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Abstract. Zeta functions for linear codes were defined by I. Duursma in
1999. In the cases of genera less than three, S. Nishimura gave equivalent
conditions for their Riemann hypothesis. In this paper, using a new method,
we give similar equivalent conditions for the cases of genera three and four.
Our method can be applied to smaller genera and leads to an alternative simple
proofs of Nishimura’s theorems. Using these results, we examine the Riemann
hypothesis of some invariant polynomials. We also discuss the cases of genera
greater than four and propose some new problems.
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§1. Introduction

Zeta functions for linear codes were introduced by Iwan Duursma [7] in 1999
and they have attracted attention of many mathematicians:

Definition 1.1. Let C be an [n, k, d]-code over Fq (q = pr, p is a prime)
with the Hamming weight enumerator WC(x, y). Then there exists a unique
polynomial P (T ) ∈ R[T ] of degree at most n− d such that

(1.1)
P (T )

(1− T )(1− qT )
(y(1− T ) + xT )n = · · ·+ WC(x, y)− xn

q − 1
Tn−d + · · · .

We call P (T ) and Z(T ) = P (T )/(1− T )(1− qT ) the zeta polynomial and the
zeta function of WC(x, y), respectively.

Note that we always assume d, d⊥ ≥ 2 (d⊥ is the minimum distance of C⊥).
If C is self-dual, then P (T ) satisfies the functional equation (see [8, §2]):
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Theorem 1.2. If C is self-dual, then we have

(1.2) P (T ) = P
( 1

qT

)
qgT 2g,

where g = n/2 + 1− d.

The number g is called the genus of C. It is appropriate to formulate the
Riemann hypothesis as follows:

Definition 1.3. The code C satisfies the Riemann hypothesis if all the zeros
of P (T ) have the same absolute value 1/

√
q.

The reader is referred to [9] and [10] for other results by Duursma.

Remark. The definition of the zeta function can be extended straightforwardly
to much wider classes of invariant polynomials: let W (x, y) be a polynomial
of the form

(1.3) W (x, y) = xn +
n∑

i=d

Aix
n−iyi ∈ C[x, y] (Ad ̸= 0)

which satisfy W σq(x, y) = ±W (x, y) for some q ∈ R, q > 0, q ̸= 1, where

(1.4) σq =
1
√
q

(
1 q − 1
1 −1

)
(the MacWilliams transform)

and the action of σ =

(
a b
c d

)
on a polynomial f(x, y) ∈ C[x, y] is defined

by fσ(x, y) = f(ax + by, cx + dy). Then we can formulate the zeta function
and the Riemann hypothesis for W (x, y) in the same way as Definitions 1.1
and 1.3. For the results in this direction, the reader is referred to [2]–[6],
for example. We assume d, d⊥ ≥ 2 also in this case, where d⊥ is defined by
W σq(x, y) = B0x

n+Bd⊥x
n−d⊥yd

⊥
+ · · · where B0, Bd⊥ ̸= 0, when considering

the zeta function of W (x, y).

We call W (x, y) “σq-invariant” if we have W σq(x, y) = W (x, y). We do
not know much about the Riemann hypothesis for σq-invariant polynomials,
but one of the remarkable results is the following theorem by Nishimura [12,
Theorem 1], an equivalent condition for a σq-invariant polynomial of genus
one to satisfy the Riemann hypothesis:

Theorem 1.4 (Nishimura). A σq-invariant polynomial

W (x, y) = x2d +Adx
dyd + · · ·

satisfies the Riemann hypothesis if and only if

(1.5)

√
q − 1

√
q + 1

(
2d

d

)
≤ Ad ≤

√
q + 1

√
q − 1

(
2d

d

)
.
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Nishimura also deduces the following, the case of genus two ([12, Theorem
2]):

Theorem 1.5 (Nishimura). A σq-invariant polynomial W (x, y) = x2d+2 +
Adx

2d+2−dyd + · · · satisfies the Riemann hypothesis if and only if the both
roots of the quadratic polynomial

AdX
2 −

(
(d− q)Ad +

d+ 1

d+ 2
Ad+1

)
X − (d+ 1)(q + 1)

(
Ad +

Ad+1

d+ 2

)
(1.6)

+(q − 1)

(
2d+ 2

d

)
are contained in [−2

√
q, 2

√
q].

The purpose of this article is to establish analogous equivalent conditions
for the cases of genera three and four. Our main results are Theorems 3.1 and
3.3. Nishimura [12] uses (1.1) directly as well as a property of the binomial
moments (see [12, (3.1)]) to prove Theorems 1.4 and 1.5, which requires some
complicated calculations. In this paper, we use the relation between the zeta
polynomial and the MDS weight enumerators (see Theorem 2.3) instead of
(1.1) and the binomial moments. Our method also applies to smaller gen-
era and leads to alternative proofs of Nishimura’s theorems. The proofs are
considerably simplified and shortened.

