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Abstract. Ishioka-Kunugi [9] gives an equivalent condition for Scott modules
to be Brauer indecomposable. This paper generalizes the equivalent condition
to that for Brauer-friendly modules to be slash indecomposable.
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81. Introduction

Let p be a prime number and O a complete discrete valuation ring with al-
gebraically closed residue field k of characteristic p. In the modular represen-
tation theory of finite groups, the following Broué’s conjecture is one of the
most important problems and has been studied by many researchers.

Conjecture (Broué’s conjecture). Let G be a finite group, b a block of OG
with a defect group P, and c¢ the Brauer correspondent of b in ONg(P). If P
is abelian, then the block algebras OGb and ONg(P)c are derived equivalent.

It is known that the conjecture holds in many groups and constructing a sta-
ble equivalence of Morita type between the block algebras OGb and ONg(P)c
can be used to prove the correctnesses. In Theorem 1.1 and Theorem 1.4, we
review the gluing principle of constructing stable equivalences of Morita type
for principal blocks and general blocks.

First, we consider the case where b is the principal block of OG. In this case,
M. Broué introduced the following method which is useful for constructing a
stable equivalence of Morita type.

Theorem 1.1 (Broué’s gluing principle [6, 6.3. Theorem]). Let G and H
be finite groups having a common Sylow p-subgroup P such that Fp(G) =
Fp(H) and b and c the principal blocks of OG and OH, respectively. For any
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subgroup Q of P, let bg and cq be the principal blocks of kCq(Q) and kCH(Q),
respectively, and M = S(G x H, AP) the Scott O(G x H)-module with vertex
AP. Then the following are equivalent.

(i) The bimodule M and its dual M* induce a stable equivalence of Morita
type between OGb and OHc.

(i1) The bimodule Brg(M) and its dual Bro(M)* induce a Morita equiva-
lence between kCq(Q)bg and kCH(Q)cq, for each non-trivial subgroup
Q of P.

In [11], R. Kessar, N. Kunugi, and N. Mitsuhashi introduced the Brauer
indecomposability, which plays a key role when we apply the principle to
principal blocks..

Definition 1.2 ([11]). Let M be an indecomposable OG-module. We say that
M is Brauer indecomposable if ResggggﬁQ(BrQ(M)) is indecomposable or 0,

for any p-subgroup @ of G.

In [9], H. Ishioka and N. Kunugi gave an equivalent condition for Scott
modules to be Brauer indecomposable as follows.

Theorem 1.3 ([9, Theorem 1.3]). Let G be a finite group and P a p-subgroup
of G. Let M = S(G, P) and suppose that F = Fp(QG) is saturated. Then the
following conditions are equivalent.

(i) M is Brauer indecomposable.

(i1) Resggg%)(S(Ng(Q), Np(Q))) is indecomposable, for each fully F-norm-

alized subgroup Q of P.

If these conditions are satisfied, then Brgo(M) = S(Ng(Q), Np(Q)) for each
fully F-normalized subgroup @ of P.

Next, we consider the case where b is a general block of OG. M. Linckel-
mann has generalized Broué’s gluing principle to general blocks as follows.

Theorem 1.4 (Linckelmann’s gluing principle [12, Theorem 1.2]). Let G and
H be finite groups and b and ¢ blocks of OG and OH, respectively, with a
common defect group P. Let i € (OGb)AT and j € (OHc)*F be almost
source idempotents. For any subgroup Q of P, denote by eq and fg the
unique blocks of kCq(Q) and kCr(Q), respectively, satisfying Brag(i)eg # 0
and Brag(j)fg # 0. Denote by ég and fQ the unique blocks of OCq(Q)
and OCy(Q) lifting eq and fq, respectively. Suppose that Fipe,)(G,b) =
]:(P,fp)(H’ c), and write F = F(pepy(G,b). Let V' be an F-stable indecompos-
able endo-permutation OP-module with vertex P, viewed as an OAP-module
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through the canonical isomorphism AP = P. Let M be an indecomposable
direct summand of the OGb-OH c-bimodule

OGi ®op Indi ;' (V) ®op jOH.

Suppose that M has AP as a vertex as an O[Gx H]-module. Then for any non-
trivial subgroup @ of P, there is a canonical kCq(Q)eq-kCr(Q) fo-module
Mg satisfying End,(Mg) = BrAQ(Endo(éQMfQ)). Moreover, if for all non-
trivial subgroups Q of P the bimodule Mg induces a Morita equivalence between
kCq(Q)eq and kCH(Q) fo, then M and its dual M* induce a stable equivalence
of Morita type between OGb and OHec.

In [3], E. Biland defined Brauer-friendly modules and generalized slash
functors. Brauer-friendly modules are generalizations of (endo-)p-permutation
modules. The module M which appears in the theorem above is a Brauer-
friendly module, and the module Mg which appears in the theorem can
AQ,éQ®fQ)(M) by using a (AQ,éq ® fQ)—slaSh functor
For Brauer-friendly modules, slash indecomposability can be

be represented as Sl(
Shageqofa)
defined in the similar way as Brauer indecomposability. For the same reason
as in Broué’s gluing principle, slash indecomposability plays an important role
in Linckelmann’s gluing principle.

In this study we generalize Ishioka-Kunugi’s equivalent condition to an
equivalent condition for Brauer-friendly modules to be slash indecomposable.

In Section 2 and 3, we review the definitions of subpairs, fusion systems, and
Brauer functors and we review the theory of Brauer-friendly modules and slash
functors that E. Biland defined in [3]. In Section 4, we prove a generalization of
lemmas of [9, Section 2] for p-permutation modules, Scott modules to Brauer-
friendly modules, Brauer-friendly Scott modules. In Section 5, we give an
equivalent condition for Brauer-friendly modules to be slash indecomposable,
which generalizes the equivalent condition for Scott modules to be Brauer
indecomposable.

