8]. The properties of simple, semisimple and nearly
semisimple anti-flexible algebras were also derived and analyzed in [22-24].

Among the nonassociative algebras, the alternative algebras, with an as-
sociator preserving certain symmetry by exchanging its elements, play a cen-
tral role in both mathematics and physics as they possess interesting proper-
ties. A nice repertory of their applications in physics, including gauge theory
and Yang-Mills gauge theory formulation from nonassociative algebras can be
found in [P0], (and references therein). A theory of nuclear boson-expansion
for odd-fermion systems in the context of nonassociative algebras was also
examined in [Z1]. A study on quark structure and octonion algebras was
performed in [T1]. Further, a generalization of the classical Hamiltonian dy-
namics to a three-dimensional phase space, generating equations of motion
with two Hamiltonians and three canonical variables, was performed with an
analog of Poisson bracket realized by means of the associator of nonassociative
algebras [I9].

Besides, flexible algebras were also investigated in terms of degree of alge-
bras [[4]. Other characterizations and applications of nonassociative algebras
can be found in [I7], [15] and [12] (and references therein).

Similarly to algebraic properties of quantum groups developed by Drin-
feld [00], some nonassociative algebras possess interesting identities with ap-
plications in physics, and generate the so-called associative or classical Yang-
Baxter equations [3,9,03], (and references therein). Furthermore, the bialge-
bras constructed from Jordan algebras [28] are related to the Lie bialgebras.
The left-symmetric algebras, also called pre-Lie algebras [§], are known as Lie
admissible algebras, and admit the left multiplication operator as a represen-
tation. They can also be used to produce symplectic Lie algebras, while their
coboundary bialgebras lead to the identity known as S-equation, and gener-
ate para-Kéahler Lie algebras. The case of associative algebras also furnished
remarkable properties investigated by Aguiar [3] and Bai [d]. The center-
symmetric algebras studied in [IZ] are also Lie admissible algebras.
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The (anti-) flexible algebras were well investigated and their main proper-
ties well scrutinized in a series of works [[2,[[4, 5,17, I8,22-24] (and references
therein). Unfortunately, to our best knowledge of the literature, their char-
acterization in terms of bialgebras, bimodules, matched pairs, Manin triples
and their mutual link is still lacking. The present work aims at filling this
gap in a global and unique way by combining the analysis of these algebras in
an approach generalizing them, and where a specific algebra can be recovered
as a particular case corresponding to a value of the introduced parameter gq.
It mainly addresses a g-generalization of flexible algebras and related bial-
gebraic structures, including center-symmetric (also called anti-flexible) alge-
bras, and their bialgebras. Their basic properties are derived and discussed.
Their connection with known algebraic structures existing in the literature
is established. A g-version of the Myung theorem is given. Main properties
related to bimodules, matched pairs and dual bimodules, and their algebraic
consequences are investigated and analyzed. Besides, the Manin triple of ¢-
generalized flexible algebras, and its link to g-generalized flexible bialgebras
are built together with the equivalence with the matched pair of ¢g-generalized
flexible algebras. Finally, various remarkable identities are established for the
octonion algebra.

§2. Basic properties of a ¢-generalized flexible algebra

In this section, a g-generalization of algebras encompassing flexible, anti-
flexible and associative algebras is provided. Their relevant properties and
link with known algebras are derived. Jordan identity and Lie admissibility
condition are also established.

Definition 2.1. Let A(q), where ¢ € {—1;0;1} C K, (R or C), be a finite di-
mensional vector space and “” a bilinear product on A(q). The couple (A(q), -)
is called a q-generalized flexible algebra if, for all x,y,z € A(q), the following
relation is satisfied:

(2.1) (z,y,2) = q(z,y,2),
or, equivalently,
po(p®id) +q(por)o((nor)®id) =po (id®u) +q(por)o (id®(noT)),

where (z,y,z) = (x-y)-z—x- (y-z) is the associator of the bilinear product
“7 on A(q); p is defined by p(x,y) = x -y; id is the identity map on A(q);
and T stands for the exchange map on A(q) ® A(q) given by T(zQy) =y ® x.

Remark 2.2. We have:
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e Equation (E0) can be described by the following commutative diagram:
Alg) ® Alg) © Alg) ZZ A(g) © Alg)
id ®(uor)(uor)®idJ( lu
Alg) ® Alg) Ala)
e For q =0, the algebra (A(q),-) is reduced to an associative algebra;
o Forq=—1, (A(q),-) becomes a flexible algebra;
e For g =1, (A(q),-) turns to be a center-symmetric algebra [12], (also

called anti-flexible algebra [T3]).

In the sequel, (A(q),:) denotes a g-generalized flexible algebra over K, (R
or C), with ¢ € {—1;0;1}. Besides, for notation simplification, we write zy
instead of = -y, for z,y € A(q), i.e. the product “” is omitted when there is
no confusion.