By our theorems and the preceding results of Nishimura, we can verify the
truth of the Riemann hypothesis of W (x, y) by small number of coefficients
Ai: the number of parameters which are needed coincides with the genus g
(see [12]). For example, we need only three parameters Ad, Ad+1 and Ad+2

in the case of genus three. Moreover, in many cases, we have Ad+1 = 0 (and
Ad+2 = 0 also holds in some cases, see Example 4.5) and the verification of
the Riemann hypothesis is simplified.

Here we mention the famous problem by Duursma ([9, Open Problem 4.2]):

Problem 1.6 (Duursma). Prove or disprove that all extremal weight enumer-
ators satisfy the Riemann hypothesis.

An extremal weight enumerator is that of an “extremal code”, a self-dual
code over the finite fields F2, F3 or F4 which has maximal possible minimum
distance at a given code length n (see Definition 4.4 for detail). The extremal
property is also defined for σq-invariant polynomials in the preceding remark.

As an application of our main results, we examine the Riemann hypothesis
for some σq-invariant polynomials. First we consider some extremal ones. This
case includes an example of so-called “Type III extremal weight enumerators”,
examples of extremal σ4/3-invariant polynomials which were dealt with by
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the first named author [4], and an extremal σq-invariant polynomial for q =
6+2

√
5. The last one is another example of an extremal invariant polynomial

not satisfying the Riemann hypothesis (see also [5]). Next we examine a certain
sequence of σq-invariant polynomials, that is,

(1.7) Wm,q(x, y) = (x2 + (q − 1)y2)m (m ≥ 2)

as the numbers q and m vary. As was mentioned in Remark before, q can take
other numbers than prime powers. In this context, we can notice the tendency
that the Riemann hypothesis becomes harder to hold if q or degW (x, y) are
larger. Some of the results in [4] and [5] also support it. Theorems 3.1 and
3.3 can illustrate this tendency by considering (1.7).

Lastly, in synthesis of the contents of this paper, we give some remarks
and problems. It is desirable that the results will be generalized to genera
greater than four. The first step will be an explicit expression of P (T ) via the
coefficients Ai of W (x, y). It is predicted in Conjecture 6.2. We propose some
other problems related to the Riemann hypothesis of Wm,q(x, y).

The rest of the paper is organized as follows: in Section 2, we give some
notions and theorems which are needed in the later sections. In Section 3, we
give statements and proofs of our main results. We also give alternative proofs
of Nishimura’s theorems. In Section 4, we examine the Riemann hypothesis for
various invariant polynomials. Section 5 is devoted to the observation of the
behavior of Wm,q(x, y) of genus up to four. In the last section, we give some
remarks based on numerical experiments and propose some future problems,
including the case of g ≥ 5.

§2. Preliminaries

We begin this section by giving the definition of the MDS codes (MacWilliams-
Sloane [11, p. 317]) and some known results related to them.

Definition 2.1 (MDS code). Let C be an [n, k, d] code over Fq. We call C
an MDS code if

(2.1) d = n− k + 1

is satisfied.

Because of the relation (2.1), the weight enumerator of an MDS code is
determined by n and d, so it is often denoted by Mn,d(x, y). The weight
distribution is well known:
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Theorem 2.2. Let

Mn,d(x, y) = xn +
n∑

w=d

M (n,d)
w xn−wyw.

Then we have

(2.2) M (n,d)
w =

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)
(qw−d+1−j − 1).

Proof. MacWilliams-Sloane [11, Ch. 11, Theorem 6].

We can generalize and use (2.2) to the case where q ∈ R, q > 0 and q ̸= 1. As
to the zeta function for a polynomial of the form (1.3), the following theorem
is fundamental for our later discussion:

Theorem 2.3. Let W (x, y) be a polynomial of the form (1.3) and

P (T ) = a0 + a1T + · · ·+ arT
r

be the zeta polynomial of W (x, y). Then we have

(2.3) W (x, y) = a0Mn,d(x, y) + a1Mn,d+1(x, y) + · · ·+ arMn,d+r(x, y).

Proof. Duursma [8, p.59, (5)].

Remark. As is shown in [8], Theorem 2.3 is also valid for W (x, y) which is not
invariant under σq.

If W (x, y) is of the form (1.3), σq-invariant and of genus g, the zeta poly-
nomial P (T ) of W (x, y) can be written as

P (T ) = a0 + a1T + · · ·+ a2gT
2g

(see [8, p.59, (6)]). By the functional equation (1.2), we can deduce

P (T ) = a0 + a1T + · · ·+ agT
g(2.4)

+ ag−1qT
g+1 + · · ·+ a1q

g−1T 2g−1 + a0q
gT 2g.

Moreover, we have

(2.5) ag = 1− (1 + qg)a0 − (1 + qg−1)a1 − · · · − (1 + q)ag−1

since P (1) = 1 ([8, p.59, (7)]). It follows that P (T ) is determined by g
parameters a0, a1 · · · , ag−1. We also have a factorization

(2.6) P (T ) = a0q
g

g∏
i=1

(T 2 + biT + 1/q)
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(bi ∈ R) since degP (T ) is even (essentially the same but a little different form
is used in [8, p.60, (10)]). The case g = 2 is used in [12, p.2356].

