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§1. Introduction

Recently, certain ways of characterizing integrable systems with (1, 1)-tensors
have been investigated (cf.[2], [4], [5], [11], [12], [13], [16], etc.). On the other
hand, according to [10], [14] and [15] established new method of using (1, 1)-
tensor field for the integrable system. P. Tempesta and G. Tondo [14] intro-
duce a concept of symplectic-Haantjes manifolds or ωH manifolds and Lenard-
Haantjes chain to treat completely integrable Hamiltonian system by means
of the Haantjes tensor [3]. For a (1,2)-tensor field L, the Haantjes tensor HL

is given by Definition 2.1 below. If HL vanishes, the tensor is called a Haant-
jes operator. In [14], [15], Tempesta and Tondo showed that the existence of
an ωH manifold is a necessary and sufficient condition for a non-degenerate
Hamiltonian system to be completely integrable. They showed an algorithm
for solving the inverse problem, that is, for a given set of involutive func-
tions, a Haantjes structure of the involutive functions is constructed by using
Lenard-Haantjes chains.

We consider the system with respect to the hydrodynamic type on the orbit
space with Hsiang-Lawson metric in the case of the Berger sphere (as in Section
3), via S1-equivariant CMC-H (constant mean curvature H) immersion and
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the corresponding Lagrangian formalism [7], [8], [9]. In Section 4, we construct
of symplectic-Haantjes manifold for a Hamiltonian system of Section 3.

In Section 5, we construct ωH manifolds of Hamiltonian systems of geodesic
flow of two-dimensional Minkowski space. [13] showed complete integrability
of the geodesic flow of the Minkowski metric using a (1, 1) tensor, however
we construct the complete integrability of two-dimensional case by obtaining
different (1, 1) tensors from [13] in this paper. In this Section, we revise [6]
and add some results.

In Sections 3 and 4, we construct a geometrical example of 4-dimensional
symplectic Haantjes manifold.

§2. Haantjes operator, symplectic-Haantjes manifold,
Lenard-Haantjes chain

In this Section, we recall basic concepts of Haantjes operators, symplectic-
Haantjes manifolds and Lenard-Haantjes chains (see for details, e.g., [14]).

Let M be a differentiable manifold and L : TM → TM be a (1, 1) tensor
field, i.e., a field of linear operators on the tangent space at each point of M .

Definition 2.1. The Nijenhuis torsion of L is the skew-symmetric (1, 2) ten-
sor field defined by

NL(X,Y ) = L2[X,Y ] + [LX,LY ]− L ([X,LY ] + [LX, Y ])

and the Haantjes tensor associated with L is the (1, 2) tensor field defined by

HL(X,Y ) = L2NL(X,Y ) +NL(LX,LY )− L (NL(X,LY ) +NL(LX, Y ))

where X,Y ∈ TM and [ , ] denotes the commutator of two vector fields.

In local coordinates x = (x1, · · · , xn), the Nijenhuis torsion and the Haan-
tjes tensor can be written in the form

(NL)
i
jk =

n∑
α=1

(
∂Li

k

∂xα
Lα
j −

∂Li
j

∂xα
Lα
k +

(
∂Lα

j

∂xk
−

∂Lα
k

∂xj

)
Li
α

)
and
(2.1)

(HL)
i
jk =

n∑
α,β=1

{
Li
α(L

α
β(NL)

β
jk − (NL)

α
βkL

β
j ) + ((NL)

i
αβL

α
j − Li

α(NL)
α
jβ)L

β
k

}
,

respectively.

Tempesta and Tondo [14] remarks that the skew-symmetry of the Nijenhuis
torsion implies that of the Haantjes tensor.
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Definition 2.2. A (1,1)-tensor is called Haantjes operator when its Haantjes
tensor vanishes.

Now they introduce a concept of symplectic-Haantjes manifold (ωH mani-
fold) in [14]. They can formulate the theory of Hamiltonian integrable systems
naturally by means of symplectic-Haantjes manifolds.