Definition 2.3. Suppose L and R be left and right multiplication operators
defined on A(q) as:

Alg) — ol(A(g))

(22)  L: Al — A<q§

Alg) — al(Alq))
(2.3) R: - s R(z) Alq) — Alg)
y — R(z)y:=y-x.
Then, their associated dual maps are defined as follows:

Alg) — ol(A(g)")
Alg)r — Alg)

L N
x — L*(z) : " s L*(w)a: Alg) — K )
x — < L*(x)a,y >
A(q) — gl(Alg)")
R* . Alg)* — Alg)”
x — R*(z) : " s R'(2)a: Alg) — K )
x — < R*(z)a,y >
where, for all z,y € A(q) and all a € A(q)*
(2.4) < L*(z)a,y >=<a, L(x)y >,

(2.5) < R*(x)a,y >=< a,R(z)y > .
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Proposition 2.4. Let L and R be the above defined left and right multiplica-
tion operators. The following relations are satisfied for all x,y € A(q) :

(2.6) L(zy) — L(z)L(y) = q(R(z)R(y) — R(yz)),
(2.7) [R(z),L(y)] = q[R(y), L(=z)],
(2.8) R(z)R(y) — R(yx) = q(L(zy) — L(z)L(y)).

Proof. Let A(q) be a g-generalized flexible algebra over the field K. We have
for all 2, 2 € A(g), (2,3, ) = 4(2,2) = (zy)7—(y2) = a(29)7—q=(y).
Since (z,y,z) = (L(zy) — L(z)L(y))(2) = [R(z),L(z)](y) = (R(z)R(y) —
Ry2)) () and q(z,y, ©) = q(R(z)R(y)—R(yx))(2) = q[R(x), L(2)|(y) = q(L(zy)—

L(2)L(y))(z), the relations (E8), (220) and (Z=8) hold. O
Proposition 2.5. Provided the sub-adjacent algebra G(A(q)) := (A(q), ., .]),
where the bilinear product [.,.] is the commutator associated to the product on

A(q), we have, for all z,y,z € A(q):

(2.9) J(@,y,2) = [z [y,2]] + [y, [z 2] + [2 [=,9]]
= (q—1){(w,y,z)+(y,z,x)+(z,m,y)}.
Proof. It stems from a straightforward computation. O

Corollary 2.6. 1. From the Proposition 24, for all x,y,z € A(q), the
relation

(2.10) S(x,y,2) = (v,y,2) + (y,2,2) + (2,2,y) =0

is a sufficient condition for A(q) to become a Lie admissible algebra, i.e.
for (A(q),[.,.]) to be a Lie algebra. In the particular case where ¢ =1,
we get a center-symmetric algebra which is Lie admissible as developed

in [12].

2. The q-generalized flexible algebra A(q) is Lie admissible if and only if,
forall z,y,z € A(q), we have: (¢q—1)S(z,y,z) = 0. In particular, any q-
generalized flexible algebra defined on a field Ky—1 of characteristic ¢ —1
is Lie admissible.

Proposition 2.7. The following relation is satisfied for all x,y € A(q) :
)

(2.11) (L(xy) — L(2) L(y) + R(x)L(y) — L(y)R(z) + R(y)R(x) — R(zy)
= q(R(x)R(y) — R(yx) + R(y)L(z) — L(z)R(y) + L(yx) — L(y)L(z)),

where L and R are representations of left and right multiplication operators,
respectively.
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Proof. Let us write the associator with the operators L and R. For all
z,y,z € Aq),

(,y,2) = (wy)z —2(yz) = (L(zy) — L(z)L(y))(2)
= (R(z)L(x) — L(z)R(2))(y) = (R(2)R(y) — R(yz)) ().

It follows that:

(x,y,2) + (Y, 2,2) + (2,2,y) = (L(zy) — L(z)L(y) + R(z)L(y)

)
q(z,y, )+ q(z, 2,y) + q(y, z, 2)
= q(R(z)R(y) — R(yx) + R(y)L(z

)
L(z)R(y) + L(yx) — L(y) L(2))(2)-

Therefore, for all z,y € A(q):
L(zy) — L(x)L(y) + R(z)L(y) — L(y) R(x) + R(y) R(x) — R(zy) =
q(R(x)R(y) — R(yz) + R(y)L(x) — L(z)R(y) + L(yx) — L(y)L(x)). O

Remark 2.8. The result (2I0) can also be derived from the Proposition [2
by summing the relations (Z8), (E21) and (£3).

Theorem 2.9. The following relation is satisfied: Vx,y, z € A(q),
(2.12) [zy — qyz, 2] + [yz — qzy, 2] + [27 — qzz,y] = 0,

where the bilinear product |[.,.] is the commutator associated to the product “”

defined on A(q).

Proof. By a direct computation. O

Remark 2.10. By setting the parameter ¢ = 1, we get the Jacobi identity
from the relation (2132) indicating that the underlying algebra is Lie admissible
as shown in [13].

We are therefore in right to set the following:

Definition 2.11. Setting G(A(q)) := (A(q),[.,.]), where A(q) is the under-
lying vector space associated to a q-generalized flexible algebra (A(q),-), the
equation (ZI2) defines a q-generalized Jacobi identity.

Theorem 2.12. Consider a q-generalized flexible algebra (A(q), ).
1. If for all z,y,z € A(q),

(2.13) [va'y] :{va}Q'y_x'{yaz}qv
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where {z,y}q :=x-y+qy -z, then (A(q),-) is a Lie-admissible algebra,
i.e. for all z,y,z € A(q),

(2.14) [z, 9], 2] + [[y, 2], 2] + [[2, 2], 9] = 0,
where [,y =x -y —y - x.