Lastly we introduce notations expressing the elementary symmetric poly-
nomials. For 1 ≤ k ≤ n, let

ek(X1, X2, · · · , Xn) =
∑

1≤j1<j2<···<jk≤n

Xj1Xj2 · · ·Xjk

(we usually define e0(X1, X2, · · · , Xn) = 1, but we do not need the case k = 0).
Later we use the cases where n = 3, 4 and Xj = bj in connection to the
expansion of the right hand side of (2.6), so we further define

e
(n)
k = ek(b1, b2, · · · , bn).

For example,

e
(3)
1 = b1 + b2 + b3,

e
(3)
2 = b1b2 + b2b3 + b3b1,

e
(3)
3 = b1b2b3.

§3. Main theorems

First we consider the case of genus three. In this case, we have n = 2d+ 4 by
g = n/2 + 1− d = 3 and degP (T ) = 2g = 6. We prove the following:

Theorem 3.1. A σq-invariant polynomial W (x, y) = x2d+4 + Adx
d+4yd +

· · · satisfies the Riemann hypothesis if and only if all the roots of the cubic
polynomial

(3.1) f3X
3 + f2X

2 + f1X + f0

are contained in [−2
√
q, 2

√
q], where fi is defined as follows.

f3 = Ad,

f2 = (q − d)Ad −
d+ 1

d+ 4
Ad+1,

f1 =
1

2
(d2 − 2qd+ d− 6q)Ad + (d− q + 1)

d+ 1

d+ 4
Ad+1 +

(d+ 1)(d+ 2)

(d+ 3)(d+ 4)
Ad+2,

f0 =
1

2
(q + 1)(d2 + 3d− 4q + 2)Ad + (q + 1)(d+ 1)(d+ 2)

Ad+1

d+ 4

+ (q + 1)
(d+ 1)(d+ 2)

(d+ 3)(d+ 4)
Ad+2 − (q − 1)

(
2d+ 4

d+ 4

)
.
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Proof. We have

(3.2) P (T ) = a0 + a1T + a2T
2 + a3T

3 + a2qT
4 + a1q

2T 5 + a0q
3T 6

and

(3.3) a3 = 1− (1 + q3)a0 − (1 + q2)a1 − (1 + q)a2

(see (2.4) and (2.5)). The identity (2.6) becomes

(3.4) P (T ) = a0q
3

3∏
i=1

(T 2 + biT + 1/q).

Suppose we expand the right hand side of (3.4) and then compare the coeffi-
cients in (3.2) and (3.4). Then we get

e
(3)
1 = a1/a0q,

e
(3)
2 = (a2 − 3a0q)/a0q

2,(3.5)

e
(3)
3 = (a3 − 2a1q)/a0q

3.

We can see that bi are the roots of the cubic polynomial

(3.6) a0q
3X3 − a1q

2X2 + (a2 − 3a0q)qX − a3 + 2a1q.

Considering the distribution of the roots of each factor T 2 + biT + 1/q in
(3.4), we can see that a self-dual weight enumerator W (x, y) of genus three
satisfies the Riemann hypothesis if and only if b1, b2 and b3 are contained in
[−2/

√
q, 2/

√
q]. By change of variable in (3.6), we get the following:

Lemma 3.2. W (x, y) satisfies the Riemann hypothesis if and only if all the
roots of the polynomial

(3.7) a0X
3 − a1X

2 + (a2 − 3a0q)X − a3 + 2a1q

are contained in [−2
√
q, 2

√
q].

Our next task is to express the coefficients ai in (3.7) by way of Ai in
W (x, y). Note that we need a0, a1, a2 only (a3 is determined by (3.3)). By
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Theorem 2.3, we have

W (x, y) = a0Mn,d(x, y) + a1Mn,d+1(x, y) + a2Mn,d+2(x, y) + · · ·

= a0(x
n +

n∑
w=d

M (n,d)
w xn−wyw)

+ a1(x
n +

n∑
w=d+1

M (n,d+1)
w xn−wyw)

+ a2(x
n +

n∑
w=d+2

M (n,d+2)
w xn−wyw)

+ · · ·

= xn + a0M
(n,d)
d xn−dyd + a0M

(n,d)
d+1 x

n−d−1yd+1 + a0M
(n,d)
d+2 x

n−d−2yd+2

+ · · ·

+ a1M
(n,d+1)
d+1 xn−d−1yd+1 + a1M

(n,d+1)
d+2 xn−d−2yd+2

+ · · ·

+ a2M
(n,d+2)
d+2 xn−d−2yd+2

+ · · ·

On the other hand we have

W (x, y) = xn +Adx
n−dyd +Ad+1x

n−d−1yd+1 +Ad+2x
n−d−2yd+2 + · · · .