Definition 2.3. An ωH manifold (M,ω,K0,K1, · · · ,Kn−1) is a 2n-dimension
symplectic manifold M , endowed with n endomorphisms of TM

Kα : TM 7→ TM, α = 0, · · · , n− 1,

which satisfy the following conditions :

• K0 = I.

• Their Haantjes tensor vanishes identically, i.e.

HKα(X,Y ) = 0, ∀X,Y ∈ TM, α = 0, · · · , n− 1.

• The endomorphisms are compatible with ω (or equivalently, with the cor-
responding symplectic operator Ω := ω♭) :

KT
αΩ = ΩKα, α = 0, · · · , n− 1,

that is, the operators ΩKα are skew symmetric.

• The endomorphisms are commuting each other, i.e. they form a com-
mutative ring K:

KαKβ = KβKα, α = 0, · · · , n− 1,

and also generate a module over the ring of smooth functions on M :

H(
∑n−1

α=0 aα(x)Kα)(X,Y ) = 0, ∀X,Y ∈ TM,

where aα(x) are arbitrary smooth functions on M .

The (n+1)-ple (ω,K0,K1, · · · ,Kn−1) will be called the ωH structure associated
with the ωH manifold and K the Haantjes module (ring).

By using the Haantjes operators, we can generalize the notion of integra-
bility, which is called a Lenard-Haantjes chain.
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Definition 2.4. Let (M,ω,K0,K1, · · · ,Kn−1) be a 2n-dimensional ωH man-
ifold and {Hj}1≤j≤n be n independent functions which satisfy the following
relations :

dHj = KT
j−1dH, j = 1, · · · , n, H := H1.

The functions {Hj}1≤j≤n are called a Lenard-Haantjes chain generated by the
function H.

Let us consider Hamiltonian systems with two degrees of freedom. In [14],
Tempesta and Tondo proposed a general procedure to compute a Haantjes
operator adapted to the Lenard-Haantjes chain formed by two integrals of
motion in involution. Let (M,ω) be a four dimentional symplectic manifold.
They searched for a Haantjes operator K whose minimal polynomial should
be of degree two, namely, the maximum degree allowed by their assumptions:

mK(x) = x2 − c1x− c2,

where c1 and c2 are functions on M .
We construct the Haantjes operator K according to the conditions in [14].

KTΩ = ΩK,(2.2)

KTdH = dH2,(2.3)

(KT )2dH = (c1K
T + c2I)dH,(2.4)

HK(X,Y ) = 0, ∀X,Y ∈ TM,(2.5)

where Ω = ω♭ and I denotes the identity operator.

§3. Berger sphere, Hsiang-Lawson metric, Lagrangian

Let S3 ⊂ C × C be the unit 3-sphere. The following metric gβ (β > −1) on
S3 is called to be the Berger metric :

(gβ)z(v, w) = 〈v, w〉+ β 〈v, iz〉 〈w, iz〉 ,

where v = (v1, v2), w = (w1, w2) ∈ TzS
3 and 〈v, w〉 = Re(vw).

Then S3
β := (S3, gβ) is called to be the Berger sphere (β > −1). X denotes

the orbit space via gβ-isometric S1-action rt : S
3 → S3 as follows :

rt(z) = (z1, e
itz2), z = (z1, z2) ∈ S3.

As the parameterization of X we use the following map :

(θ, ϕ) → (eiϕ cos θ, sin θ), 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π

2
.
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Let X◦ := X\(∂X ∪{pole}). For a curve γ : J ⊂ R → X◦, we consider S1-
equivariant map µ : N → S3

β such that γ ◦ π = σ ◦ µ, where N = γ−1(S3
β) :=

{(z, y) ∈ J × S3
β | γ(z) = σ(y)} is the induced bundle, not an inverse map,

π : N → J and σ : S3
β → X◦ are Riemannian submersions. This commutative

diagram is called the pull-back construction [1], [7]. Throughout the paper,
we assume that µ is an S1-equivariant CMC-H (constant mean curvature H)
immersion. Then the orbital metric hβ on X◦ is given by

(3.1) hβ : ds2 = dθ2 +
(1 + β) cos2 θ

1 + β sin2 θ
dϕ2.

