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Abstract. Symplectic-Haantjes manifolds are constructed for several Hamilto-
nian systems following P. Tempesta and G. Tondo [14], which yield the complete
integrability of systems.

AMS 2010 Mathematics Subject Classification. T0H06, 37J35, 53C43.

Key words and phrases. Haantjes operator, symplectic-Haantjes manifold,
Hamiltonian system, Lenard-Haantjes chain, Hsiang-Lawson metric, Minkowski
metric.

§1. Introduction

Recently, certain ways of characterizing integrable systems with (1, 1)-tensors
have been investigated (cf.[2], [4], [5], [11], [12], [13], [16], etc.). On the other
hand, according to [10], [14] and [15] established new method of using (1, 1)-
tensor field for the integrable system. P. Tempesta and G. Tondo [14] intro-
duce a concept of symplectic-Haantjes manifolds or wH manifolds and Lenard-
Haantjes chain to treat completely integrable Hamiltonian system by means
of the Haantjes tensor [3]. For a (1,2)-tensor field L, the Haantjes tensor Hp,
is given by Definition 2.1 below. If H; vanishes, the tensor is called a Haant-
jes operator. In [14], [15], Tempesta and Tondo showed that the existence of
an wH manifold is a necessary and sufficient condition for a non-degenerate
Hamiltonian system to be completely integrable. They showed an algorithm
for solving the inverse problem, that is, for a given set of involutive func-
tions, a Haantjes structure of the involutive functions is constructed by using
Lenard-Haantjes chains.

We consider the system with respect to the hydrodynamic type on the orbit
space with Hsiang-Lawson metric in the case of the Berger sphere (as in Section
3), via S'-equivariant CMC-H (constant mean curvature H) immersion and
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94 K. KIKUCHI AND T. TAKEUCHI

the corresponding Lagrangian formalism [7], [8], [9]. In Section 4, we construct
of symplectic-Haantjes manifold for a Hamiltonian system of Section 3.

In Section 5, we construct wH manifolds of Hamiltonian systems of geodesic
flow of two-dimensional Minkowski space. [13] showed complete integrability
of the geodesic flow of the Minkowski metric using a (1,1) tensor, however
we construct the complete integrability of two-dimensional case by obtaining
different (1,1) tensors from [13] in this paper. In this Section, we revise [6]
and add some results.

In Sections 3 and 4, we construct a geometrical example of 4-dimensional
symplectic Haantjes manifold.

§2. Haantjes operator, symplectic-Haantjes manifold,
Lenard-Haantjes chain

In this Section, we recall basic concepts of Haantjes operators, symplectic-

Haantjes manifolds and Lenard-Haantjes chains (see for details, e.g., [14]).
Let M be a differentiable manifold and L : TM — TM be a (1,1) tensor

field, i.e., a field of linear operators on the tangent space at each point of M.

Definition 2.1. The Nijenhuis torsion of L is the skew-symmetric (1,2) ten-
sor field defined by

NL(X,Y) = L*[X,Y] + [LX,LY] - L([X,LY] + [LX,Y)])
and the Haantjes tensor associated with L is the (1,2) tensor field defined by
HL(X,Y) = L*N(X,Y) + N(LX,LY) — L(NL(X,LY) + Ni.(LX,Y))
where X, Y € TM and [, | denotes the commutator of two vector fields.

In local coordinates x = (1, - , ), the Nijenhuis torsion and the Haan-
tjes tensor can be written in the form

~ 8[42 a 8Lz a BL? 8[4% 7
-5 (- (21 5)

and

(2.1)

(Mol = 3 {ELEENDS = WL)gLy) + (N1)isLd — DL LY
a,f=1

respectively.

Tempesta and Tondo [14] remarks that the skew-symmetry of the Nijenhuis
torsion implies that of the Haantjes tensor.
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Definition 2.2. A (1,1)-tensor is called Haantjes operator when its Haantjes
tensor vanishes.