§2. Notation

Throughout this paper, we use the following notation and terminology. Basi-
cally, we use the same notation and terminology as in [3].

Let p be a prime number, O a complete discrete valuation ring with alge-
braically closed residue field k& of characteristic p. We fix a finite group G and
a block b of OG. Throughout this paper, RG-modules mean finitely gener-
ated RG-lattices, for R € {O,k}. For any x € OG, we denote by T its image
by the natural map OG — kG. We denote by pgMod the category of all
OG-modules. We set AG = {(g,9) | g € G}. We write Ng(H) = Ng(H)/H
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for a subgroup H of G. For any G-set X and any subgroup H of G, we set
XH ={r e X |h-x=uxhc H}. Forany indecomposable OG-module M,
we denote by vtx(M) a vertex of M and s(M) a source of M. For any two
OG-modules M and N, we write M | N if M is isomorphic to a direct sum-
mand of N. For any OG-module M and any subgroup H of GG, the relative
trace map Tr% : MH — MY is defined by Tr$(m) = > zec/m © - m. For any
OG-module M and any p-subgroup P of G, the Brauer construction of M
with respect to P is the kN g(P)-module defined by

Brp(M) = M"/( Y Tr{(M@) + J(O)MP).
Q<P

We denote by br¥ : MP — Brp(M) the natural map. In particular, we
write brp = br@%. For any f € Homog(L, M), kNg(P)-homomorphism
Brp(f) € Hom,xp)(Brp(L), Brp(M)) is naturally determined. Hence, Brp
induces a functor

Brp : opeMod — kNG(p)MOd-

We recall the definition of subpairs. A subpair of G is a pair (P,bp) con-
sisting of a p-subgroup P of G and a block bp of OCq(P). We call the subpair
(P,bp) a (G, b)-subpair if bpbrp(b) # 0. For (G, b)-subpair (P,bp), the block
bp is also a block of OH for a subgroup H such that Cq(P) < H < Ng(P,bp).
The set of (G,b)-subpairs is a poset, and the group G acts on the set by con-
jugation.

We recall the definition of the Brauer functor with respect to (G, b)-subpair.
Let (P,bp) be a (G, b)-subpair, M an OGb-module. The Brauer construction
of M with respect to the subpair (P,bp) is the kN (P, bp)bp-module defined
by Br(pp,) (M) = Brp(bpM), here we identify the block bp of kNe(P,bp)
with an idempotent of kN (P,bp). The kNg(P,bp)-epimorphism

bripy,y : MY = Br(py,) (M)

is defined by m — brl}PM(bpm). For any f € Hompgy(L, M), we define

Br(ppp) (f) = Brp(bp fbp) € Homy s pyyp, (Brpop) (L), Br(pp,) (M)).
So Br(pp,) induces a functor
Br(P,bp) : OGbMOd — kNG(P,bp)l;pMOd'

We recall the definitions of Brauer categories and fusion systems. The
Brauer category Br(G, b) is defined as follows: the objects of Br(G, b) are the
(G,b)-subpairs, and for any two objects (P,bp), (Q,bg), the morphism set
Homgp,(q) (P, bp), (@, bq)) is the set of all group homomorphisms ¢ : P — @
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such that there exists g € G satisfying 9(P,bp) < (Q,bg) and ¢(x) = 9z for
any x € P. Let (P,bp) be a (G, b)-subpair. The fusion system F(p,\(G,b) is
defined as follows: the objects of F(p,)(G,b) are the subgroups of P, and for
any two objects ) and R, the morphism set Hom]:(P’bP)(Gb)(Q, R) is the set of
all group homomorphisms ¢ : Q — R such that there exists g € GG satisfying
9(Q,bg) < (R,br) for (Q,bg), (R,br) < (P,bp) and ¢(x) = 9z for any x € Q.

We review the definitions of vertex subpairs and source triples from [3].
Let M be an indecomposable OGb-module. A (G, b)-subpair (P, bp) is called
a vertex subpair of M if M | bOGbp @pp V and P <g vtx(M) for some
indecomposable O P-module V. For such V, it is called a source of M with
respect to the vertex subpair (P,bp). A triple (P, bp,V) is called a source
triple of M if V' is a source of M with respect to the vertex subpair (P, bp).
If M has a source triple (P,bp, V'), then a vertex of M is P and a source of
M is V from [3, Lemma 1]. We can consider the Green correspondence with
respect to a source triple as follows.

Theorem 2.1 ([3, Lemma 1, Definition 2]). Let (P,bp) be a (G,b)-subpair. If
M is an indecomposable OGb-module with source triple (P,bp, V'), then there
exists a unique indecomposable ONg (P, bp)-direct summand ffp (M) of bpM
with source triple (P,bp,V'). Then ffp induces a one-to-one correspondence
between the isomorphism classes of indecomposable OGb-modules with source
triple (P,bp, V') and the isomorphism classes of indecomposable ONg(P,bp)-
modules with source triple (P,bp, V). The fé’P is called the Green correspon-
dence with respect to (P,bp).

Brauer-friendly modules defined in the next section have fusion-stable endo-
permutation moudules as sources. We recall the definition of fusion-stable
endo-permutation modules. We call an OG-module M an endo-permutation
OG-module if Endp (M) is a permutation OG-module.

Definition 2.2 ([13, Definition 9.9.1]). Let (P,bp) be a (G,b)-subpair, V an
endo-permutation OP-module, and set F = F(pp,)(G,b). We say that V' is
F-stable if for any subgroup Q of P and any ¢, € Homz(Q, P), the endo-
permutation OQ-module Resg(V) and Resy (V)= Resgp(g‘/) are compati-
ble. We call the triple (P,bp, V') a fusion-stable endo-permutation source triple
if V is a F-stable capped indecomposable endo-permutation OP-module.