The following relations are satisfied, for all x,y,z € A(q) :

(2.15) (2,2 %q y] = [z, 2] %q y + 2 %4 [2, Y],
and
(2.16) [ %qy, 2] + [y *q 2, 2] + [z %q z,y] =0,

where T %4y = %(myfqyx)

Remark 2.13. From Theorem B13, we observe that:

1.

For g = —1, the equation (EI3) turns out to be the derivation property
for the commutator of a flexible algebra as postulated by the well known
Myung Theorem [I8], [20] (and references therein);

For q =0, the equation (EZI3) is trivial by using the associativity;

For g = 1, the equation (E13) leads to the relation (x,y, z) + (y, z,x) +
(z,z,y) = 0, which is the sufficient condition of the Lie admissibility of
A(q). See the statement @ of Corollary 2@ for more details;

. For ¢ = 1, the equation (Z1H) is equivalent to the Jacobi identity in a

field of characteristics 0, what is the case for a center-symmetric (also
called anti-flexible) algebra;

For ¢ = 0, the equation (EIH) describes the derivation property of the
commutator (or Lie bracket) of a Lie algebra induced by an associative
algebra;

For q = —1, the flexibility condition (2I8) defines the derivation prop-
erty of the Jordan product given as xoy := 5(z-y+y- ), see [20].

§3. Bimodules and matched pairs of g-generalized flexible
algebras

Definition 3.1. The triple (I,7,V'), where V is a finite dimensional vector
space, and l,r : A(q) — gl(V) are two linear maps satisfying the following
relations for all z,y € A(q) :

(3.1)

Wzy) — U(2)l(y) = q(r(z)r(y) —r(yx)),
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(3.2) [r(z),l(y)] = qlr(y), l(z)],

(3.3) r(x)r(y) —r(yz) = q(l(zy) — 1(2)l(y)),
is called a bimodule of A(q), also simply denoted by (I,7).

Proposition 3.2. Let I,r : A(q) — gl(V) be two linear maps as above. The
couple (1,r) is a bimodule of the q-generalized flexible algebra A(q) if and only
if there exists a q-generalized flexible algebra structure “«” on the semi-direct
vector space A(q) @V given by

(x4+u)*(y+v) =z -y+I(z)v+r(y)u,Vr,y € A(q), and Yu,v € V.

[T

We denote such a g¢-generalized flexible algebra structure “x” on the semi-
direct vector space A(q) @V by (A(g) @ V, ) or simply A(qg) x V.

Proof. Let z,y,z € A(q), and u,v,w € V, where V is a finite dimensional
vector space. Using the bilinear product defined by (x + u) * (y + v) =
x -y +U(x)v+r(y)u, where [, : A — gl(V) are linear maps, the associator of

Wy

the bilinear product “x” can be written as, Vx,y, z € A(q), and Yu,v,w € V,

(3.4) (x+uy+v,z+w) = (x,y,2)+ (l(z-y) —U(z)l(y))w
+ (r()l(z) = U(z)r(2))v
+ (r(x)r(y) —r(y-2))u.

Then,

35)  qGztwytvatu) = qzy,z)+q((z-y) —U2)l(y)u
+ q(r(z)l(z) = l(z)r(z))v
+ q(r(z)r(y) —r(y - z))w.

The couple (A(q) &V, *) is a g-generalized flexible algebra means the equality
(x4+u,y+v,z4+w) = q(z+w,y+v, x+u), which is equivalent to the relations
(8), (B2), (B33). Therefore (A(qg),-) is a g-generalized flexible algebra. [

Example 3.3. According to the Proposition 24, (L, R), where R and L are
the representations of the right and left multiplication operators, respectively,
is a bimodule of a q-generalized flexible algebra A(q). Indeed, L and R satisfy
the equations (B), (B2) and (B=3).

Theorem 3.4. Let (A(q), ) and (B(q),*) be two g-generalized flexible alge-
bras. Suppose there exist linear maps la,r4 : A(q) — gl(B(q)) and lg, 5 :
B(q) — g¢l(A(q)) such that (la,74,B(q)) and (Ip,m8,A(q)) are bimodules of
A(q) and B(q), respectively, satisfying the following relations:

(3.6) (s(a)z) -y + I(ra(z)a)y —ls(a)(z - y) =
qa(rg(a)(y - ) —y - (r(a)z) — re(la(z)a)y),
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(3.7) r(a)(@ - y) — - (rs(a)y) — re(la(y)a)r =
q((Is(a)y) - = + I5(raly)a)z — ls(a)(y - x)),

(3.8) (re(a)z) -y +lp(la(z)a)y — z - (Ig(a)y) — ra(ra(y)a)z =
q(((rg(a)y) -z + lB(lA(y)a)f —y - (Ig(a)z) — ra(ra(r)a)y),

(3.9) (La(@)a) * b+ La(rp(a)z)b — la(x)(a xb) =
q(ra(z)(bxa) = b (ra(z)a) — ra(ls(a)z)b),

(3.10) ra(x)(a*xb) —ax (ra(x)b) —ra(lpdb)z)a =
q((La(@)b) * a + La(ra(b)r)a — La(x)(b* a)),

(3.11) (ra(x)a) «b+1a(lg(a)x)b — ax (la(x)b) — ra(rg(b)z)a =
q((ra(x)b) xa+1la(lp(b)x)a — b* (I4(x)a) — ra(rp(a)x)b),

Va,y € A(q) and Va,b € B(q). It follows that there is a q-generalized flexible
algebra structure “«” on the direct sum of vector spaces A(q) ® B(q) given as:

(x+a)*(y+b)=(z-y+isla)y+ra)z) + (axb+la(x)b+ra(ya).