Now they introduce a concept of symplectic-Haantjes manifold (wH mani-
fold) in [14]. They can formulate the theory of Hamiltonian integrable systems
naturally by means of symplectic-Haantjes manifolds.

Definition 2.3. An wH manifold (M,w, Ko, K1, -+, Kn—1) is a 2n-dimension
symplectic manifold M, endowed with n endomorphisms of T M

Koy:TM—TM, a=0,---,n—1,
which satisfy the following conditions :
o Koy=1.
o Their Haantjes tensor vanishes identically, i.e.

Hi (X, Y)=0, VX, Y €TM, a=0,-- ,n—1.

e The endomorphisms are compatible with w (or equivalently, with the cor-
responding symplectic operator () := wb) :

KSQ:QKQ, a=0,---,n—1,
that is, the operators QK are skew symmetric.

e The endomorphisms are commuting each other, i.e. they form a com-
mutative ring K:

K.,Kg=KgK,, a=0,---,n—1,
and also generate a module over the ring of smooth functions on M :
H(ZZ;}) aa(w)KQ)(X, Y)=0, VX, Y € TM,
where aq(x) are arbitrary smooth functions on M.

The (n+1)-ple (w, Ko, K1, -+ , Kn—1) will be called the wH structure associated
with the wH manifold and K the Haantjes module (ring).

By using the Haantjes operators, we can generalize the notion of integra-
bility, which is called a Lenard-Haantjes chain.
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Definition 2.4. Let (M,w, Ko, K1, , K,_1) be a 2n-dimensional wH man-
ifold and {H;}1<j<n be n independent functions which satisfy the following
relations :

dH; =K jdH, j=1,---,n, H:="MH.

The functions {M;}1<j<n are called a Lenard-Haantjes chain generated by the
function H.

Let us consider Hamiltonian systems with two degrees of freedom. In [14],
Tempesta and Tondo proposed a general procedure to compute a Haantjes
operator adapted to the Lenard-Haantjes chain formed by two integrals of
motion in involution. Let (M,w) be a four dimentional symplectic manifold.
They searched for a Haantjes operator K whose minimal polynomial should
be of degree two, namely, the maximum degree allowed by their assumptions:

mg(x) = 22 — 1z — c9,

where ¢; and ¢y are functions on M.
We construct the Haantjes operator K according to the conditions in [14].

(2.2) KTQ=0K,

(2.3) KTdH = dHa,

(2.4) (KT)2dH = (a1 KT + coI)dH,
(2.5) Hr(X,Y)=0, VX,Y €TM,

where Q = w” and I denotes the identity operator.

§3. Berger sphere, Hsiang-Lawson metric, Lagrangian

Let S? € C x C be the unit 3-sphere. The following metric gs (3 > —1) on
53 is called to be the Berger metric :

(gg)z(v, w) = <U, w> + B <v’ iZ> <w’ iz> )

where v = (v1,v9),w = (w1, ws) € T,.S% and (v, w) = Re(vw).
Then 5’2 := (93, gp) is called to be the Berger sphere (3 > —1). X denotes
the orbit space via gg-isometric S Laction r; : S% — S as follows :

ri(2) = (21,€"22), 2= (z1,2) € S°.
As the parameterization of X we use the following map :

(6,6) > (¢ cosb,sin6), 0<@<2m 0<H< .
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Let X° := X\(0X U{pole}). For a curve v : J C R — X°, we consider S'-
equivariant map pu: N — Sg such that yom = 0 o i, where N = 7_1(5’2) =
{(z,y) € J x Sg\'y(z) = o(y)} is the induced bundle, not an inverse map,
m:N — Jand o: Sg, — X° are Riemannian submersions. This commutative
diagram is called the pull-back construction [1], [7]. Throughout the paper,
we assume that j is an Sl-equivariant CMC-H (constant mean curvature H)
immersion. Then the orbital metric hg on X° is given by