In [7], E. C. Dade introduced slash constructions for endo-permutation
modules over p-groups. For any endo-permutation OP-module V and @ < P,
we denote by V[Q] the slashed module of V' with respect to Q.
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83. Brauer-friendly modules and slash functors

In this section, we review the definitions of Brauer-friendly modules and slash
functors that were defined in [3].

Definition 3.1 ([3, Definition 6]). Let (P1,b1, V1) and (Pa,bs, Va2) be fusion-
stable endo-permutation source triples in (G,b). We say that (Py,b1,V1) and
(P2, b2, Va) are compatible if the endo-permutation OQ-modules Resy, (V1) and
Resg, (Va) are compatible for any (G,b)-subpair (Q,bg) and any morphism
¢i € Homp, (1) ((Q,0q), (P, bp,)) fori € {1,2}.

Definition 3.2 ([3, Definition 8]). Let M be an OGb-module which admits
the decomposition M = @, M; of M, where each M; is indecomposable
OGb-module with source triple (P;,bp,,Vi). We say that OGb-module M is
Brauver-friendly if (P;,bp,, Vi) is a fusion-stable endo-permutation source triple
for any i € {1,...,n}, and, (P;,bp,,V;) and (Pj,bp;,V;) are compatible for
every i,j € {1,...,n}.

Definition 3.3 ([3, Definition 8]). Let L and M be Brauer-friendly OGb-
modules. We say that the L and M are compatible if L&M is a Brauer-friendly
OGb-module.

Definition 3.4 ([3, Definition 15]). Let ogpM be a subcategory of the category
ocoMod. We say that ogpM is Brauer-friendly if any object of oasM is a
Brauer-friendly OGb-module, and any two objects of ogpM are compatible.

Definition 3.5. Let (P,bp,V) be a fusion-stable endo-permutation source
triples in (G,b). We say that a Brauer-friendly category is big enough with
respect to (P,bp, V') if any finite direct sum of indecomposable OGb-modules
with source triple (P,bp, V') belongs to the Brauer-friendly category. Let S be
a set of compatible source triples of G. Also we define that big enough with
respect to S.

Definition 3.6 ([3, Definition 14]). Let G be a finite group, b a block of OG,
and oM a subcategory of the category pgpMod of all OGb-modules. Let
(P,bp) be a (G,b)-subpair, and H a subgroup of G such that PCq(P) < H <
Ng(P,bp). We write H= H/P. An additive functor Sl : oM — a5, Mod
is called a (P,bp)-slash functor if which is defined by the following data:

e for each L, M € pcpM, there exists a map
SiEM - Homep(L, M) — Homy(SI(L), SI(M))
satisfying the following conditions.

= SN (Ipnag ar)) = Tendy(si(an)), for any M € oapM;
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— SIMN(go f) = SIMN(g) 0 SIWM(f), for any L, M,N € ocM, and
any f € Hompp(L, M), any g € Homop(M,N);

— for any LM € oM, there ezists a k(Cq(P) x Cg(P))AH-
isomorphism

fL,M . BrAp(Homo(pr,bpM))) — Homk(Sl(L),S’l(M))

such that the following diagram is commutative.

SpLM

Hompp(L, M) Homyg (SI(L), SI(M))

me %

(PRSP B p(Homo (bpL, bpM)))

Biland has proven that there exists a slash functor for Brauer-friendly cat-
egories in [3].

Theorem 3.7 ([3, Theorem 18]). Let b be a block of OG and oM a Brauer-
friendly category of OGb-modules. Let (P,bp) be a (G,b)-subpair, H a sub-
group of G such that PCg(P) < H < Ng(P,bp), and we write Cq(P) =
PCq(P)/P. Then the following statements hold.

(i) There exists a (P,bp)-slash functor Slipy,) : 0ceM — 775, Mod.

u) If Sl oM — 7 Mod is another (P,bp)-slash functor, then
(Pbp) kHbp
there exists a linear character x : H/Cq(P) — k™ such that there exists

an 1somorphism of functors xSl pp,) = Sl’(P bp)

Example 3.8. We denote by pgpPerm the category of all p-permutation
OGb-modules. Then pgpPerm is a Brauer-friendly category, and the slash
functor on pgpyPerm is the Brauer functor which is unique up to twisting by
a linear character.

For Brauer-friendly modules, slash indecomposability can be defined as well
as the Brauer indecomposability as follows (For Frobenius-friendly modules
(i.e. endo-p-permutation modules), slash indecomposability was defined in [8,
Definition 5.1]).

Definition 3.9. Let oM be a Brauer-friendly category of OGb-modules,
SlQpo) + 0ceM — kNG(Q,bQ)EQMOd a (Q,bg)-slash functor for each (G,b)-
subpair (Q,bq), and M € ogyM. We say that M is slash indecomposable if for

every (G, b)-subpair (Q, bg), Resggé?gg"?/)éQ(Sl(Q’bQ)(M)) is indecomposable or
zero.
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Remark 3.10. The definition of the slash indecomposability is independent of
the choice of Brauer-friendly categories and slash functors.

The following theorem is a generalization of [5, (3.2) THEOREM. (3)].

Theorem 3.11 ([3, Theorem 23]). Let b be a block of OG, (P,bp, V) a fusion-
stable endo-permutation source triple, oapsM a Brauer-friendly category of
OGb-modules that is big enough with respect to (P,bp,V), and Slipp,) :
oM = x5 pyppMod a (P,bp)-slash functor. Then Slpp,) induces
a one-to-ome correspondence between the isomorphism classes of indecompos-
able OGb-modules with source triple (P,bp, V) and the isomorphism classes of
projective indecomposable k[N (P, bp)]bp-modules.