The volume function V of orbits and the Hsiang-Lawson metric ĥβ = V 2hβ
on X◦ are given as follows:

(3.2) V = 2π sin θ

√
1 + β sin2 θ, ĥβ = (ĥβ)1dθ

2 + (ĥβ)2dϕ
2

where (ĥβ)1 = 4π2 sin2 θ(1 + β sin2 θ), (ĥβ)2 = 4π2(1 + β) sin2 θ cos2 θ.

τ(γ) = ∇γ′γ′ and τ̂(γ) = ∇̂γ′γ′ stand for the tension fields of γ = γ(s)

with respect to the metric hβ and ĥβ, respectively, where s is the arc-length
parameter with respect to the orbital metric hβ.

On the orbit space (X◦, hβ), the velocity vector field of a curve γ(s) =
(θ(s), ϕ(s)) is given by the following component functions :

(3.3) θ′(s) = cosλ(s), ϕ′(s) =

√
1 + β sin2 θ(s) sinλ(s)√

1 + β cos θ(s)
,

where λ(s) stands for an auxiliary function with variable s, then (3.3) can
be obtained by using sin2 λ(s) + cos2 λ(s) = 1 and (3.1). Then, using the
conformal transformation of the metric, we have the following formula :

(3.4) hβ(τ(γ), η)− η(log V ) = hβ(τ̂(γ), η) = 2H,

where η denotes the unit normal vector field to γ :

η(s) = − sinλ(s)
∂

∂θ
+

√
1 + β sin2 θ(s) cosλ(s)√

1 + β cos θ(s)

∂

∂ϕ
.

In the following, we consider the motion of a particle as time parameter
s on the orbit space X◦ with the Hsiang-Lawson metric ĥβ. In general, this
motion has the Lagrangian

L =
1

2

{
(ĥβ)1(θ

′)2 + (ĥβ)2(ϕ
′)2
}
−G(θ, ϕ),
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where G = G(θ, ϕ) called as a potential function is a smooth function on the
configuration space and θ′, ϕ′ stand for the derivatives of θ = θ(s), ϕ = ϕ(s)
by s, respectively.

Then we can regard the Lagrangian L as a smooth function on the tangent
bundle TX◦ of X◦.

Via the canonical momenta p1, p2 conjugate to θ, ϕ :

p1 =
∂L
∂θ′

= (ĥβ)1θ
′ = (ĥβ)1 cosλ,(3.5)

p2 =
∂L
∂ϕ′ = (ĥβ)2ϕ

′ = (ĥβ)2

√
1 + β sin2 θ√
1 + β cos θ

sinλ,(3.6)

we have the Hamiltonian

H = θ′p1 + ϕ′p2 − L =
1

2

(
ĥ1βp

2
1 + ĥ2βp

2
2

)
+G(θ, ϕ),

where ĥ1β and ĥ2β are the inverse of (ĥβ)1 and (ĥβ)2, respectively.

On the orbit space (X◦, ĥβ), we consider the system of hydrodynamic type
as follows. Assume that smooth functions ν1 and ν2 on X◦ do not depend
on ϕ. Moreover, let either ν1 = ν1(θ) or ν2 = ν2(θ) be nonzero-valued as a
function of θ only. Then we can consider the functions H and H2 on the phase
space :

H =
1

2

(
ĥ1βp

2
1 + ĥ2βp

2
2

)
+G(θ, ϕ),

H2 =
1

2

(
ν1ĥ1βp

2
1 + ν2ĥ2βp

2
2

)
,

where we assume that H and H2 are in involution.
The Poisson bracket of H and H2 is calculated as follows :

{H2,H} =

{
1

2

((
∂

∂θ
ĥ1β

)
p21 +

(
∂

∂θ
ĥ2β

)
p22

)
+

∂G

∂θ

}
ν1ĥ1βp1

+
∂G

∂ϕ
ν2ĥ2βp2 −

1

2
ĥ1βp1

{
∂

∂θ
(ν1ĥ1β)p

2
1 +

∂

∂θ
(ν2ĥ2β)p

2
2

}
,

since ĥ1β and ĥ2β depend only on the variable θ. Hereafter, we consider the case

ν1 = 0. Then we have

{H2,H} =
∂G

∂ϕ
ν2ĥ2βp2 −

1

2
ĥ1β

∂

∂θ
(ν2ĥ2β)p1p

2
2.