Comparing the coefficients of xn−dyd, xn−d−1yd+1 and xn−d−2yd+2, we get the
following system of linear equations of a0, a1, a2:

a0M
(n,d)
d = Ad,(3.8)

a0M
(n,d)
d+1 + a1M

(n,d+1)
d+1 = Ad+1,

a0M
(n,d)
d+2 + a1M

(n,d+1)
d+2 + a2M

(n,d+2)
d+2 = Ad+2.

By Theorem 2.2, we have M
(n,d+i)
d+i =

(
n

d+i

)
(q − 1) ̸= 0, so the solution of the
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system (3.8) is given by

a0 =
1

M
(n,d)
d

Ad,(3.9)

a1 = −
M

(n,d)
d+1

M
(n,d)
d M

(n,d+1)
d+1

Ad +
1

M
(n,d+1)
d+1

Ad+1,

a2 =
1

M
(n,d)
d M

(n,d+2)
d+2

(
M

(n,d)
d+1 M

(n,d+1)
d+2

M
(n,d+1)
d+1

−M
(n,d)
d+2

)
Ad

−
M

(n,d+1)
d+2

M
(n,d+1)
d+1 M

(n,d+2)
d+2

Ad+1 +
1

M
(n,d+2)
d+2

Ad+2.

These expressions seem very complicated, but Theorem 2.2 simplifies them as
follows:

a0 =
1

q − 1
· 1(

n
d

)Ad,

a1 =
1

q − 1

(
d− q(

n
d

) Ad +
1(
n

d+1

)Ad+1

)
,(3.10)

a2 =
1

q − 1

(
d(d+ 1− 2q)

2
(
n
d

) Ad +
d+ 1− q(

n
d+1

) Ad+1 +
1(
n

d+2

)Ad+2

)
.

We obtain the theorem by combining (3.10), (3.3) and Lemma 3.2.

Now we proceed to the case of genus four. In this case, we have n = 2d+6
by g = n/2 + 1− d = 4 and degP (T ) = 2g = 8. The result is the following:

Theorem 3.3. A σq-invariant polynomial W (x, y) = x2d+6 +Adx
d+6yd + · · ·

satisfies the Riemann hypothesis if and only if all the roots of the polynomial

(3.11) a0X
4 − a1X

3 + (a2 − 4a0q)X
2 − (a3 − 3a1q)X + a4 − 2a2q + 2a0q

2

are contained in [−2
√
q, 2

√
q], where a0, a1, a2 are the same as (3.10), a3 is

given by

a3 =
1

q − 1

(
d(d+ 1)(d+ 2− 3q)

6
(
n
d

) Ad(3.12)

+
(d+ 1)(d+ 2− 2q)

2
(

n
d+1

) Ad+1 +
d+ 2− q(

n
d+2

) Ad+2 +
1(
n

d+3

)Ad+3

)
and a4 is given by

(3.13) a4 = 1− (1 + q4)a0 − (1 + q3)a1 − (1 + q2)a2 − (1 + q)a3.
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Proof. The proof is similar to that of Theorem 3.1. We give an outline. The
zeta polynomial is

P (T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a3qT

5(3.14)

+ a2q
2T 6 + a1q

3T 7 + a0q
4T 8

and we have (3.13) by (2.4) and (2.5). The identity (2.6) becomes

(3.15) P (T ) = a0q
4

4∏
i=1

(T 2 + biT + 1/q).

Instead of (3.5) we get

e
(4)
1 = a1/a0q,

e
(4)
2 = (a2 − 4a0q)/a0q

2,

e
(4)
3 = (a3 − 3a1q)/a0q

3.

e
(4)
4 = (a4 − 2a2q + 2a0q

2)/a0q
4.

Using these, we can verify in a similar manner to Lemma 3.2 thatW (x, y) sat-
isfies the Riemann hypothesis if and only if all the roots of (3.11) are contained
in [−2

√
q, 2

√
q]. The relation between a0, a1, a2, a3 and Ad, Ad+1, Ad+2, Ad+3

are given by four equations

i∑
j=0

ajM
(n,d+j)
d+i = Ad+i (i = 0, 1, 2, 3).

Note that the equations for i = 0, 1, 2 coincide with (3.8), so a0, a1, a2 are
given by (3.10). For the coefficient a3, a direct calculation brings (3.12).

As was mentioned in the first section, our method also applies to the cases
of g = 1, 2 and simplifies the proof. Here we give an outline of it:

(Alternative proof of Theorem 1.4) Note that n = 2d by g = 1 = n/2−
d + 1. We have P (T ) = a0 + (1 − (1 + q)a0)T + a0qT

2 by (2.4) and (2.5).
Thus, P (T ) itself is a quadratic polynomial, so we can omit the process which
requires (2.6). It is easy to see that both roots of P (T ) are on the circle
|T | = 1/

√
q if and only if (1− (1 + q)a0)

2 − 4a0
2q ≤ 0. It is equivalent to

(
√
q − 1)2

(q − 1)2
≤ a0 ≤

(
√
q + 1)2

(q − 1)2
.
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Using Theorem 2.3 (instead of (1.1) and the binomial moment), we have

W (x, y) = a0Mn,d(x, y) + a1Mn,d+1(x, y) + a0qMn,d+2(x, y)

= xn + a0M
(n,d)
d xn−dyd + · · ·

= xn +Adx
n−dyd + · · · .