(1+ B)cos?0  ,

3.1 hg : ds®> = d?
(3:1) p a3 T BsinZe

The volume function V of orbits and the Hsiang-Lawson metric ilg = V2h5
on X° are given as follows:

(3.2) V =2rsinfy/1+ Bsin?0, hg = (hg)1d6? + (hg)ade?

where (hg)1 = 4n2sin? 0(1 + Bsin?0), (hg)a = 472(1 + B) sin® § cos? 6.
7(7) = Vo and 7(y) = V.9 stand for the tension fields of 7 = 7(s)
with respect to the metric hg and ﬁg, respectively, where s is the arc-length

parameter with respect to the orbital metric hg.

On the orbit space (X°, hg), the velocity vector field of a curve v(s) =
(0(s), ¢(s)) is given by the following component functions :

/1 + Bsin? 0(s) sin A(s)
V1 + Bcos(s) ’

where A(s) stands for an auxiliary function with variable s, then (3.3) can
be obtained by using sin? A(s) + cos? A(s) = 1 and (3.1). Then, using the
conformal transformation of the metric, we have the following formula :

(3.4) hg(T(v),m) —n(log V') = hg(7(v),n) = 2H,

(3.3) 0'(s) = cos A\(s), ¢'(s) =

where 7 denotes the unit normal vector field to ~ :

) 0 1+ Bsin?0(s) cos A(s) O
= —sin \(s)=— —.
Ns) = = SmAS) oG+ T A Feost(s) 09
In the following, we consider the motion of a particleAas time parameter

s on the orbit space X° with the Hsiang-Lawson metric hg. In general, this
motion has the Lagrangian
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where G = G(0, ¢) called as a potential function is a smooth function on the
configuration space and ¢, ¢’ stand for the derivatives of 6 = 0(s), ¢ = ¢(s)
by s, respectively.

Then we can regard the Lagrangian £ as a smooth function on the tangent
bundle T X° of X°.

Via the canonical momenta py, ps conjugate to 8, ¢ :

oL A N
(35) pP1 = w = (hﬁ)lg, = (hﬁ)l COS )\,

oL . - /14 Bsin?6 |
(3.6) pr= 25— (R = (hg)y VLT )

foler V14 Bcosd

we have the Hamiltonian
H=0p1+dpr— £ = 3 (R + 1303) + G(6,0),

where fzé and ﬁ% are the inverse of (hg); and (hg)a, respectively.

On the orbit space (X°, ﬁﬁ), we consider the system of hydrodynamic type
as follows. Assume that smooth functions v and v? on X° do not depend
on ¢. Moreover, let either v! = v1(6) or v? = v%(0) be nonzero-valued as a
function of # only. Then we can consider the functions H and Ho on the phase
space :

H=— (hﬁp1 h/jp2> +G(0, 9),

1
Ho = 3 (V hipt + V2h5172>

where we assume that H and Hs are in involution.
The Poisson bracket of H and Hs is calculated as follows :

1 0 - 0 0G .
hl 2 h el 1h1
(a0 = {5 () ot + (58 2) + 5 o'
G 559 9 1; 9 9i9y 2
+ %V higp2 — hgpl {69( h,@)p1 + 89( h3)p3 ¢ s
since ﬁé and ﬁ% depend only on the variable §. Hereafter, we consider the case
v' = 0. Then we have

IG A
{H2, H} = a—qbl/Qhﬁpg §h}3%(1/ h3)p1p3-
Thus {Ha,H} = 0 implies that

G o
96"

from which, we obtain that v? = k(ilﬁ)g (k is nonzero constant). Then the
potential function G' depends only on the variable 6.

-1 0

—(V*h%) =0,
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§4. Construction of symplectic-Haantjes manifold for a
Hamiltonian system

Assume that v! = 0, 12 = k(ﬁg)g (k is nonzero constant) and the potential
function G depends only on €. Then we can consider the functions

1 /. .
H =3 (hspt + h3p3) + G(0),

1
Ho = §kp%7

where we assume that A is a suitable function of 6 as in (3.5) and (3.6), H
and Ho are in involution, k is nonzero constant. Using above functions, we
construct a Haantjes operator.