Thus {H2,H} = 0 implies that

∂G

∂ϕ
ν2ĥ2β = 0, ĥ1β

∂

∂θ
(ν2ĥ2β) = 0,

from which, we obtain that ν2 = k(ĥβ)2 (k is nonzero constant). Then the
potential function G depends only on the variable θ.
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§4. Construction of symplectic-Haantjes manifold for a
Hamiltonian system

Assume that ν1 = 0, ν2 = k(ĥβ)2 (k is nonzero constant) and the potential
function G depends only on θ. Then we can consider the functions

H =
1

2

(
ĥ1βp

2
1 + ĥ2βp

2
2

)
+G(θ),

H2 =
1

2
kp22,

where we assume that λ is a suitable function of θ as in (3.5) and (3.6), H
and H2 are in involution, k is nonzero constant. Using above functions, we
construct a Haantjes operator.

We put a 4-dimensional square matrix

K = (Ki
j)

=


a(θ) b(θ) 0 b(θ)

c(θ, p1, p2) a(θ) −b(θ) 0
0 c(θ, p1, p2) a(θ) c(θ, p1, p2)

−c(θ, p1, p2) 0 b(θ) a(θ)

 =


a b 0 b
c a −b 0
0 c a c
−c 0 b a

 ,

where a = k(ĥβ)2, b = b(θ), c = −kĥ1β(ĥβ)
2
2p1p

−1
2 .

This function matrix K satisfies conditions (2.2), (2.3), and the potential
function G is given such that the following formula is satisfied:

∂G

∂θ
= −1

2

(
∂ĥ1β
∂θ

p21 +
∂ĥ2β
∂θ

p22

)
+

1

k
b(ĥ2β)

2p2,

where, from (3.5) and (3.6), G can be regarded as a function of θ, under the
assumption that λ is a suitable function of θ. Then, minimal polynomial of K
is

(4.1) mK(x) = x2 − 2ax+ a2.

From (4.1), we put c1 = 2a and c2 = −a2, the condition (2.4) is satisfied.

We set x1 = θ, x2 = ϕ, x3 = p1, x4 = p2 and K

(
∂

∂xj

)
=

4∑
i=1

Ki
j

∂

∂xi
(j =



100 K. KIKUCHI AND T. TAKEUCHI

1, 2, 3, 4). For example, we have, using the definition of the Nijenhuis torsion:

(NK)112 =

4∑
α=1

∂b

∂xα
Kα

1 −
4∑

α=1

∂a

∂xα
Kα

2

+ a

(
∂a

∂x2
− ∂b

∂x1

)
+ b

(
∂c

∂x2
− ∂a

∂x1

)
− b

∂c

∂x2

= b′a− a′b− ab′ − ba′

= −2a′b,

(NK)214 = −
4∑

α=1

∂c

∂xα
Kα

4 + c

(
∂a

∂x4
− ∂b

∂x1

)
+ a

∂c

∂x4
− b

(
− ∂c

∂x1

)
= −∂c

∂θ
b− ∂c

∂p1
c− ∂c

∂p2
a− b′c+ a

∂c

∂p2
+ b

∂c

∂θ

= −b′c− c
∂c

∂p1
,

where a′ :=
∂a

∂θ
, b′ :=

∂b

∂θ
.