The parameter a0 is determined by the coefficient of xn−dyd as

a0 =
Ad

M
(n,d)
d

=
Ad

(q − 1)
(
n
d

) =
Ad

(q − 1)
(
2d
d

) .
This immediately implies (1.5) under the condition q > 1.

(Alternative proof of Theorem 1.5) Note that n = 2d + 2 by g = 2 =
n/2− d+1. We have P (T ) = a0+ a1T + a2T

2+ a1qT
3+ a0q

2T 4 by (2.4). We
also have a2 = 1− (1 + q2)a0 − (1 + q)a1 by (2.5). The identity (2.6) becomes

(3.16) P (T ) = a0q
2(T 2 + b1T + 1/q)(T 2 + b2T + 1/q).

Similarly to our main theorems, we have

e
(2)
1 = b1 + b2 = a1/a0q,

e
(2)
2 = b1b2 = (a2 − 2a0q)/a0q

2.

Hence we can see that the Riemann hypothesis is true if and only if both roots
of the polynomial

(3.17) a0X
2 − a1X + a2 − 2a0q

are contained in the interval [−2
√
q, 2

√
q]. We must express a0 and a1 by Ad

and Ad+1. This can be done by using Theorem 2.3, rather than (1.1) and the
binomial moment. We have

W (x, y) = a0Mn,d(x, y) + a1Mn,d+1(x, y) + a2Mn,d+2(x, y)

+ a1qMn,d+3(x, y) + a0q
2Mn,d+4(x, y)

= xn + a0M
(n,d)
d xn−dyd + (a0M

(n,d)
d+1 + a1M

(n,d+1)
d+1 )xn−d−1yd+1

+ · · ·
= xn +Adx

n−dyd +Ad+1x
n−d−1yd+1 + · · · .

Comparing the coefficients, we get a system of linear equations

Ad = a0M
(n,d)
d ,

Ad+1 = a0M
(n,d)
d+1 + a1M

(n,d+1)
d+1
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which gives (note that n = 2d+ 2)

a0 =
Ad

M
(n,d)
d

=
1

q − 1
· 1(

2d+2
d

)Ad,

a1 =
1

M
(n,d+1)
d+1

(
−
M

(n,d)
d+1

M
(n,d)
d

Ad +Ad+1

)

=
1

q − 1

(
d− q(
2d+2
d

)Ad +
1(

2d+2
d+1

)Ad+1

)
.

These values enable us to describe the polynomial (3.17) explicitly and we can
obtain Theorem 1.5.

§4. Extremal divisible polynomials

First we review some basic facts on the extremal divisible σq-invariant poly-
nomials.

Definition 4.1. A polynomial W (x, y) in the form (1.3) is called “divisible
by c” (c ∈ N, c > 1) if

Ai ̸= 0 ⇒ c|i (d ≤ i ≤ n)

is satisfied.

In the case of existing self-dual codes, the following theorem is well-known
(see [15]):

Theorem 4.2 (Gleason-Pierce). Suppose a self-dual code over Fq is divisible
by c > 1, that is, the weight of any codeword is divisible by c. Then, (q, c)
must be one of the following:

(q, c) = (2, 2), (2, 4), (3, 3), (4, 2)

or q is arbitrary and c = 2.

The cases (q, c) = (2, 2), (2, 4), (3, 3) and (4, 2) are called “Types I, II, III
and IV”, respectively. The Mallows-Sloane bound is a set of inequalities which
bound the minimum distance d by the code length n for these types (see [10,
Theorem 3]):
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Theorem 4.3 (Mallows-Sloane bound). We have the following upper bounds
for the minimum distance d by the code length n:

(Type I) d ≤ 2
[n
8

]
+ 2,

(Type II) d ≤ 4
[ n
24

]
+ 4,

(Type III) d ≤ 3
[ n
12

]
+ 3,

(Type IV) d ≤ 2
[n
6

]
+ 2,

where [x] means the largest integer not exceeding x.

Now we can define the notion of the extremal codes and the extremal weight
enumerators:

Definition 4.4. Among the codes of Types I through IV, the codes which attain
the equality in Theorem 4.3 are called extremal codes. Weight enumerators of
extremal codes are called extremal weight enumerators.

Problem 1.6 is solved affirmatively only for two sequences of Type IV ex-
tremal weight enumerators (see [10] for one sequence, the code length is of the
form 6k (k ∈ N), see [13] for the other sequence, that is of the form 6k − 2).
It is not solved for other cases (Types I through III and the code length 6k+2
of Type IV), but no counterexample is known so far.