We put a 4-dimensional square matrix

K = (K})
a(6) b(6) 0 b(6) a b 0 b
c(0,p1,p2) a(0) —b(0) 0 _ | ¢ a b0
0 c(0,p1,p2) alb) (0, p1,p2) 0 ¢ a cf’
_C(Gappr) 0 b(e) (1(9) —c 0 b a

where a = k(ilg)g, b="5b(0), c= —kﬁé(ﬁﬁ)%plpgl.
This function matrix K satisfies conditions (2.2), (2.3), and the potential
function G is given such that the following formula is satisfied:

oG 1 (b , Ok 1
20~ 3 ((%Bp% + T;pg + %b(h%)%%

where, from (3.5) and (3.6), G can be regarded as a function of 6, under the
assumption that X is a suitable function of #. Then, minimal polynomial of K
is

(4.1) mg(r) = 2% — 2ax + a®.
From (4.1), we put ¢; = 2a and ca = —a?, the condition (2.4) is satisfied.
4
0 o,
We set ©1 = 0, 20 = ¢, x3 = p1, T4 = p2 and K(@@) = ZK;&UZ (j =
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1,2,3,4). For example, we have, using the definition of the Nijenhuis torsion:
1 o
1 _ E It E a
(NK) 12 — a 833&

a=1
N A A
0x9 oxy 0x9 o0x1 Oxa

=ba—adab—ab —bd

= —2a'b,
da ob Oc Jdc
NK 14 Zaxa c(m_am>+am_b<_aw‘l>
_ dc e —b'c—|—a——|—b@
06" Op1  Ops Ops 00
Oc
=-bec—c—,
Op1
where a' := %, b= %

Then we get the following equations which calculate the components of a
Nijenhuis torsion N = N :

oc
N112 = —2a'b, N114 = —2a'b, N12 = —be— Cap N13 =a'b— 537]92
NE Z*blcfcﬁ N2 = bt — b 2C , N2 =—db— b@
N§4=bb’+b N c_c N14—— C_Cﬁ
dp2’
3 ' , Oc
./\/23=ab—b N34——ab+b , N =bed e=—,
opm
Oc
N4=—a’b+b Ny =Vet 2 Ay =vb b 28
. 8102 8p apl
Ny =a'b+ b , Nyy= —bb — bﬁ

apl

where ./\/;k = 0 (otherwise, except skew-symmetric ones with the above formu-
las). From (2.1), we have

(42) ()= Y {KLKGWIO, + KT KL ()b
a,B=1
+KL KD (N + KL K], (NK)gj} .
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For example, we have, from the components of K and Nijenhuis torsion :

4
> KLKGNK)L,

a,f=1

4
= Z Ky (K (NK)12 + K8 (Ni)Ts + KS (Vi) + K§(Nk)1a)
a=1
= K{ (Kll(NK)b + K3 (NK)ip + Ki(NK)Aﬁ)
+ K3 (KF(Ni)1a + K3 (Ng)Ts + K3 (Nk)is)
+ K (KT (WNita + K3 (Vi) + K{(Nk)1s)

Jc Jc
_ 20 9,/ N Y /
=a”( 2ab)+ab( be 08p1>+ab<bc+68p1>

oc Oc
—24’ —be—c— _ —dc—c—
+ be( ab)—l—ba( bc—c 1)+b( b)( ac—c 2)

dc Oc
+ b(—c)(—2d'b) + b? <—a'c — c> + ba <b'c + c>
(—=o)( ) s o
= —2a%d'b.
Similarly, we have
4
> KPKY(Nk)Ls = —2a%db.
a,B=1
Also, we have
4
> KLK](Ni)ss = KL KT (NK)3 + K3 (K1 (Vi3 + KH(Nk)3a)

a,f=1
+ Kj (K1 (NK)31 + KT (Nk)3,)

oc Oc
= 2a%a’b + ba <b'c + c) +b(—c (—a'b — b)
Op1 (=¢) Op2
Oc oc
+ ba <b/c — c> + b(—c (a’b + b)
Op1 (=¢) Op2
= 2a%d’b.
Similarly, we have