Then we get the following equations which calculate the components of a
Nijenhuis torsion NK = N :

N 1
12 = −2a′b, N 1

14 = −2a′b, N 2
12 = −b′c− c

∂c

∂p1
, N 2

13 = a′b− b
∂c

∂p2
,

N 2
14 = −b′c− c

∂c

∂p1
, N 2

23 = −bb′ − b
∂c

∂p1
, N 2

24 = −a′b− b
∂c

∂p2
,

N 2
34 = bb′ + b

∂c

∂p1
, N 3

12 = −a′c− c
∂c

∂p2
, N 3

14 = −a′c− c
∂c

∂p2
,

N 3
23 = a′b− b

∂c

∂p2
, N 3

34 = −a′b+ b
∂c

∂p2
, N 4

12 = b′c+ c
∂c

∂p1
,

N 4
13 = −a′b+ b

∂c

∂p2
, N 4

14 = b′c+ c
∂c

∂p1
, N 4

23 = b′b+ b
∂c

∂p1
,

N 4
24 = a′b+ b

∂c

∂p2
, N 4

34 = −bb′ − b
∂c

∂p1
,

where N i
jk = 0 (otherwise, except skew-symmetric ones with the above formu-

las). From (2.1), we have

(HK)ijk =
n∑

α,β=1

{
Ki

αK
α
β (NK)βjk +Kα

j K
β
k (NK)iαβ(4.2)

+Ki
αK

β
j (NK)αkβ +Ki

αK
β
k (NK)αβj

}
.
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For example, we have, from the components of K and Nijenhuis torsion :

4∑
α,β=1

K1
αK

α
β (NK)β12

=

4∑
α=1

K1
α

(
Kα

1 (NK)112 +Kα
2 (NK)212 +Kα

3 (NK)312 +Kα
4 (NK)412

)
= K1

1

(
K1

1 (NK)112 +K1
2 (NK)212 +K1

4 (NK)412
)

+K1
2

(
K2

1 (NK)112 +K2
2 (NK)212 +K2

3 (NK)312
)

+K1
4

(
K4

1 (NK)112 +K4
3 (NK)312 +K4

4 (NK)412
)

= a2(−2a′b) + ab

(
−b′c− c

∂c

∂p1

)
+ ab

(
b′c+ c

∂c

∂p1

)
+ bc(−2a′b) + ba

(
−b′c− c

∂c

∂p1

)
+ b(−b)

(
−a′c− c

∂c

∂p2

)
+ b(−c)(−2a′b) + b2

(
−a′c− c

∂c

∂p2

)
+ ba

(
b′c+ c

∂c

∂p1

)
= −2a2a′b.

Similarly, we have

4∑
α,β=1

Kα
1 K

β
2 (NK)1αβ = −2a2a′b.

Also, we have

4∑
α,β=1

K1
αK

β
1 (NK)α2β = K1

1K
1
1 (NK)121 +K1

2

(
K1

1 (NK)221 +K4
1 (NK)224

)
+K1

4

(
K1

1 (NK)421 +K4
1 (NK)424

)
= 2a2a′b+ ba

(
b′c+ c

∂c

∂p1

)
+ b(−c)

(
−a′b− b

∂c

∂p2

)
+ ba

(
−b′c− c

∂c

∂p1

)
+ b(−c)

(
a′b+ b

∂c

∂p2

)
= 2a2a′b.

Similarly, we have

4∑
α,β=1

K1
αK

β
2 (NK)αβ1 = 2a2a′b.
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Then we have

(HK)112 =
n∑

α,β=1

{
K1

αK
α
β (NK)β12 +Kα

1 K
β
2 (NK)1αβ

+K1
αK

β
1 (NK)α2β +K1

αK
β
2 (NK)αβ1

}
= 0.

Secondly, we calculate (HK)234.

4∑
α,β=1

K2
αK

α
β (NK)β34

= K2
1

(
K1

2 (NK)234 +K1
4 (NK)434

)
+K2

2

(
K2

2 (NK)234 +K2
3 (NK)334

)
+K2

3

(
K3

2 (NK)234 +K3
3 (NK)334 +K3

4 (NK)434
)

= cb

(
bb′ + b

∂c

∂p1

)
+ cb

(
−bb′ − b

∂c

∂p1

)
+ a2

(
bb′ + b

∂c

∂p1

)
+ a(−b)

(
−a′b+ b

∂c

∂p2

)
− bc

(
bb′ + b

∂c

∂p1

)
− ba

(
−a′b+ b

∂c

∂p2

)
− bc

(
−bb′ − b

∂c

∂p1

)
= a2bb′ + 2aa′b2 + a2b

∂c

∂p1
− 2ab2

∂c

∂p2
.