Our first example is the following:

Example 4.5. The extremal Type III weight enumerator of degree 16:

W (x, y) = x16 + 224x10y6 + 2720x7y9 + 3360x4y12 + 256xy15.

It is obtained by calculating (4W4(x, y)W12(x, y)−W4(x, y)
4)/3, where

W4(x, y) = x4 + 8xy3,

W12(x, y) = x12 + 264x6y6 + 440x3y9 + 24y12.

They are the generators of the ring of Type III weight enumerators (see [14,
p.137]). The polynomialW (x, y) is of genus three and we have Ad = A6 = 224,
Ad+1 = Ad+2 = 0, so the calculation is simplified a lot. By Theorem 3.1, we
have f3 = 224, f2 = −672, f1 = −1344, f0 = 3696. Let

g(X) = 2X3 − 6X2 − 12X + 33.

Then the polynomial (3.1) becomes 112g(X). We can easily verify

g(−2
√
3) = −39− 24

√
3 < 0,

g(0) = 33 > 0, g(3) = −3 < 0,

g(2
√
3) = −39 + 24

√
3 > 0.
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So, all the roots of g(X) are in the interval [−2
√
3, 2

√
3], and the Riemann

hypothesis is true.

Divisibility and the extremal property are extended similarly to other σq-
invariant polynomials. Among them, we next consider σ4/3-invariant poly-
nomials. This family of polynomials was discovered by [4] and an analog of
the Mallows-Sloane bound is proved in [6, Theorem 4.2 (i)]. A σ4/3-invariant
polynomial of the form (1.3) is extremal if d = 2[n/12] + 2. There are two
extremal σ4/3-invariant polynomials of genus three: the cases (n, d) = (8, 2)
and (12, 4).

Example 4.6. The σ4/3-invariant polynomials can be constructed by two

generators W2,4/3(x, y) and φ6(x, y)
2 where

W2,4/3(x, y) = x2 +
1

3
y2,

φ6(x, y) = x6 − 5x4y2 +
5

3
x2y4 − 1

27
y6

(see [6, Section 4]).

(i) The case (n, d) = (8, 2).

The extremal polynomial is given by W2,4/3(x, y)
4 = x8 + (4/3)x6y2 +

(2/3)x4y4 + · · · . We have Ad = A2 = 4/3, Ad+1 = 0, and Ad+2 = A4 = 2/3.
Theorem 3.1 tells us that the polynomial (3.1) becomes (4/3)g(X), where

g(X) = X3 − 2

3
X2 − 52

15
X +

56

45
.

We can see that

g(−2) = −112

45
< 0,

g(0) =
56

45
> 0, g(1) = −17

9
< 0,

g(2
√

4/3) =
1

45
(112

√
3− 104) > 0.

So, all the roots of g(X) are in the interval [−2
√

4/3, 2
√

4/3], and the Riemann
hypothesis is true.

(ii) The case (n, d) = (12, 4).

The extremal polynomial is given by

1

6
(5W2,4/3(x, y)

6 + φ6(x, y)
2) = x12 +

55

9
x8y4 − 176

81
x6y6 + · · ·
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(see also [6, Example 4.7]). We have Ad = A4 = 55/9, Ad+1 = 0 and Ad+2 =
A6 = −176/81. The polynomial (3.1) becomes (55/9)g(X), where

g(X) = X3 − 8

3
X2 +

10

21
X +

4

3
.

We can see that

g(−1) = −59

21
< 0, g(0) =

4

3
> 0, g(2) = − 8

21
< 0,

g(2
√

4/3) =
4

63
(122

√
3− 203) > 0.

So, all the roots of g(X) are in the interval [−2
√
4/3, 2

√
4/3], and the Riemann

hypothesis is true.

Remark. By using the analog of Okuda’s theorem (see [6, Theorem 4.6]) and
the above example (ii), we can see that W2,4/3(x, y)

5, the extremal σ4/3-
invariant polynomial of degree 10 also satisfies the Riemann hypothesis.

Lastly, we take an example from [5], an extremal σq-invariant polynomial
for q = 6 + 2

√
5. An analog of the Mallows-Sloane bound is established for

σ6+2
√
5 -invariant polynomials of even degree (see [5, Theorem 2.4]). A σ6+2

√
5 -

invariant polynomial of the form (1.3) with even n is extremal if d = 2[n/10]+2.
In [5], two extremal polynomials are considered and it proved that the Riemann
hypothesis fails to hold for them (see [5, Section 3]). These are, an a wide sense,
the first counterexamples of Problem 1.6. Here is another such example:

Example 4.7. The extremal σ6+2
√
5 -invariant polynomial of genus three ex-

ists for (n, d) = (12, 4), which is

1

25
(19W6+2

√
5,2(x, y)

6 + 6W6+2
√
5,2(x, y)ψ5(x, y)

2)

= x12 + (1485 + 660
√
5)x8y4 + (7480 + 3344

√
5)x6y6 + · · · ,

where

W6+2
√
5,2(x, y) = x2 + (5 + 2

√
5)y2,

ψ5(x, y) = x5 − (50 + 20
√
5)x3y2 + (225 + 100

√
5)xy4

(see [5, (2.1) and (2.2)]). We have Ad = A4 = 1485 + 660
√
5, Ad+1 = 0 and

Ad+2 = A6 = 7480 + 3344
√
5. The polynomial (3.1) becomes 165g(X), where

g(X) = 9X3 + (58 + 26
√
5)X2 − 1

7
(3806 + 1702

√
5)X − 1

7
(2432 + 1088

√
5).