Proof. Let (A(q),-) and (B(q),*) be two g-generalized flexible algebras,
la,ra = Alq) — gl(B(q)) and Ig,rg : B(q) — gl(A(g)) be four linear maps
satisfying the relations (B®), (B22), (8)), (89), (B10) and (81M). Consider
the bilinear product “x” defined on the vector space A(q) @ B(q) as: Vr,y €
A(q);a,b € B(q), (x+a)*x(y+b) = (z-y+Ip(a)y+rg(b)z)+ (axb+14(x)b+
ra(y)a). We have:

(x4+ay+bz+c)={(x+a)*x(y+b}x(z+c)
(x + a)(* {y+b)*(z+b)} = (z,y,2) + {lglaxb)z — Ig(a)(lg(b)z)}

2)(r(c)y)}

+ A{ra(c)(ra(b)z) — r(b=*c)z} + {ra(c)(ls(a)y) — ls(

+ {(B(a)y) -z +ls(ra(y)a)z — ls(a)(y - 2)} + {ra(z)ra(y)a — ra(y - z)a}
+ (a,b,¢) +{la(z - y)e —la(@)(lay)e)} + {ra(2)la(z)b — La(z)ra(z)b}
+ {ls(la(x)b)z + (rp(b)x) - 2 — ra(ra(z)b)z — z - (Ia(b)2)}

+ {(ray)a) = c+lallsla)y)c — ax* (La(y)c) — ra(ra(c)y)a}

+ A{rs(c)(z-y) —z - (r(c)y) — ra(laly)c)z}

+ {lalz)b )*C+ZA(7“B(b) Je—la(z)(bxc)}

+ {TA( )(a*b) —ax(ra(z)b) —ra(ls(b)z)a} = (2,9, 2) + (z,y,¢)

+ (x,b,2) 4+ (z,b,¢) + (a,y,2) + (a,y,c) + (a,b, 2) + (a, b, c).

Then, the g-generalized flexibility condition of the bilinear product “x” is given
by:
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or, equivalently, in terms of the equalities: (I4,74,8(q)) and (I3, r5,.A(q)) are
bimodules of A(q) and B(q), respectively, and for all z,y € A(q), a,b € B(q),

($, Y, CL) = Q(av Y, CC), (337

avy) = Q(yvaa$)v (ﬂj,a,b) = Q(ba a, ‘T)a
(aaxvy) = Q(?Jyfﬂ;a); (a7$7b) =q

(b,z,a), (a,b,z) = q(z,b,a).

These last relations are nothing but the equations (8H), (872), (BR), (BM),
(81M), (B1X). Therefore, the bilinear product given, for all z,y € A(g) and all
a,b € B(q), by (z+a)*(y+b) = (z-y+ig(a)y+ra(b)x)+(axb+Is(x)b+ra(y)a)
on the direct sum of the underlying vector spaces A(q) and B(g) induces a ¢-
generalized flexible algebra structure on A(q) & B(q). O

In this case, the obtained ¢-generalized flexible algebra (A(q) @ B(q),x) is
denoted by A(q) Nég,’:*‘ B(q), or simply A(q) < B(q).

B

Definition 3.5. The siztuple (A(q), B(q),la,74,18,78) such that (14,7 4,B(q))
and (Ig,r, A(q)) are bimodules of A(q) and B(q), respectively, and the linear
maps la, 74, g, B satisfy the relations (88) - (BId), is called matched pair of
the q-generalized flexible algebras A(q) and B(q).

Remark 3.6. Theorem is a q-generalization of main theorems, well known
in the literature. Indeed,

e For q = 0, Theorem is exactly the fundamental theorem for the
matched pair of associative algebras. See [4] and references therein.

e For q =1, Theorem is reduced to the fundamental theorem for the
matched pair of center-symmetric algebras formulated in [13].

e For q = —1, Theorem becomes the fundamental theorem for the
matched pair of flexible algebras.

§4. Basic properties of the ¢-generalized flexible algebras

In this section, we construct and discuss the basic definitions and main prop-
erties of the g-generalized flexible algebras.

Definition 4.1. Let I,r : A(q) — gl(V) be the two above mentioned linear
maps. Their dual maps are defined as:

(4.1) I A(g) — Ky < I"(2)v*,u >=< 0", l(x)u >,

(4.2) r* Alg) — Ky < r*(z)v", u >=< v*, r(x)u >,

where V* = Hom(V,K), gl(V*) is the linear group of V* and < .,. > is the
natural pairing between A(q) and A(q)*.
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Theorem 4.2. For any finite dimensional vector space V', suppose l,r : A(q) —
gl(V) are two linear maps such that I* and r* are their respective dual maps.
Then, the following propositions are equivalent:

1. (I,r, V) is a bimodule of the q-generalized flexible algebra A(q),

2. (r*,I*,V*) is a bimodule of the q-generalized flexible algebra A(q).

