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Abstract. The marginal homogeneity (MH) model is well-known for analyz-
ing ordinal square contingency tables. This study proposes a non-inferiority
marginal symmetry (NiMS) model, which has a different marginal symmetry
structure than the MH model. In the NiMS model, the probability of an ob-
servation falling in row category i or below and column category i or above is
equal to the probability of an observation falling in row category i or above
and column category i or below. Additionally, two kinds of extended NiMS
models are proposed. These extended NiMS models constantly hold when the
NiMS model holds. However, the converse is not necessarily true. This study
examines what a model should be necessary, in addition to the extended NiMS
model, to satisfy the NiMS model.
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§1. Introduction

Typically, the statistical independence does not hold between row and col-
umn variables in an r× r ordinal square contingency table with the same row
and column classifications. Because observations tend to concentrate on the
main diagonal cells, the symmetry or asymmetry between the row and column
variables tends to be of more interest than the independence. Many models
have been proposed to examine the symmetry or asymmetry. Examples of
models focusing on the symmetry include the symmetry (S) model (Bowker,
1948), the quasi-symmetry model (Caussinus, 1965), and the marginal ho-
mogeneity (MH) model (Stuart, 1955). On the other hand, the conditional
symmetry (CS) model (McCullagh, 1978), the extended marginal homogene-
ity (EMH) model (Tomizawa, 1984), and the diagonals-parameter symmetry
model (Goodman, 1979) consider the asymmetry.
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Let pij denote the probability that an observation will fall in the ith row
and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). Let X and Y denote
the row and column variables, respectively. The S model is defined by

pij = pji (i = 1, . . . , r; j = 1, . . . , r).

The S model indicates that the symmetric structure of the cell probabilities
{pij} with respect to the main diagonal of the table.

The CS model is an extension of the S model with an asymmetric structure
and is defined by

pij = ∆pji (1 ≤ i < j ≤ r).

The CS model indicates that the probability that X is i and Y is j, for i < j,
is ∆ times higher than the probability that X is j and Y is i. When ∆ = 1,
the CS model is equivalent to the S model. The CS model constantly holds
when the S model holds. However, the converse is not necessarily true. Read
(1977) considered the global symmetry (GS) model defined by∑∑

i<j

pij =
∑∑

i>j

pij ,

and gave the decomposition that the S model holds if and only if both the CS
and GS models hold.

The MH model is defined by

pi· = p·i (i = 1, . . . , r),

where pi· =
∑r

k=1 pik and p·i =
∑r

k=1 pki. The MH model indicates that the
marginal distribution of the row variable is identical to the marginal distribu-
tion of the column variable. When r = 2, the MH model is equivalent to the
S model. For ordinal square contingency tables, the MH model can also be
expressed as

G1(i) = G2(i) (i = 1, . . . , r − 1),

where

G1(i) = Pr(X ≤ i, Y ≥ i+ 1), G2(i) = Pr(X ≥ i+ 1, Y ≤ i).

This indicates that the probability that X is i or below and Y is i + 1 or
above equals to the probability that X is i + 1 or above and Y is i or below
for i = 1, . . . , r − 1.

Many authors have proposed extensions of the MH model. Examples
include Agresti (1984, Sec 11.1), Iki, Tahata, and Tomizawa (2010), Ya-
mamoto, Shinoda, and Tomizawa (2011), and Saigusa, Maruyama, Tahata,
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and Tomizawa (2018). For example, Tomizawa (1984) defined the EMH model
as

G1(i) = ∆G2(i) (i = 1, . . . , r − 1).

The EMH model indicates that the probability that X is i or below and Y
is i + 1 or above is ∆ times higher than the probability that X is i + 1 or
above and Y is i or below for i = 1, . . . , r− 1. The EMH model with ∆ = 1 is
equivalent to the MH model. The EMH model constantly holds when the MH
model holds. However, the converse is not necessarily true. Tomizawa (1991)
considered the marginal mean equality (ME) model defined by E(X) = E(Y ),
where E(X) =

∑r
i=1 ipi· and E(Y ) =

∑r
i=1 ip·i, and gave the decomposition

that the MH model holds if and only if both the EMH and ME models hold.

Tomizawa (1995) proposed the generalized marginal homogeneity (GMH)
model, which is defined as

G1(i) = ∆Φi−1 G2(i) (i = 1, . . . , r − 1).

The GMH models with Φ = 1 and ∆ = Φ = 1 are equivalent to the EMH and
MH models, respectively.

The MH model and its extensions are often used to analyze agreement/
disagreement between ratings of paired evaluations (e.g., assessment of pre-
post treatment for drug efficacy/safety or evaluation of right and left eye vision
grade). The EMH and GMH models can analyze which paired rating is better.