This polynomial has a root outside the interval [−2(1 +
√
5), 2(1 +

√
5)] (note

that (1 +
√
5)2 = 6 + 2

√
5) because g(−20) < 0 and g(−19) > 0. Thus the

Riemann hypothesis does not hold.
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§5. The sequence of the polynomials (1.7)

We examine the polynomials (1.7), which has essentially only one parameter
q and is easy to see the phenomenon. Using Nishimura’s results (g = 1, 2) and
our theorem (g = 3, 4), we can see that the range of q for which the Riemann
hypothesis is true are the following (we will mention the case g = 4 later):

g = 1 : 4− 2
√
3 (≈ 0.53590) ≤ q ≤ 4 + 2

√
3 (≈ 7.46410) (q ̸= 1),

g = 2 : −4 + 2
√
5 (≈ 0.47214) ≤ q ≤ α2 (≈ 3.46812) (q ̸= 1),

where

α =
1

6

(
1 +

3

√
5(29 + 6

√
6) +

3

√
5(29− 6

√
6)

)
,

and

(5.1) g = 3 : β1 (≈ 0.47448) ≤ q ≤ β23 (≈ 2.47607) (q ̸= 1),

where β1 is the unique real root of the polynomial

100t5 + 495t4 + 2056t3 − 2928t2 + 1408t− 256

and β3 is the positive root of the polynomial

13t4 + 4t3 − 20t2 − 24t− 8.

The cases g = 1 and 2 are not very complicated, but the last case needs some
explanation. The relevant coefficients of W4,q(x, y) are

Ad = A2 = 4(q − 1), A3 = 0, A4 = 6(q − 1)2.

Using these values, we get the explicit form of the polynomial (3.1) as follows:

(5.2) g(X) := 5X3 + 5(q − 2)X2 − 2(11q − 6)X − 7q2 + 20q − 8.

Let Dg be the discriminant of g(X), X1 and X2 be the roots of g′(X) (we
assume X1, X2 are real and X1 ≤ X2). Then, by Theorem 3.1, W4,q(x, y)
satisfies the Riemann hypothesis if and only if

Dg ≥ 0,

−2
√
q ≤ X1, X2 ≤ 2

√
q,

g(−2
√
q) ≤ 0, g(2

√
q) ≥ 0.

We have

Dg

35
= 100q5 + 495q4 + 2056q3 − 2928q2 + 1408q − 256,
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so Dg ≥ 0 is equivalent to

(5.3) q ≥ β1

with the above mentioned β1. The roots Xi are given by

X1 =
−5(q − 2)−

√
25q2 + 230q − 80

15
,

X2 =
−5(q − 2) +

√
25q2 + 230q − 80

15
.

The range of q satisfying −2
√
q ≤ X1 is (note that we also have 25q2+230q−

80 ≥ 0)

(5.4)

√
609− 23

5
≤ q ≤ β2,

where β2 is the square of the unique real root of the polynomial

(5.5) 10t3 − 19t2 − 20t− 6

(this polynomial comes from the equation −2
√
q = X1). The explicit value is

β2 =
1

300

(
761 +

3

√
386669681 + 396000

√
17318

+
3

√
386669681− 396000

√
17318

)
(β2 ≈ 7.38366, this expression of β2 can be obtained by constructing the cubic
polynomial having the squares of roots of (5.5) as its roots: 100t3 − 761t2 +
172t−36). The inequality X2 ≤ 2

√
q gives (

√
609−23)/5 ≤ q. Finally, putting√

q = t, we have

g(−2
√
q) = 13t4 + 4t3 − 20t2 − 24t− 8,

g(2
√
q) = 13t4 − 4t3 − 20t2 + 24t− 8.

The inequalities g(−2
√
q) ≤ 0 and g(2

√
q) ≥ 0 give

(5.6) 0 ≤ q ≤ β23 and q ≥ β24 ≈ 0.356397,

respectively. Gathering the inequalities (5.3), (5.4) and (5.6), we obtain the
estimate (5.1).

The polynomial Wm,q(x, y) is of genus four when m = 5:

W5,q(x, y) = (x2 + (q − 1)y2)5

= x10 + 5(q − 1)x8y2 + 10(q − 1)2x6y4 + · · · .
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The relevant coefficients are

Ad = A2 = 5(q − 1),

Ad+1 = A3 = 0, Ad+3 = A5 = 0,

Ad+2 = A4 = 10(q − 1)2.