By this theorem, Brauer-friendly modules can be presented as follows.

Definition 3.12. With the same notation as in Theorem 3.11, let M € oM
be an indecomposable OGb-module with source triple (P,bp,V). Then, by
Theorem 8.11, there is up to isomorphism a unique simple k[Ng(P,bp)]bp-
module S such that Slpy, (M) = P(S). We denote the module M by
B(b, (P,bp,V),Slpppy,S). In particular, if S = kNG(P,bp)E , then we de-
note the module M by BS(b,(P,bp,V),Slpp,)). We call this module the
Brauer-friendly Scott OGb-module with respect to (P,bp, V).

Remark 3.13. (i) The above presentation of Brauer-friendly modules is a
unique up to twisted by a linear character.

(ii) The Scott OG-module S(G, P) is presented by
S(G,P)=BS(b,(P,bp,Op), Sl(pbp))

for b is the principal block of OG.

84. Lemmas

In this section, we give lemmas for Brauer-friendly modules, Brauer-friendly
Scott modules, and slash functors, which are analogies of lemmas for p-permut-
ation modules, Scott modules, and Brauer functors respectively, which are
used to prove the main theorem in [9].

NOTATION. Let M be a Brauer-friendly module and Sy be the set of
source triples of any indecomposable summand of M. Hereinafter, we assume
that M belongs to some Brauer-friendly categories that is big enough with
respect to Syr. Moreover, when we apply a slash functor to the Brauer-friendly
module M, we assume that the domain of the slash functor is big enough with
respect to Syy.
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Lemma 4.1. Let (P,bp) be a (G,b)-subpair, H a subgroup of G such that
PCq(P) < H < Ng(P,bp), M a Brauer-friendly OGb-module, and Sl(py,) a
(P,bp)-slash functor. By [3, Lemma 10 (i)], we get a decomposition bpM =
L& L', where L is a Brauer-friendly OHbp-module and L' is a direct sum
of indecomposable O Hbp-modules with vertices that do not contain P. Then
there exists an isomorphism of kHbp-modules

_ .
Res%G(P P (Slpppy (M) = Sl py (L)

for some (P,bp)-slash functor Sl’(PbP). In particular, if H = Ng(P,bp) and

M has the source triple (P,bp, V), then there exists an isomorphism of kHbp-
modules

Slppp) (M) = Slzp,bp)(fgp (M)),
where flfp is the Green correspondence with respect to (P,bp).

Proof. Write Ng = Ng(P,bp). We have an isomorphism of Cp(P)-interior
H-algebras

Endy,(Resiy® (Sl(pp,)(M))) 2= Respy® (Brap(Endo (bpM)))
= Brap(Endo(bpResf;(M)))
= Brap(Endo(L))
= End(SI{py,, (L)),

"

where Res is a restriction to H as algebras and S (Pop) 152 (P, bp)-slash func-

tor. By [4, Lemma 3 (ii)], there exists a linear character x : H/PCy(P) — k*
such that preSJI\{[G(Sl(RbP)(M)) = X*Sl’(’PbP)(L). Hence, setting Sl’(PbP) =
X*Sl'(’P bp) We obtain

preSZG(Sl(P,bp)(M)) = SZZP,bp)(L)‘

The rest follows from bpM = fé’P(M ) @ Z, where Z is a direct sum of inde-
composable ONgbp-modules with vertices that do not contain P. O

The following lemma is an analogy of [5, (3.2) THEOREM. (1)].

Lemma 4.2 ([2, Corollary 3.17]). Let (Q,bq) be a (G,b)-subpair, Sl(q ) a
(Q,bq)-slash functor, and M an indecomposable Brauer-friendly OGb-module
with source triple (P,bp,V'). Then the following conditions are equivalent.

(i) Sliguy)(M) # 0.
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We define the conjugation of slash functors by an element of a group.

Definition 4.3. Let (P,bp) be a (G,b)-subpair and Slpp,) @ ocpM —
iNo(PopyppMod a (P, bp)-slash functor. For each g € G, we denote by 9(—)
the conjugation functor by g, also we denote the functor 9(—) o Slipp,) :
oM = 5 opappysppMOd by 9xSlippyy. Then, by [3, Lemma 22 (i1)],
the functor g.Sl(py,y is a 9(P,bp)-slash functor.

Lemma 4.4. Let (P,bp) be a (G,b)-subpair. For each g € G, we have an
isomorphism of OG-modules

B(ba (P7 bp, V)a Sl(P,bp)a S) = B(b7 (QP’ 9bp, gv)’ g*Sl(P,bp)a gS)

Proof. Set X = B(b, (YP,%bp,V), g:Sl(pp,y,?S). Then X also has the source
triple (P,bp, V') and we have 9(Slpp,) (X)) = gxSl(pp)(X) = IP(S). Thus
Slippp)(X) = P(S). Hence we obtain

B(b7 (P7 bP7 V)7 Sl(P,bp)7 S) = B(b7 (QP7 nga gv)7 g*Sl(P,bp)7 gS)
O

Lemma 4.5. Let (P,bp) be a (G, b)-subpair and fé’P the Green correspondence
with respect to (P,bp). Then there exists a (P,bp)-slash functor Sl’(P bp) SUCh

that there exists an isomorphism of ONg(P, bp)bp-modules

f.(B(b, (P,bp, V), Slppp),S)) = B(bp, (P,bp, V), SlpppyS)-
In particular, we have an isomorphism

F2.(BS(b, (P,bp, V), Slipy,)) = BS(bp, (P,bp, V), Slppp))-

Proof. Set M = B(b, (P,bp,V),Slpp),S). Then, by Lemma 4.1, there ex-

ists a (P, bp)-slash functor Sl’( Pbp) such that there exists an isomorphism of
kN (P, bp)bp-modules

Slipppy (fop (M) = Sy (M) = P(S).
O

The following lemma is an analogy of [14, Chapter 4, Theorem 8.6 (ii)] for
Brauer-friendly modules.