Remark 4.3. Let (A(q),-) be a q-generalized flexible algebra and (I,r,V') be
its bimodule.

o Forq=0, (r*,I*,V*) is a bimodule of the associative algebra A(q = 0).
See [3,14] for more details.

o For q = 1, (r*,I*,V*) is a bimodule of the center-symmetric algebra
A(q =1). See [12] for more details.

o Forq=—1, (r*,I*,V*) is a bimodule of the flexible algebra A(q = —1).

Therefore, the associative, center-symmetric and flexible algebras have the
same dual bimodule.

Proposition 4.4. The triple (R*, L*, A(q)*), where A(q)* is the dual space of
A(q) given by A(q)* = Hom(A(q),K), is a bimodule of A(q).

Proof. By considering Definition E=3, Proposition 24 and Proposition B2, we
deduce that (R, L*, A(q)*) is a bimodule of A(q). O

Theorem 4.5. Let (A(q),-) be a q-generalized flexible algebra. Suppose that
there is a q-generalized flexible algebra structure “o” on its dual space A(q)* =
Hom(A(q),K). The siztuple (A(q), A(q)*, R*, L*, R%, LY) is a matched pair of
the q-generalized flexible algebras (A(q),-) and (A(q)*, o) if, and only if, the

linear maps R*, L*, R%, L% given by, Va,y € A(q),Va,b € A(q)*,

(R (2)a,y) = (a, R.(2)y) = (a,y - 2),
(Ri(a)x,b) = (x, Ro(a)by = (x,boa),
(LT (z)a,y) = (a, L.(z)y) = {(a,z - y),
(Li(a)z,b) = (x, Lo(a)b) = (x,aob),

*

where (,) is a natural pairing between A(q) and A(q)*, satisfy the following

relations:

(4.3) (Rs(a)z) -y + Ro(LT (x)a)y — Ro(a)(x - y) =
q(Ls(a)(y - x) —y - (Lo(a)z) — Lo(R (z)a)y),
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(4.4) Lo(a)(z - y) —x - (Ls(a)y) — Lo(RI(y)a)r =
9((Rs(a)y) - = + Ro(L7 (y)a)z — Ri(a)(y - x)),

(4.5) (Lo(a)r) -y + RS(RY(x)a)y — = - (Ro(a)y) — Lo(L7 (y)a)r =
q((Ls(a)y) - = + Ro(R (y)a)x — y - (R(a)z) — Lo(L7 (x)a)y).

Proof. Consider a g-generalized flexible algebra (A(g),-) and assume that
there is a ¢g-generalized flexible algebra structure “o” on its dual space (A(q))*.
Using Definition 223, Proposition 4, and Proposition B2, we deduct that
(R*,L¥, A(q)*) is a bimodule of (A(qg),-), and (R}, L}, A(q)) is a bimodule of
(A(q)*,0). Setting the correspondences 4 — R, r4 — L*, lg — R} and
rg — L%, and using the relations (24) and (2Z3), we establish the equivalences
between (B1M) and (872), (89) and (BH), and (B) and (BR). Further more,
we also obtain that:

(4.6) (Rs(a)x) -y + Ro(LX(z)a)y — Ro(a)(x - y) =
q(Ls(a)(y - x) —y - (Ls(a)z) — Lo(R*(z)a)y)

and

(4.7) L¥(Ri(a)x)b+bo (L¥(z)a) — L¥(z)(boa) =
q(Ri(z)(acb) — R (Ls(a)z)b — (R (x)a) 0 b)

are equivalent, and

(4.8) Li(a)(z - y) — 2 - (Ls(a)y) — Lo(Ri(y)a)r =
q((Rs(a)y) -z + Ro(LM(y)a)z — Ro(a)(y - x))

is equivalent to

(4.9) R*(y)(aob) - R*(L:(a)y)b — (R (y)a) o b =
G(L* (R3(@)y)b+ bo (L (y)a) — L (y) (b o a)).

In addition, the relation (B8) is exactly the same as (B=3), and (E=8) is exactly
(22). Therefore, the sixtuple (A(q),A(q)*, R*, L*, R%, L) is a matched pair
of the g-generalized flexible algebras (A(q),-) and (A(q)*, o) if and only if the
linear maps R*, L*, R}, L} satisfy the equations (£23), (4) and (B3). O

Remark 4.6. Theorem [.J encompasses particular results known in the liter-
ature, namely:

o For q =0, Theorem [f-J is exactly reduced to the result obtained by Bai
in [4], (see also references therein) giving the construction of the dual
matched pair for the associative algebras.
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e For q = 1, we recover the theorem relating the dual matched pair of
center-symmetric algebras with the dual matched pair of Lie algebras,
investigated in [12].

o Forq= —1, Theorem [-g gives the dual matched pair of flexible algebras.
This is a new result, given in this work for the first time, to our best
knowledge of the literature.

Corollary 4.7. Let (A(q),-) be a qg-generalized flexible algebra. Assume that

[l

there is a q-generalized flexible algebra structure “o” on the dual space A(q)*.