In this study, we focus on the situation where the treatment is effective
even if the rating is unchanged within a subject. For example, we consider the
quality of life (QoL) data taken from Clark (2019). These data were collected
in a pressure ulcer prevention study on spinal cord injuries (SCIs). Table 1 is
the data of shifts in the RAND 36-Item Health Survey (SF-36) general health
subscale score taken 12 months from the baseline in patients with SCIs who
received the intervention.

As Carlson et al. (2019) mentioned, medically serious pressure injuries
(MSPrIs) are common complication of SCIs. They have devastating conse-
quences on health and well-being and are extremely expensive to treat. There-
fore, an assessment of the maintenance or improvement of patient’s QoL is
meaningful to evaluate the effectiveness of an intervention.

For such data (Table 1), a comparison of the post- and pre-treatment status
is of interest. The EMH and GMH models can consider whether the post-
treatment status is better than the pre-treatment one. However, they do
not consider whether the post-treatment status is the same as or better than
the pre-treatment one. To tackle this issue, this study proposes new models.
Moreover, this study gives decompositions of new models.
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The remainder of this paper is organized as follows. Section 2 proposes
new models. Section 3 gives their decompositions. Section 4 describes the
goodness-of-fit test. Section 5 shows examples by applying the new models to
real data from clinical studies. Section 6 and Section 7 present the discussion
and concluding remarks, respectively.

§2. Non-inferiority marginal symmetry model

In this section, we propose three kinds of new models, which can easily in-
terpret situations where the treatment is meaningful even if the rating is un-
changed/maintained within a subject.

First, we propose the non-inferiority marginal symmetry (NiMS) model,
which is defined by

W1(i) =W2(i) (i = 1, . . . , r),

where

W1(i) = Pr(X ≤ i, Y ≥ i), W2(i) = Pr(X ≥ i, Y ≤ i).

The NiMS model indicates that the probability that X is i or below and Y is
i or above equals to the probability that X is i or above and Y is i or below
for i = 1, . . . , r. When r = 3, the NiMS model is equivalent to the S model.
The NiMS model should be used when r ≥ 3.

Second, similar to the relationship between the MH and EMH models, we
propose the extended NiMS (ENiMS) model, which is defined by

W1(i) = ∆W2(i) (i = 1, . . . , r).

The ENiMS model with ∆ = 1 is equivalent to the NiMS model. The ENiMS
model indicates that the ratio of W1(i) and W2(i) is constant (i.e., ∆) for all
i = 1, . . . , r.

Third, similar to the relationship between the MH and GMH models, we
propose the generalized NiMS (GNiMS) model, which is defined by

W1(i) = ∆Φi−1W2(i) (i = 1, . . . , r).

The GNiMS models with Φ = 1 and ∆ = Φ = 1 are equivalent to the
ENiMS and NiMS models, respectively. The GNiMS model indicates that the
ratio ofW1(i+1)/W2(i+1) andW1(i)/W2(i) is constant (i.e., Φ) for i = 1, . . . , r−1.

Consider an ordinal square contingency table constructed by the assess-
ment of pre- and post-treatment for drug efficacy/safety. The NiMS model
indicates that compared to the pre-treatment status, the probability that the
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post-treatment status is maintained or improved equals the probability that
the post-treatment status is deteriorated or maintained. On the other hand,
the ENiMS model indicates that compared to the pre-treatment status, the
probability that the post-treatment status is maintained or improved is ∆
times higher than the probability that the post-treatment status is deterio-
rated or maintained. Thus, the ENiMS model assumes that the treatment
effect is always constant and independent of the pre-treatment status. Ad-
ditionally, the GNiMS model indicates that compared to the pre-treatment
status, the probability that the post-treatment status is maintained or im-
proved is ∆Φi−1 times higher than the probability that the post-treatment
status is deteriorated or maintained. Thus, the GNiMS model assumes that
the treatment effect depends on the pre-treatment status.

§3. Decompositions of the model

We assign the score given by the real-valued function of two variables g to the
pair of (x, y). Let Z = g(X,Y ). Consider the model where E(Z) = 0. We
shall refer to this model as the zero mean based on g (ZM[g]) model.

Define the function gGS as

gGS(x, y) =


1 (x < y),

−1 (x > y),

0 (x = y).

Namely, the function gGS gives (1) a score of 1 for right upper triangle cells,
(2) a score of −1 for left lower triangle cells, and (3) a score of 0 for main
diagonal cells. Then, the ZM[gGS ] model can be expressed as∑∑

i<j

pij −
∑∑

i>j

pij = 0.

Namely, the ZM[gGS ] model is equivalent to the GS model. Additionally,
define the function gME by

gME(x, y) = y − x.

The score of gME(x, y) is related to the distance from main diagonal of the
square table. Since the ZM[gME ] model can be expressed as E(Y −X) = 0,
it is equivalent to the ME model. That is, E(X) = E(Y ).