Lemma 4.6. Let P be a p-subgroup of G, H a subgroup of G such that
PCq(P) < H, b ablock of OH, and (P,bp) a (G,b)-subpair. We assume that
(P,bp) is an (H,V')-subpair, and (P,bp, V) is a fusion-stable endo-permutation
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source triple. Then there exist t € Ng(P,bp), a (P,bp)-slash functor Sl’(’P bp)?
and a simple k[N g (P,bp)|bp-module S’ such that

BV, (P,bp,'V), Sl(Pb ") | Res%(B(b, (P, bp, V), Slppp)S))-
In particular, we have
BS(V, (P, bp,'V), Sl”Pb ) | Res% (BS(b, (P, bp, V), Slippp)))-
To prove Lemma 4.6, we need the following lemma.

Lemma 4.7 (Burry [14, Chapter 4, Theorem 4.8 (i)]). Let H be a subgroup
of G containing PCq(P), b’ a block of OH, and (P,bp) a (G,b)-subpair. We
assume that (P,bp) is an (H,bV')-subpair. Let fé’P and fé’}; be the Green corre-
spondences with respect to (P,bp). Then, for any indecomposable OGb-module
V' with vertex subpair (P,bp) and any indecomposable OHY -module W with
vertex subpair (P,bp), the following conditions are equivalent.

(i) W | Res% (V).

(ii) f2(W) | ResyC () (2, (V).

Proof. (Proof of Lemma 4.6) We prove Lemma 4.6 in a similar way as the
proof of [14, Chapter 4, Theorem 8.6 (ii)]. Set Ng = Ng(P,bp) and Ny =
Ny (P,bp). By Lemma 4.7, it is sufficient to show the following;:

flf;;(B(b/?(Pa bPatV) Sl(PbP)a )) |ReS (fbp( ( (Pa bPav)vsl(P,bp)aS)))'

Also, by Lemma 4.5, this statement is equivalent to the following:
B(bP7 (P7 bPa tV)? SlE/],D,bP)a S,) | Resxg (B(bP7 (Pv bP7 V)a Sl/(PJ)P)v S))

Set Bg = B(b,(P,bp,V),Slpp,),S). It is equivalent to show that there
exist t € Ng, a (P,bp)-slash functor Sl/(/]/Db )» & simple kN gbp-module S’
and an indecomposable direct summand X of pres “( fb (Bg)) such that
X has a source triple (P, bp,!V) and SlEPb (X)) = P(S’) By [3, Lemma

10 (i)], we get a decomposition bpRes H(fbp( Bg)) = L@ L', where L is a
Brauer-friendly ONgbp-module and L' is a direct sum of indecomposable
ONgbp-modules with vertices that do not contain P. Since fé’P (Bg) =

B(bp, (P,bp,V), Sl .1, S), we obtain ff (Bc) | IndN¢(V). The Mackey
formula gives the relation

L|Resyo(fp,(Ba))| €D Wdp('v).
teNy\Ng/P
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Let L = ®;c7L; be a decomposition of L as a direct sum of indecomposable
ONpgbp-modules. Then each L; has the vertex subpair (P, bp). Hence for each
i € I, there exists t; € Ng such that s(L;) = %V. By Lemma 4.1, there exists

a (P, bp)-slash functor SZEIIIDb ) such that

ResNe (Sl (£, (Ba))) 2 Si{py, (L)

There exists a simple kN gbp-module S/ such that Sl’(” )(Li) = P(S]), by
the above argument and Theorem 3.11. This shows

L; = B(bPa (Pa bP7tV)7SlE/],37bP)a S,)
In particular, if S = kg _,,, then P(kg, , )]ReSNG (Slzpbp)(ffp(Bg))). Thus

there exists ¢ € I such that Sl(’l’gb y(Li) = P(ky,,;,). This shows L; =
sOP H P
BS(bp, (P.bp,'V), S, ).

(I

Lemma 4.8 (Burry-Carlson, Puig). Let (P,bp) be a (G,b)-subpair, H :=
N¢g(P,bp), fl?p the Green correspondence with respect to (P,bp), V an inde-

composable OGb-module, and W an indecomposable summand of presg(V).
Then the following condition (i) implies (ii) and fé’P(V) =W.

(i) W has a vartex subpair (P,bp).
(i) V has a vartex subpair (P,bp).

The following lemma is a generalization of H. Kawai [10, Theorem 1.7] for
Brauer-friendly modules. We prove the lemma with the similar argument as
[10, Theorem 1.7].

Lemma 4.9. Let (P,bp) be a (G,b)-subpair, (Q,bg) < (P,bp), and set
H = Ng(Q,bg) and Bg = B(b,(P,bp,V), Sz(pbp S). fR=9PNH isa
mazimal element of {{PNH | i€ G,(Q,bg) < (P,bp)}, then there exist an
(R,br)-slash functor Sligy,, a z € G, and a simple k[N g (R, bg)]br-module
S" such that

B(va (R7 br, Cap<ReS;P(ZV)))v Sl(R,bR)a S/) ‘ Res%(Bg),
where bg is the unique block satisfying (R,br) < 9(P,bp).

Proof. We prove this by induction on |P|/|R].