“,

There is a q-generalized flexible algebra structure “«<” on the wvector space
A(q) ® A(q)* given, for all x,y € A(q) and for all a,b € A(q)*, by:

(4.10) (z+a)*x(y+0b) = (2 y+ R(a)y + L(b)x)
+(aob+ R'(x)b+ L¥(y)a),

if, and only if, the siztuple (A(q), A(q)*, R*, L*, R%, LY) is a matched pair of
the q-generalized flexible algebras (A(q),-) and (A(q)*, o).

Proof. According to Theorem B2 and Theorem E—3, the linear product defined
in the equation (E-I0) satisfies the relation (1) if and only if (A(q), A(q)*, R¥,
L*, R}, LY) is a matched pair of the ¢g-generalized flexible algebras (A(q), -) and
(Alg)", o). O

Remark 4.8. From Corollary B4, we conclude that both the flexible and anti-
flexible algebras have the same matched pairs. The same result extends to
associative algebras obtained for the parameter ¢ = 0.

Theorem 4.9. Let (A(q),-) be a q-generalized flexible algebra. Suppose there

[Ty

is a q-generalized flexible algebra structure “o” on A(q)* given by the linear
map A+ A(q)" @ A(q)" — Alq)*. Then, (A(q), Alq)", R, LT, R;, L) is a
matched pair of q-generalized flexible algebras if and only if the linear map
A Alg) — Alq) ® A(q) satisfies the following relations:
(4.11) T(R.(y) ® id)A(x) + 7T(ld ®L.(2))A(y) — TA(z - y) =

q(Ay - z) = ([d&L.(y))A(z) — (R.(x) ® id)A(y)),

(4.12) Az -y) — (Id®L.(2)A(y) — (R.(y) ®id)A(z) =
q(7(R.(z) ®id)A(y) + 7(iId @L.(y)) A(z) — TA(y - z)),

(4.13)  (d®R.(y))A(z) + 7(R.(z) ®id)A(y) — 7(L.(z) ® id)A(y)
—(L.(y) ® id)A(z) = q((ld ®R.(x))A(y) + 7(R.(y) ® id) A(z)
—7(L.(y) ®id)A(x) — (L.(z) @ id)A(y))

for all z,y € A(q).
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Proof. Considering the following relations for all xz,y € A(q) and for all

a,be A(g)* :
(T(R.(y) ®id)A(z),a @ b) = (z, (R (y)b) 0 a) = ((R5(a)z) - y,b),
(T(ld®L.(y))A(z),a ® b) = (z,bo (L7 (y)a)) = (RS((L7(y)a))z,b),
(d®L.(4)Ax).a®b) = (z,a0 (L*(9)b)) = (y - (L(a)2).b).
(R.(y) @id)A(r),a @ b) = (2, (R (y)a) o b) = (Ls (R (y)a),b),
(r(L.(y) © i)AE), a® b) = (@, (L' ()b) 0 @) = (y - (R(a)a).b),
(L.(y) ®id)A(z),a @ b) = (z, (L (y)a) o b) = (L(L7(y)a)z,b),

we straightforwardly establish the equivalences between (B2 and (£=3), (2-12)
and (E4), and (EI3) and (E4H). According to Theorem B4, the proof is
achieved. O

Definition 4.10. Let (A(q), ) be a g-generalized flexible algebra. A q-generalized
flexible bialgebra structure on A(q) is a linear map A : A(q) — A(q) ® A(q)
such that:

o A* 1 A(q)* @ A(q)* — A(q)* defines a q-generalized flexible algebra
structure on A(q)*;

o A satisfies equations (E1), (12) and (EL3).

§5. Manin triple of ¢-generalized flexible algebras and bialgebras

We start with the following definitions, consistent with analogous formulations
for the Lie algebras [I6]:

Definition 5.1. The triple (A(q),.A1(q),.A2(q)), where:

o A(q) is a q-generalized flexible algebra together with a mnondegenerate,
invariant and symmetric bilinear form B, and

o Ai(q) and Ax(q) are two Lagrangian sub-q-generalized flexible algebras
of A(q) i.e., for all x,y € Ai(q), a,b € A2(q), B(x,y) = 0 = B(a,b),
such that A(q) = A1(q) @ A2(q),

is a Manin triple of the q-generalized flexible algebra A(q).

Definition 5.2. Let (A(q),-) be a q-generalized flexible algebra. Suppose that
there is a q-generalized flexible algebra structure “o” on its dual space A(q)*.
A standard Manin triple of the q-generalized flexible algebras A(q) and A(q)*
associated to a symmetric, nondegenerate, invariant bilinear form B defined

on the vector space A(q) ® A(q)* b

(5.1) B(z+a,y+b)=<zb>+<y,a>,
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for all z,y € A(q) and all a,b € A(q)*, where the bilinear product < .,. >
is the natural pairing between the vector spaces A(q) and A(q)*, is a triple
(A(q) ® Alq)*, A(q), A(q)*) such that the bilinear product “x” defined for all
x,y € A(q) and all a,b € A(q)* by

(x+a)*x(y+b) =(x-y+ Ri(a)y+ Li(b)x) + (aob+ R (z)b+ L (y)a)

realizes a q-generalized flexible algebra structure on A(q) & A(q)*.