4
> KLKD(Nk)§, = 2a%db.
a,f=1
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Then we have
n
(Mi)le = > {KAKE Wi + KT ES Nk
a,B=1
FRLKY (NS + KaKS (Vi) |
=0.

Secondly, we calculate (Hc)3,-

4
Y K2K§(Nk)s,
a,B=1
= K7 (K3(Ng)3s + K1 (Nk)34) + K5 (K3 (NK)3s + K3 (Nik)3y)
+ K3 (KS(NK)§4 + K3(Nk)iy + K43(NK)§4)

=cb (bb’ + bac> +cb (—bb’ — b86> + a? (bb’ + bac)
op1 Op1 Op1

+ a(—b) <—a'b + b(§c> —be <bb' + b;c> —ba (—a’b + b@c)

D2 D1 Op2
oc
—be| —bb — b>
< p1
= a?bb + 2ad'b® + aQbﬁ — 2ab2ﬁ.
Op1 Op2

Similarly, we have

4
Oc dc
K$KY(Ng)2 5 = a?bb + a’b=— + 2ab* —.
aﬂzzl ’ 4( K) ’ 8]91 (9])2

Also we have

4
" K2K{(NK)Ss = K3 (K3(WNi)3s + K3 (Ni)ds) + K3K3 (N )is

O‘7B:1
dc Jdc
=a(—b ’b+b>+ 2<—bb’—b>
al )<a Op2 ¢ Op1

oc
—ba|adb— b)
< Op2
Oc

= —2ad'b? — a®bb’ — a’b—.
Op1
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Similarly, we have

4
)
}:KnyM%z—&w—&%i.
af=1 P1

Consequently, we have

n

(M)3a = > {KEKGWi), + K5 K (N2
a,B=1
2K (N + K2R (Vi) |
=0.

Similarly, we can prove that all components of Haantjes tensor vanish.

Thus the function matrix K satisfies the condition (2.5). Hence, we get
a Haantjes operator K. Thus, we construct a symplectic Haantjes manifold
(T"X° w, I, K).

§5. Other examples

In this Section, we construct wH manifolds in three cases. Let us consider the
Hamiltonian system of the geodesic flow of 2-dimensional Minkowski space (cf.

[13])

1
(5.1) H = 5(=pi+p2)

with an independent integral of motion
(52) HQ =P1.

Thus, H has Haantjes operator K in the following way.
We consider G = G(q, p) which is functionally independent of H. We assume
the Poisson bracket {#{,G} vanishes, that is

2

OHOG  OH G G g

{H7g}zz< a2 >=—p1+P2=0.
— \0pi 0q;  Oqi Op; 1

Then we get the following condition:

(5.3) P1e— =Ppa—-.
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The function #Hs in (5.2) as G satisfies the condition (5.3). Under the condition
(2.2), we put a 4-dimensional square matrix

air a2 0 b2
| a21 ax —bi2 O
K =
0 ci2 a1 ax
—c12 0 a2 a2

Then from the condition (2.3), we get the following relationship

appr +1
a1 = )
P2
aiz2pi
a9 = 5
b2
1)12 =0.