If |P|/|R| =1, i.e. 9P = R, then 9(P,bp) is a (G, b)-subpair. By (Q,bg) <
(R,br), (R,br) = 9(P,bp) is an (H,bg)-subpair. Hence, by Lemma 4.4 and
Lemma 4.6, there exist an (R, bg)-slash functor Sl(ry,) and 2z € Ng(R,br)
such that

B(an (Ra br, ZV)? Sl(R,b}g)? Sl) | RGS%(B(Z), (QP’ nga V)> g*Sl(P,bp)7 gS)a
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and
Resf; (B(b, (/P %p, V), xSl(ppp, *S) = Resfi (Be).
In this case, the statement follows.
Now suppose that |P|/|R| > 1, i.e. R <g P. We set H] = Ng(R,br) and
Q= {'PnHli € G,(R,bg) < *P,bp)}. From (R,br) < 9(P,bp), we see

Q # (. Let Ry be a maximal element of Q2. Then H; and (Ry,bg,) satisfy the
condition of the lemma. Therefore, by induction hypothesis, there exist an
(R1, bR, )-slash functor Sl(g, p, ), an @ € G, and a simple E[N g, (R1,bRr,)]bR,-
module Sg, such that

B(bRa (Rla le ) Cap(ResxR}f(mV))), Sl(Rl,le)’ SRI) | Resgl (BG)

Set N = B(br, (R1,br,, Cap(Resg, (*V))), Slr, b,y Sra)s T = Nu(R,bg).

By [3, Lemma 10 (i)], we get a decomposition bRResjlf1 (N)=L® L', where L
is a Brauer-friendly OTbg-module and L’ is a direct sum of indecomposable
OTbgr-modules with vertices that do not contain R. Let L = @;c7L; be a
decomposition of L as a direct sum of indecomposable OTbr-modules. Then,
for any ¢ € I, there exist a vertex of L; which contains R. Here, the Mackey
formula gives the relation

@ L; |Rest (Indgl1 (Cap(Res;]f(xV))))
i€l
h T
o @ Ind{RmT(ReshgimT(h(Cap(Resle(xV)))))
heT\H1/R1

h x
=~ P Indi(Resy™("(Cap(Resy (*V))))),
heT\H1/R:

where R = "RiNT, for any h € Hy. Hence, for any i € I, we have vtx(L;) = R.
Therefore, for any i € I, we can take a vertex subpair of L; as (R,bg). We
may assume that

Li | Ind¥ (Resy; ™ (" (Cap(Res (“V))))),

for some h; € Hy. Let ReS};Rl(hi(Cap(Reslef(xV)))) = D;c; Z; be a decom-
position as a direct sum of indecomposable O R-modules. Then, there exists
j € J such that s(L;) = Z;. Since we can take a vertex of Z; as R, therefore

we have Z; = Cap(Resi;PLl (hi(Cap(Resgf(””V))))). Moreover, we see that

Cap(Resy; ™ (" (Cap(Resy, (*V))))) = Cap(Resy " (V).

From the above, for any i € I, there exist an (R,bg)-slash functor Sy,
and a simple k[N (R, br)|bg-module S/ such that

hx
L; = B(bg, (R, bg, Cap(Resy, " ("V))), Slrpp), S)-
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We choose i € I and set h = h;, S’ = S!, z = he € G. Then we have
B(bg, (R,bg, Cap(Res; (*V))), Sl(rpp),S') | Rest! (Res§ (Bg)).
Therefore there exists a direct summand U of Resg(Bg) such that
B(bg, (R,br, Cap(Resg (*V))), Slrpp), S') | Resf (U).
By Lemma 4.8 and [3, Theorem 4], the module U has a vertex subpair (R, bg)
and lies in the block bg of OH and
f;2(U) = Bbr, (R, br, Cap(Resy’ (V). Slap). ).
Hence, by Lemma 4.5, we have
U = B(bg, (R,bg, Cap(Resy (*V))), Sl(rpy)s S')-
From the above, it follows that
B(bg, (R,br, Cap(Res; (*V))), Sl(rpp),S") | Res% (Bg).
O]

The following lemma is a generalization of J. Thévenaz [15, Exercises (27.4)]
for Brauer-friendly modules.

Lemma 4.10. Let (P,bp) be a (G,b)-subpair and Q <g P, and set M =
B(b,(P,bp, V), Slppp),S) and H = Ng(Q,bq). By [3, Lemma 10 (i)], we get
a decomposition bgRes% (M) = L ® L', where L is a Brauer-friendly OHbg-
module and L' is a direct sum of indecomposable OHbg-modules with vertices
that do not contain Q. Let L = ®icrL; be a decomposition of L as a direct
sum of indecomposable OHbg-modules and we set Z; = vtx(L;). Then, for
each 1 < i < n and any (Q,bg)-slash functor SlQ,g), there exist a g; € G
and a simple k[N (Z;,bz,)|bz,-module S; such that

Sl(Q,bQ)(Li) = B(bQ7 (Zi7 bZz‘? Cap(ResZP(giV))[Q]), Sl(Zi,bzi)a SZ) D (@X@j%
J

where X; ; is indecomposable Brauer-friendly kHbg-module with source triple
(V6x(Xi5), botx(x, ;)5 8(Xij)) such that

(Q?bQ) < (VtX(Xi,j)abvtx(Xiyj)) < (ZlabZZ)
and

S(Xij) | ResZi . (Cap(Res”(*V)))[Q).

vix (X 5

Therefore, we have
Sl(vaQ)<M) = Sl(szQ)(L>
=~ @ (B(bQ,(Zi,bzi,Cap(ReS?iP(giV))[Q])aSl(Zi,bZiySi)@(@Xi,j))~

1<i<n j
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Remark 4.11. 1f Sl(q p,,)(L;) is indecomposable, then we have