@

Theorem 5.3. Suppose there is a q-generalized flexible algebra structure “o
on the dual space A(q)*. Then, the siztuple (A(q), A(q)*, R*,L*, R, L) is
a matched pair of the g-generalized flexible algebras (A(q),-) and (A(q)*, o)
if, and only if, (A(q) ® A(q)*, A(q), A(q)*) is a standard Manin triple of the
q-generalized flexible algebras (A(q),-) and (A(q)*, o).

Proof. Let (A(q),-) be a g-generalized flexible algebra. Assume that there is
a g-generalized flexible algebra structure “o” on its dual vector space A(q)*.
From Corollary B2, the vector space A(q) @ .A(q)* has a ¢g-generalized flexible
algebra structure here denoted by "% given, for all z,y € A(q) and all a,b €

A(q)*, by:
(x+a)x(y+b) = (z-y+ Ri(a)y + Li(b)x) + (a0 b+ R (x)b + LI (y)a).

In fact, by its definitions, the triple (L., R., A(q)) is a bimodule of (A(q), ")
and (Lo, Ro, A(q)*) is a bimodule of (A(g)*, o). According to Proposition 24,
(R*,L¥, A(q)*) is a bimodule of (A(g),-), and (R}, L%, A(g)) is a bimodule of
(A(g)*,0). Then, the sixtuple (A(q),.A(q)*, R*, L* Rz,L*) is a matched pair
of the g-generalized flexible algebras (A(q),-) and (A(q)*, o).

Besides, we have for all z,y,z € A(q) and for all a,b,c € A(q)*,

(5.2)  B((x4+a)*x(y+0b),(z4+¢) = <z -y,c>+<y,coa>

+ <x,boc>+<z,a0b>
4+ <z-x,b>+<y-z,a>,

(5.3)  B((z+a),y+b)x(z4+¢) = <zboc>+<z-y,c>
+ <z-z,b>+<y-z,a>
+ <z,a0b>+ <y,coa>.

Therefore, from the relations (A4) and (b=3), we have the required result. [

Theorem 5.4. Suppose that there is a q-generalized flexible algebra structure
“0” on the dual space A(q)* provided by the dual map of the linear map defined
as A A(q) — A(q) ® A(q). The following propositions are equivalent:
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1. (A(g)®A(q)*, Alq), A(q)*) is a standard Manin triple of the q-generalized
flexible algebras A(q) and A(q)* with the nondegenerate symmetric bi-
linear form w defined on A(q) ® A(q)*, for all z,y € A(q) and all
a,be A(q)* by: w(x+a,y+b) :=<x,b>+ <y,a>, where < .,. > is
the natural pairing between A(q) and A(q)*.

2. The siztuple (A(q), A(q)*, R*, L*, R:, L%) is a matched pair of the q-
generalized flezible algebras (A(q),-) and (A(q)*, o).

3. (A(q),-,A) is a q-generalized flexible bialgebra.

Proof. By considering the Theorem 53, we deduct (1) <= (2). Using the
Theorem B9, we have the equivalence (2) <= (3). O

§6. Application to octonion algebra

Definition 6.1. An octonion algebra O is an eight dimensional vector space

spanned by elements {eqg, €1, - - ,e7} satisfying the following relations: Vi, j, k =
1,7,
(6.1) e% = ep, ejeq = €; = €0€;, ejej = —0i;e0 + Cijkek,

where the fully antisymmetric structure constants c;;i are taken to be 1 for the
combination of indexes:

(1jk) € {(124), (137), (156), (235), (267), (346), (457)},

and otherwise 0. This bilinear product is given in Table 6.1:

N | € €1 €9 €3 €4 €5 €6 (&4
€ | €0 | €1 €2 €3 €4 €5 €6 er
€1 | €1 | —€o €4 €7 —€2 €6 —€5 | —€3
€2 | €2 | —€4 | —€ €5 €1 —€3 €7 —€6
€3 | €e3 | —€r | —€5 | —€y | €g €2 —€4 | €1
€4 | €4 | €2 —€1 | =€ | —€p | €7 €3 —€5
€5 | €5 | —€6 | €3 | —€2 | —€7 | —€p | €1 €4
€6 | €6 €5 —e7 €4 —€3 | —€1 | —€ €2
er | er €3 €6 —€1 €5 —€4 | —€2 | —€

Table 6.1: Multiplication table of octonion algebra.
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A
!
A

€2

Figure 1: Realization of octonion algebra.

The associator of the octonion algebra O = Span{eg,eq,--- ,er} defined as:
(6.2) ek == (€i, €5, ex) = (esej)er — eilejer), Vi, j, k € {0,1,2,--- |7}
obeys the following relations: Vi, j, k € {1,2,---,7},

(63) (607ei7€j) = (eiae()vej) = (67;,6]',60) = (eiaeiaej)

= (ei,ej,ez-) = (ei,ej,ei) =0

7
(eis€ej,ex) = Z (CijmOmk — CjkmSim)e€o
m=1
7 7
(64) + Z Z (Cijmcmkn - Cjkmcimn)en-
n=1m=1

The associator (e;, ej, ex) is also denoted by e;jey.