The polynomial (3.11), multiplied by 63, becomes

g(X) = 7X4 + 7(q − 2)X3 + 3(6− 13q)X2 − (18q2 − 48q + 16)X(5.7)

+ 27q2 − 28q + 8.

It is difficult to obtain exact theoretical values of q for which the Riemann
hypothesis of W5,q(x, y) is true, but some numerical experiments suggest that
it should be true for q1 ≤ q ≤ q2 where q1 ≈ 0.4929 and q2 ≈ 2.0436. We can
predict that the range of q is smaller than the case of g = 3.

Example 5.1. The case g = 4 and q = 2:

W5,2(x, y) = (x2 + y2)5

= x10 + 5x8y2 + 10x6y4 + 10x4y6 + 5x2y8 + y10.

It expresses the weight distribution of an existing code: the direct sum code
C⊕C⊕C⊕C⊕C where C = {00, 11}. We have Ad = A2 = 5, Ad+1 = A3 = 0,
Ad+2 = A4 = 10, Ad+3 = A5 = 0 and a0 = 1/9, a1 = 0, a2 = −4/63, a3 =
−8/63, a4 = −12/63. The equivalent condition for the Riemann hypothesis of
W5,2(x, y) is that all the roots of g(X) = 7X4−60X2−8X+60 are contained
in the interval [−2

√
2, 2

√
2]. We can easily see that

g(−2
√
2) = 28 + 16

√
2 > 0, g(−2) = −52 < 0,

g(0) = 60 > 0, g(2) = −84 < 0,

g(2
√
2) = 28− 16

√
2 > 0

and that W5,2(x, y) satisfies the Riemann hypothesis. Note that W5,2(x, y) is
not extremal at this degree (the extremal σ2-invariant polynomial of degree
ten is x10 + 15x6y4 + 15x4y6 + y10). The polynomial W5,2(x, y) is one of
rare examples of weight enumerators which are not extremal but satisfy the
Riemann hypothesis.

§6. Some remarks and problems

In this section, we give some observations and future problems.
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We can see from the results of the previous sections that the range of
q for which the Riemann hypothesis is true becomes smaller as degW (x, y)
becomes larger. We show some results of numerical experiment forWm,q(x, y).
In the following table, “RH true” means the range of m where the Riemann
hypothesis for Wm,q(x, y) seems to be true:

q RH true

2 2 ≤ m ≤ 5

3
2 2 ≤ m ≤ 8

11
10 2 ≤ m ≤ 36

21
20 2 ≤ m ≤ 71

4
5 2 ≤ m ≤ 29

1
2 2 ≤ m ≤ 5

These numerical examples also support the above observation. We propose
the following problem:

Conjecture 6.1. For any m ≥ 2, there exists q (q ≈ 1) and Wm,q(x, y)
satisfies the Riemann hypothesis.

Another observation is on the formulas which express P (T ) via Ai such as
(3.10) and (3.12). We can conjecture the following:

Conjecture 6.2. Let W (x, y) be a σq-invariant polynomial of the form (1.3)
and of genus g (g ∈ N). We suppose that the zeta polynomial of W (x, y) is of
the form (2.4). Then we have

a0 =
1

q − 1
· 1(

n
d

)Ad

and for 1 ≤ k ≤ g − 1, ak is given by

ak =
1

q − 1

(
(d)k−1(d+ k − 1− kq)

k!
(
n
d

) Ad(6.1)

+
(d+ 1)k−2(d+ k − 1− (k − 1)q)

(k − 1)!
(

n
d+1

) Ad+1 + · · ·

+
(d+ k − 1)0(d+ k − 1− 1 · q)

1!
(

n
d+k−1

) Ad+k−1 +
1(
n

d+k

)Ad+k

)
,

where (a)j = a(a+ 1)(a+ 2) · · · (a+ j − 1) if j > 0 and (a)0 = 1.
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If it is true, we will be able to prove that W6,q(x, y) (g = 5) satisfies the
Riemann hypothesis if and only if all the roots of the polynomial

21X5 + 21(q − 2)X4 − 7(20q − 8)X3 − 7(11q2 − 28q + 8)X2

+ (187q2 − 164q + 40)X + 33q3 − 110q2 + 72q − 16

are contained in [−2
√
q, 2

√
q]. Some numerical experiments suggest that the

equivalent condition will be q3 ≤ q ≤ q4, where q4 ≈ 1.8045 and q3 exists in
the interval (0.515, 0.516). The range of q seems to be smaller than the case
g = 4.

In the case of q = 2, We have long noticed, at least numerically, that
Wm,2(x, y) = (x2 + y2)m seems to satisfy the Riemann hypothesis only when
m = 2, 3, 4, 5 (see [1]), but we have not known the reason. The calculation of
this article may suggest a partial reason for this phenomenon. We conclude
the article with the following problem:

Conjecture 6.3. The σ2-invariant polynomial Wm,2(x, y) = (x2 + y2)m sat-
isfies the Riemann hypothesis if and only if m = 2, 3, 4, 5.
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