Sli@ug)(Li) = B(bg, (Zi,bz,, Cap(Resz,” (“V))[Q)), Slz,,,) 5i)-

Proof. By Lemma 4.1, we have

SlQ,be) (M) = Sl o) (L @SszQ

1<i<n

First, we determine the structure of each L;. By [3, Theorem 4], we see that
there exists g; € G such that (Q,bg) < (Z;,bz,) < 9 (P,bp) and s(L;) =
Cap(ResZ,P (91V)). Therefore, there exist a g; € G, a (Z;,bgz,)-slash functor
Sl(HbQ,Zi,bZ,L-)’ and a simple k[N (Z;,bz.)]bz,-module S; such that

Li & B(bq, (Zi, bz, Cap(Resz,” (%V))), Sl 7,1,y Si)-

Next, we determine the structure of Sl p,)(Li). Since we have (Q,bq) <
(Zi,bz,) by [2, Lemma 3.16 (i)], we see

P(SZ) = Sl(zubzz)(LZ) = Sl(Zmei) (¢] Sl(Q,bQ)(LZ)

Thus, there exists the unique direct summand X; of SZ(QJ,Q)(Li) such that
Sliz,p,)(Xi) = P(S;). From [4, Lemma 3 (iii)] and Lemma 4.2, we see
vtx(X;) = vtx(L;) and s(X) = Cap(ResglP(glV))[Q]. Hence, we get

Xi = B(bq, (Zi,bz,, Cap(Res” (%V)[Q)), Sl 7,5, Si)-

Let Sligupo)(Li) = Xi & (D, Xi;) be a decomposition of Slqp,)(Li) as a
direct sum of indecomposable OHbg-modules. By [4, Lemma 3 (iii)], we have
(Q,bQ) < (VtX(Xi,j) bvtx(X )) (Zi,bz,) and

S(Xiy) | Res (Cap(Res! (V)@

From the above, we have

Sl(Q,bQ)(M) = SZ(QJ,Q)(L)
= (P (B(bg, (Zi, bz, Cap(Resz " (“V))[Q)), Sliz,,,.), i) & (D Xi;)).

1<i<n J
]

The following lemma is the subpair version of [9, Lemma 3.1]. It can be
proved in a similar way as the proof of [9, Lemma 3.1].
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Lemma 4.12. Let (P,bp) be a (G,b)-subpair and Q a fully F(py,)(G,b)-
normalized subgroup of G. Assume that (Q,bg) < (P,bp). Then, Np(Q) is a
mazimal element of

{/PNNG(Q,bq) | g € G,(Q,bq) <?(P,bp)}.
The following lemma is the subpair version of [9, Lemma 3.2].

Lemma 4.13. Let (P,bp) be a (G,b)-subpair and set F = Fpp,)(G,b).
If Q is a fully F-automized and F-receptive subgroup of P, then we have
Nop(Q) Sna Qo) NP(Q); for any g € G such that (Q,bq) < (9P, %bp).

Proof. Assume that (Q,bg) < (9P,%p) for some g € G. Then 971@ and
Q@ are F-conjugate. Therefore, by [1, I, Lemma 2.6 (c)], there exists ¢, €
Homz(Np(9 ' Q), Np(Q)) such that Paly-1 € Isor(Y 'Q,Q). Thus zg~! €

N¢(Q,bg) and
Nop(Q) =INp(?' Q) =ng(@pe) “ NP Q) ="Np(? ' Q) < Np(Q).

O]

§5. Main theorem

NOTATION. Let (P, bp) be a (G,b)-subpair, set F = F(py,)(G,b), Q be
a fully F-normalized subgroup of P, and M = B(b, (P,bp,V),Slipp,),S) a
Brauer-friendly OGb-module. Then, from Lemma 4.12, the subgroup Np(Q)
is a maximal element of

{PPN Ng(Q,bq) | g € G,(Q,bg) <I(P,bp)}.

Therefore, by Lemma 4.9, there exist an n € G, an (Np(Q), by, (q))-slash func-

tor SZ(NP(Q)7bNP(Q))’ and a simple k[NNG(QbQ)(Np(Q), bNP(Q))]BNP(Q)-module
Sq such that

B(bq, (NP(Q): bnp(@)s W), SUNp (@) by ) 9Q) | Res%g(@,bQ)(M)v

where Wg = Cap(Res?Vi(Q) ("V)). Also, by Lemma 4.10, for any (Q, bg)-slash
functor Sl p,), we have

B(bq, (NP(Q),bnp(@): V@), SUNp(Q)bn @) 9@) | Sl@ug) (M),

where Vg = Wg[Q]. In this section, we set

Bq = B(bq, (NP(Q),bnp(9), V@) SUNp (@) by () 9Q)-
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The following theorem is a generalization of [9, Theorem 1.3].

Theorem 5.1. Let G be a finite group, b a block of OG, and (P,bp) a (G,b)-
subpair. We set M = B(b, (P,bp,V),Sl(pp,),S), F = Fippp)(G,b), Ng =
Ng(Q,bg), and Hy = Np(Q) for Q < P. Suppose that F is saturated and
ResggG(P)(S) is a simple OPCg(P)-module. The following conditions are
equivalent.

(i) M is slash indecomposable.

(ii) ResggG(Q)(BQ) is indecomposable for each fully F-normalized subgroup
Q of P.

If these conditions are satisfied, then for each fully F-normalized subgroup Q)
of P and any (Q,bq)-slash functor Sl@ o), we have

Sl(QJ,Q)(M) = BQ.