Further, we put ¢; = (a12p1 + a11p2)p51 and ¢y = algpgl, the condition (2.4)
is satisfied. We set 21 = p1, 2 = p9, T3 = q1, T4 = qo2. For example, we have,
using the definition of the Nijenhuis torsion :

4 2
0K QKo 0K? QK2
1 _ E : J k Kl — J k F(l

a=1
0K? 0K2
1 _ 1 2 1

B { 0 <a11p1+1> 0 <a12p1>}
=q—(— ) - a2
Opo P2 Op1 \ p2

_ <a11p1+1 alz)
=an|———s — — —

P% b2
~apz(anpr + aepr + 1)
- _ , :

D3

0K2 OK?2 0 [a
1 _ (98, O”z 1_) 9 12P1) _
(NK)23 - (8{1,‘3 8932 > K2 {8(11 ( D2 > 0} a1 O

Then we get the following equations which calculate the components of the
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Nijenhuis torsion N = N :

ai2(a +a +1 a a +a +1
N = — 12(a11p1 + a12p2 )’ N2 12p1(a11p1 + aizpz + 1)

2 12 — — 3 ’
Pa V25
N cia(apr + aizpe + 1) N3 (a11p1 + 1)(a11p1 + a1z2pe + 1)
2= 0) » N1y = — 3 )
p3 Py
NS — ari(a11pr + aiape + 1) AL — aropi(a11pr + aape + 1)
24 — 2 ) 14 — 3 ’
P3 D
AL ai2(a11pr + ajap2 + 1)
24 — p2 )
2

where /\/']’k = 0 (otherwise, except skew-symmetric ones with the above for-
mulas). From (4.2), for example, we have, from the components of K and
Nijenhuis torsion :

4
> K3KG (Vi)Y

a,B=1
= K3 K3 (NK)To + K (K5 (VK)o + Ki (NVK)Ts) + KT K3 (Vi) s,
4
> KK (Ni g
a,f=1
= K{ K3 (Nk)ly — Ki K5 (Nk)3y + K (KQI(NK)ZI))KL + K%(NK)§4) ;
4
> KSR (Nk)3s
a,f=1
= —K3 (K{(Ng)is + Kg’(NK)§4) - K| (K%(NK):E + K3 (Nk)3y)
— K7 (K{(Ng)i2 + K5 (NK)34)
4
> KSR (Ni)g = ~KSK5 (W)t — K1 K3 (N
a,f=1
From above equations, we get
(Hi)1y = K3 (K3(NK)1y + K3(Ni)3y) — K§K3(Ni )3y — K1 KS(Ng)3,
— K7 (K{(VK)1s + K5 (VK )a4)
__c1z(anipr + arepe + 1)(afyp2 + anaigpr + 2a12)
= 3
D

If (’l—(K)?2 =0, we can choose a11 = 0, a2 = 0 as one of the solutions.
Consequently, we have

(HK)?Q = 07
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where a1; = 0, a2 = 0 and N # 0. Similarly, we can prove that all components
of Haantjes tensor vanish. Thus we get the Haantjes operator K :

0 0 0 0
pyt 0 0 0

0 2 0 py'
—C12 0 0 0

K=

Y

where N # 0 and c12 # 0. Hence we construct a wH manifold (T*R?, w, I, K).

Now, we put the function
(5.4) Hs = kip1 + kap2.

This function (5.4) satisfies the condition (5.3). Then, by the same calculation
as above, we construct the Haantjes operator K’ :

0 0 0 0
5py ' kapst 00
0 ciz 0 5pyt |
—C12 0 0 k‘gpgl

K =

where (Nir)iy = (Nl = —5kapy®, Wkn)dy = —Beiapy s Wr)i, =

—25p, 3 and otherwise except skew-symmetric ones with the above formulas.

Hence, we get a different w? manifold (T*R?,w, I, K') from the one above.
Moreover, we consider

(5.5) Ha = kp1p2.

Similar to the above, this function (5.5) satisfies the condition (5.3). Then, if
we put

0 -5 0 0

"y 5 0 0 0
K= 0 C12 0 5 ’

—C12 0 -5 0

K" is a Haantjes operator. In fact, (5.1), (5.5) and K" satisfy the condi-
tions (2.2), (2.3), (2.4) and (2.5). Therefore, we construct an wH manifold
(T*R%,w, I, K").
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