Similarly, we have

4∑
α,β=1

Kα
3 K

β
4 (NK)2αβ = a2bb′ + a2b

∂c

∂p1
+ 2ab2

∂c

∂p2
.

Also we have

4∑
α,β=1

K2
αK

β
3 (NK)α4β = K2

2

(
K2

3 (NK)242 +K3
3 (NK)243

)
+K2

3K
3
3 (NK)343

= a(−b)

(
a′b+ b

∂c

∂p2

)
+ a2

(
−bb′ − b

∂c

∂p1

)
− ba

(
a′b− b

∂c

∂p2

)
= −2aa′b2 − a2bb′ − a2b

∂c

∂p1
.



4-DIMENSIONAL SYMPLECTIC-HAANTJES MANIFOLDS 103

Similarly, we have

4∑
α,β=1

K2
αK

β
4 (NK)αβ3 = −a2bb′ − a2b

∂c

∂p1
.

Consequently, we have

(HK)234 =
n∑

α,β=1

{
K2

αK
α
β (NK)β34 +Kα

3 K
β
4 (NK)2αβ

+K2
αK

β
3 (NK)α4β +K2

αK
β
4 (NK)αβ3

}
= 0.

Similarly, we can prove that all components of Haantjes tensor vanish.

Thus the function matrix K satisfies the condition (2.5). Hence, we get
a Haantjes operator K. Thus, we construct a symplectic Haantjes manifold
(T ∗X◦, ω, I,K).

§5. Other examples

In this Section, we construct ωH manifolds in three cases. Let us consider the
Hamiltonian system of the geodesic flow of 2-dimensional Minkowski space (cf.
[13])

H =
1

2
(−p21 + p22)(5.1)

with an independent integral of motion

H2 = p1.(5.2)

Thus, H has Haantjes operator K in the following way.

We consider G = G(q, p) which is functionally independent ofH. We assume
the Poisson bracket {H,G} vanishes, that is

{H,G} =
2∑

i=1

(
∂H
∂pi

∂G
∂qi

− ∂H
∂qi

∂G
∂pi

)
= −p1

∂G
∂q1

+ p2
∂G
∂q2

= 0.

Then we get the following condition:

p1
∂G
∂q1

= p2
∂G
∂q2

.(5.3)
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The function H2 in (5.2) as G satisfies the condition (5.3). Under the condition
(2.2), we put a 4-dimensional square matrix

K =


a11 a12 0 b12
a21 a22 −b12 0
0 c12 a11 a21

−c12 0 a12 a22

 .

Then from the condition (2.3), we get the following relationship

a21 =
a11p1 + 1

p2
,

a22 =
a12p1
p2

,

b12 = 0.

Further, we put c1 = (a12p1 + a11p2)p
−1
2 and c2 = a12p

−1
2 , the condition (2.4)

is satisfied. We set x1 = p1, x2 = p2, x3 = q1, x4 = q2. For example, we have,
using the definition of the Nijenhuis torsion :

(NK)1jk =
4∑

α=1

(
∂Kα

j

∂xk
−

∂Kα
k

∂xj

)
K1

α =

(
∂K2

j

∂xk
−

∂K2
k

∂xj

)
K1

2 ,

(NK)112 =

(
∂K2

1

∂x2
− ∂K2

2

∂x1

)
K1

2

=

{
∂

∂p2

(
a11p1 + 1

p2

)
− ∂

∂p1

(
a12p1
p2

)}
a12

= a12

(
−a11p1 + 1

p22
− a12

p2

)
= −a12(a11p1 + a12p2 + 1)

p22
,

(NK)123 =

(
∂K2

2

∂x3
− ∂K2

3

∂x2

)
K1

2 =

{
∂

∂q1

(
a12p1
p2

)
− 0

}
a12 = 0.