Proof. If (i) holds, i.e. ResggG(Q)(Sl(@bQ)(M)) is indecomposable, for each

fully F-normalized subgroup @ of P and any (Q, bg)-slash functor Sl(Q’bQ),
then by the definition of By, we have

N -~ N
RengG(Q)(BQ) o RengG(Q)(Sl(beQ)(M)).

Hence, ResggG(Q)(BQ) is indecomposable. This shows (ii). Moreover, since

Resggg(Q)(Sl(vaQ)(M)) is indecomposable, the module Si(q,)(M) is also
indecomposable. Therefore, we get

SZ(QJ)Q) (M) = BQ.

Conversely, suppose that (ii) holds. It is sufficient to prove that for each
Q <P, ResggG(Q)(Sl(Q’bQ)(M )) is indecomposable. We prove this by induc-
tion on |P : Q).

If |P: Q| =1, then this case is similar to the proof of [11, Lemma 4.3 (ii)],
by the assumption of the theorem.

Now consider the case that |P: Q| > 1. For some g € G, 9Q < P and 9Q)
is fully F-normalized. We see that for any (9Q), bsg)-slash functor Sl(ngng),

N -~ N
I(Resp2 o) (SH@b0) (M) Z Resyie. 00y (Slequumg) (M)).

Therefore, it is sufficient to prove that Resf,véga(g Q)(Sl(gQJ)g o) (M)) is inde-
composable. Hence, without loss of generality, we may assume that @ is fully
F-normalized.
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We set Ny = Bg. Let Slgup,) (M) = @& N; be a decomposition of
1<i<r

SZ(Q,bQ)(M ) as a direct sum of indecomposable kNgbg-modules. Then, by

Lemma 4.10 and its proof, for IN;, there exist L; | Res%Q (M) and g; € G such
that

(QabQ) < (R7 bR) < (VtX(LJ)abvtx(Lj)) <9 (Pa bP)

where R = vtx(N;). By Lemma 4.2, Slipp,.\(N;) # 0. Since Q is fully F-
normalized, @ is fully F-automized and F-receptive, and hence No; p(Q) < Ng
Hg, from Lemma 4.13. Thus

R< giPﬂNQ = Ngip(Q) SNQ HQ

and Sl(pp,)(N1) # 0. Now we have
SlRrpr)(N1) © Sl pr) (Ni) | SR pr) (SlQp)(M)) = ReS%ﬁmNQ(Sl(R,bR)(M))-

Thus Res%ﬁmNQ (Sl(rpp)(M)) is decomposable and ResggG(R)(Sl(R,bR)(M)) is
decomposable, by RCg(R) < Nr N Ng. If Q = R, then we see P = @ from
[4, Lemma 5] and Lemma 4.8. This is a contradiction. Hence @ g R holds
and we have that |P : Q| > |P : R|. By the induction hypothesis, the module
Res%ﬁmNQ (Sl(rpy)(M)) is indecomposable. Hence r = 1, and we have that

Sl(vaQ)(M) = Ny = Bg.
Ng

Hence, ResggG(Q)(Nl) is indecomposable, and ReSQCG(Q)(Sl(Q,bQ)(M)) is also
indecomposable, by our hypothesis, . O

The following lemma can be proved in a similar way as [9, Lemma 4.3].

Lemma 5.2. Let (P,bp) be a (G,b)-subpair, F := F(pp,)(G,b), and Q a fully
F-automized subgroup of P. If there exists Np(Q) < Hg < Ng(Q,bq) such
that ‘NG(Q’bQ) : HQ‘ = pa (CL > 0)7 then NG(QabQ) = CG(Q)HQ

The following proposition is a special analogy of [9, Theorem 1.4].

Proposition 5.3. Let (P,bp) be a (G,b)-subpair and Q a fully Fipp,)(G,b)-
normalized subgroup of P. Suppose that F = F(py,)(G,b) is saturated. More-
over, we assume that the following two conditions:

(i) INa(Q,bq) : Np(Q)] = p* (a = 0).

(i1) Resgg(GCg)Q)mNp(Q)(VQ) is indecomposable.

Then Resggfggf)(BQ) is indecomposable.
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Proof. We set Ng = N¢(Q,bg). Since F is saturated, @ is a fully F-automized
subgroup of P. From the Mackey formula, Lemma 5.2, and the condition (i),
we have
N, N, ~ T 1@Cc(Q) Np(Q)
Resgée My @) (Vo)) = Idoe g)ans ) (ReSacs (@nwe @ (Ve))-
Hence, ResggG ) (Ind%{f(Q)(VQ)) is indecomposable, by the condition (ii) and
Green’s indecomposability theorem, so

N, ~ N, N,
Resgé, ) (Ba) = Resgé ) (Indy? ) (V)

is indecomposable. O

The following corollary is a consequence of Theorem 5.1 and Proposition
5.3.

Corollary 5.4. Let (P,bp) be a (G,b)-subpair, B(b, (P,bp,V),Slpy,),S) a
Brauer-friendly OGb-module, and suppose that F(py,)(G,b) is saturated. If
for every fully F(pp,)(G,b)-normalized subgroup Q of P, the subgroup Np(Q)
and the module Vg satisfy the conditions of Proposition 5.3, then the module
B(b, (P,bp,V),Slpp,y,S) is slash indecomposable.

The following example is a generalization of [16, Lemma 2.2] to Brauer-
friendly modules.

Example 5.5. Let G be a p-group, (P,1¢c,(p)) a (G, 1g)-subpair, and sup-
pose that F = Fp(G) is saturated. Set M = BS(1g, (P, bp,V),Sl(p,ch(P))).

Np(Q) B
Moreover, we assume that ResQCG(Q)m Np(Q)(VQ) is indecomposable, for any

fully F-normalized subgroup @ of P. From Corollary 5.4, M is slash inde-
composable.
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