Proposition 6.2. Let O be an octonion algebra with basis {ep,e1,-- ,e7}.
We have:

1. The 4 dimensional sub-algebras, spanned by the elements {eg, €;, €;, e},
where the index (ijk) € {(124),(137),(156), (235), (267), (346), (457)},
are associative, i.e. their associator vanishes. The associator (e, ej, ey)
containing repeated indexes, or elements zero, also vanishes. Besides,
the vector space {eg,e;,ej,er} is not stable under the bilinear product

defined in (B).
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% €0 €1 €2 €3 €4 €5 €6 (&4
e | O 0 0 0 0 0 0 0
eor | O 0 0 0 0 0 0 0
e;n1 | O 0 0 0 0 0 0 0
€12 0 0 0 —266 0 267 263 —265
exn | 0 0 0 0 0 0 0 0
€23 0 —266 0 0 —267 0 261 264
esz | O 0 0 0 0 0 0 0
esq | O 2es | —2e7 0 0 —2eq 0 2e9
eqsa | O 0 0 0 0 0 0 0
€45 0 263 266 —261 0 0 —262 0
ess5 | O 0 0 0 0 0 0 0
€56 0 0 264 267 —262 0 0 —263
ees | 0 0 0 0 0 0 0 0
eg7 | 0 | —2ey4 0 2es 2eq —2e3 0 0
er7 | 0 0 0 0 0 0 0 0

Table 6.2: Table of associator composition for the octonion algebra.

2. Other associators (e;, ej, e) do not vanish and are still fully skew - sym-
metric for the permutation of indexes (ijk) if and only if they belong to
the set {(123), (125), (126), (127), (234), (236), (237), (341), (342), (345),
(347), (451), (452), (453), (456), (562), (563), (564), (567), (671), (673),
(674), (675)}.

Proof.

1. By direct calculation, we have (e, en,e,) = 0 if and only if (mnp)
belongs to {(124), (137), (156), (235), (267), (346), (457)} or at least one
of elements of the triple (mnp) is repeated, for all m,n,p € {0,1,---,7}.
In only this latter case, the space spanned by e, e, €, does not possess
the stability under octonion multiplication, and therefore it is not a sub-
algebra of O.

2. A direct computation of the associator (e;,ej,e) and the permutation
for (ijk) € {(123),(125), (126), (127), (234), (236), (237), (341), (342),
(345),(347), (451), (452), (453), (456), (562), (563), (564), (567), (671),
(673),(674),(675)} give the result. O

Definition 6.3. A bimodule of the octonion algebra O is the triple (I,r,V),
where V is a finite dimensional vector space, equipped with the basis {uy,us, -+ ,up}
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withn =27, and l,r : O — gl(V') are two linear maps satisfying:

(6.5) l(eg) = id = r(ep),

(6.6) l(e;) = —r(e), Vi, j,k=0,1,---,7,

for all (ijk) € {(124), (137), (156), (235), (267), (346), (457)} and its cyclic per-
mutation,

(6.7) l(ei)uj +r(ej)u; = ug,

and, for all non cyclic permutation of (ijk) € {(124), (137), (156), (235),
(267), (346), (457)},

(6.8) le)uj +r(ej)u; = —uy.

Proposition 6.4. Let O be an octonion algebra, and l,r : O — gl(V') be two
linear maps. The triple (I,r,V) is a bimodule of the octonion algebra O if,

and only if, there exists an octonion algebra structure “«” on the semi-direct
vector space O @V given by ,Ve;, ej € O,Yu,v € V,1,j =0,1,---,7,

(6.9) (ei +u) x (e +v) == e;ej + U(e;)v + r(ej)u.

Proof. The associator corresponding to the bilinear product (E9) is given,
for all 4,5,k € {0,1,---,7} and for all u,v,w € V, by

= (e ej,ex) + (r(ex)r(es) _T(ejek))
+ (r(ex)l(es) — l(es)r(ex))v + (Ieiej) — Uei)l(e;))w.

It satisfies the conditions on the Table 62: if and only if the linear maps [, r
obey the relations (63) - (B3). O

(i +u,ej +v,e,+w)

Theorem 6.5. For an octonion algebra O spanned by {ep,e1,--- ,e7r}, the
following relations are equivalent:

1.

(610) [eka eiej] = [Gk, 61‘]6]' + € [6k7 ej]a

(6.11) CijmChkml = CkimCmjl + CkjmCiml,

where the reals c;ji, are defined in the equation (611), for alli,j, k € {0,1,--- ,T}.
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Theorem 63 is known as Myung Theorem. For more details, see [IR,20].

Proposition 6.6. Let O be an octonion algebra with basis {eg,e1,--- ,er}.
Assuming that (1,7, V') is a bimodule of O, the following relation is satisfied:

(6.12) 20ij + cijir(ex) + 2r(ej)r(e) = 0,

or, equivalently,

(6.13) 26;5 — cijrl(er) + 21(ej)l(e;) = 0,
Vi,j,k=0,1,---,7, where the c;ji,’s are defined in the equation (61I).

Proof. The identity (E12) becomes straightforward by combining the rela-
tions (68) and (EX), and the equivalence is guaranteed by the identity (68).
O
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