Then we get the following equations which calculate the components of the
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Nijenhuis torsion NK = N :

N 1
12 = −a12(a11p1 + a12p2 + 1)

p22
, N 2

12 = −a12p1(a11p1 + a12p2 + 1)

p32
,

N 3
12 = −c12(a11p1 + a12p2 + 1)

p22
, N 3

14 = −(a11p1 + 1)(a11p1 + a12p2 + 1)

p32
,

N 3
24 =

a11(a11p1 + a12p2 + 1)

p22
, N 4

14 = −a12p1(a11p1 + a12p2 + 1)

p32
,

N 4
24 =

a12(a11p1 + a12p2 + 1)

p22
,

where N i
jk = 0 (otherwise, except skew-symmetric ones with the above for-

mulas). From (4.2), for example, we have, from the components of K and
Nijenhuis torsion :

4∑
α,β=1

K3
αK

α
β (NK)β12

= K3
2K

2
2 (NK)212 +K1

1

(
K3

2 (NK)212 +K1
1 (NK)312

)
+K2

1K
1
2 (NK)312,

4∑
α,β=1

Kα
1 K

β
2 (NK)3αβ

= K1
1K

2
2 (NK)312 −K2

1K
1
2 (NK)312 +K3

2

(
K1

2 (NK)314 +K2
2 (NK)324

)
,

4∑
α,β=1

K3
αK

β
1 (NK)α2β

= −K3
2

(
K1

1 (NK)212 +K3
2 (NK)224

)
−K1

1

(
K1

1 (NK)312 +K3
2 (NK)324

)
−K2

1

(
K1

1 (NK)412 +K3
2 (NK)424

)
,

4∑
α,β=1

K3
αK

β
2 (NK)αβ1 = −K3

2K
2
2 (NK)212 −K1

1K
2
2 (NK)312.

From above equations, we get

(HK)312 = K3
2

(
K1

2 (NK)314 +K2
2 (NK)324

)
−K3

2K
3
2 (NK)224 −K1

1K
3
2 (NK)324

−K2
1

(
K1

1 (NK)412 +K3
2 (NK)424

)
= −c12(a11p1 + a12p2 + 1)(a211p2 + a11a12p1 + 2a12)

p32
.

If (HK)312 = 0, we can choose a11 = 0, a12 = 0 as one of the solutions.
Consequently, we have

(HK)312 = 0,
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where a11 = 0, a12 = 0 andN 6= 0. Similarly, we can prove that all components
of Haantjes tensor vanish. Thus we get the Haantjes operator K :

K =


0 0 0 0

p−1
2 0 0 0

0 c12 0 p−1
2

−c12 0 0 0

 ,

where N 6= 0 and c12 6= 0. Hence we construct a ωH manifold (T ∗R2, ω, I,K).

Now, we put the function

H3 = k1p1 + k2p2.(5.4)

This function (5.4) satisfies the condition (5.3). Then, by the same calculation
as above, we construct the Haantjes operator K ′ :

K ′ =


0 0 0 0

5p−1
2 k2p

−1
2 0 0

0 c12 0 5p−1
2

−c12 0 0 k2p
−1
2

 ,

where (NK′)212 = (NK′)414 = −5k2p
−3
2 , (NK′)312 = −5c12p

−2
2 , (NK′)314 =

−25p−3
2 and otherwise except skew-symmetric ones with the above formulas.

Hence, we get a different ωH manifold (T ∗R2, ω, I,K ′) from the one above.
Moreover, we consider

H4 = kp1p2.(5.5)

Similar to the above, this function (5.5) satisfies the condition (5.3). Then, if
we put

K ′′ =


0 −5 0 0
5 0 0 0
0 c12 0 5

−c12 0 −5 0

 ,

K ′′ is a Haantjes operator. In fact, (5.1), (5.5) and K ′′ satisfy the condi-
tions (2.2), (2.3), (2.4) and (2.5). Therefore, we construct an ωH manifold
(T ∗R2, ω, I,K ′′).
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