Generally, the function g is related to the difference y−x. For the specified
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constant d, we consider

gd(x, y) =


y − x+ d (x < y),

−(x− y + d) (x > y),

0 (x = y).

We note that g0 = gME and d may be useful to emphasize the difference
between main diagonal cells and non-main diagonal cells. Here, we focus on
the function g1(x, y). The ZM[g1] model can be expressed as

r∑
t=1

W1(t) −
r∑

t=1

W2(t) = 0.

We obtain the following theorem.

Theorem 1. The NiMS model holds if and only if both the ENiMS and ZM[g1]
models hold.

Proof. If the NiMS model holds, it is obvious that both the ENiMS and ZM[g1]
models hold. Assume that both the ENiMS and ZM[g1] models hold. From
the ENiMS model,

r∑
t=1

W1(t) −
r∑

t=1

W2(t) = ∆

r∑
t=1

W2(t) −
r∑

t=1

W2(t) = (∆− 1)

r∑
t=1

W2(t).

Since the ZM[g1] model holds, we obtain ∆ = 1. Namely, the NiMS model
holds. The proof is complete. 2

Now consider the following structure of the concordance (C) and the dis-
cordance (D), which are given as

C =
∑∑

s<t

W1(s)W2(t), D =
∑∑

s<t

W2(s)W1(t).

We shall refer to the following model as the concordance-discordance equality
(CDE) model;

C = D.

Then, we obtain the following theorem.

Theorem 2. The ENiMS model holds if and only if both the GNiMS and CDE
models hold.
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Proof. Assume that the ENiMS model holds. It is obvious that the GNiMS
model holds. From the ENiMS model, we have

C =
∑∑

s<t

W1(s)W2(t) = ∆
∑∑

s<t

W2(s)W2(t)

and
D =

∑∑
s<t

W2(s)W1(t) = ∆
∑∑

s<t

W2(s)W2(t).

Thus, we also obtain C = D. Namely, the CDE model holds.
Conversely, we assume that both the GNiMS and CDE models hold. From

the GNiMS model, we have

C =
∑∑

s<t

W1(s)W2(t) = ∆
∑∑

s<t

Φs−1W2(s)W2(t)

and
D =

∑∑
s<t

W2(s)W1(t) = ∆
∑∑

s<t

Φt−1W2(s)W2(t).

Since the CDE model holds, we obtain Φ = 1. Namely, the ENiMS model
holds. The proof is complete. 2

From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. The NiMS model holds if and only if all the GNiMS, ZM[g1],
and CDE models hold.

§4. Goodness-of-fit test

Let nij denote the observed frequency in the (i,j)th cell of the table (i =
1, . . . , r; j = 1, . . . , r). We assume multinomial sampling over the cells of the
table. Thus, the observed frequencies {nij} have a multinomial distribution
with the cell probabilities {pij} as parameters. The maximum likelihood es-
timates (MLEs) of the expected frequencies under the NiMS, ENiMS, and
GNiMS models are obtained, for example, using the Newton-Raphson method
in the log-likelihood equation. See Appendix for details. The likelihood ratio
chi-squared statistics for testing goodness-of-fit of the model M is given by

G2(M) = 2

r∑
i=1

r∑
j=1

nij log

(
nij
m̂ij

)
,

where m̂ij is the MLE of the expected frequency mij under the model M .
The number of degrees of freedom (df) for the NiMS model is r where r ≥ 3.
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The numbers of df for the ENiMS and GNiMS models are r − 1 and r − 2,
respectively. Note that the numbers of df for the MH, EMH, and GMH are
r − 1, r − 2 and r − 3, respectively.

Assume that the models M1 and M2 are nested and the model M1 has
fewer parameters than M2 (i.e., if the model M1 holds, then the model M2

also holds). For testing that the model M1 holds assuming that the model M2

holds true, the likelihood ratio statistics is given as

G2(M1|M2) = G2(M1)−G2(M2).

Under the null hypothesis, the statistics G2(M1|M2) has an asymptotic chi-
squared distribution where the number of df that is equal to the difference
between the numbers of df for the models M1 and M2. For example, see
Agresti (2019, Sec 3.4.4).

The test statistics G2(M1|M2) cannot be used to compare non-nested mod-
els. Thus, other statistics are necessary for such a comparison. A well-known
example to compare non-nested models is the Akaike Information Criterion
(AIC) (Akaike, 1974). The AIC is defined as

AIC = −2(maximum log likelihood) + 2(number of parameters).

The AIC indicates that the best fitting model is the one with the minimum
AIC. For details, see Konishi and Kitagawa (2008, Sec 3.4.4). Since only the
difference between AICs is necessary to compare models, the common constant
in AIC can be ignored. Thus, the modified AIC (AIC+) for the model M is
defined as

AIC+(M) = G2(M)− 2df.

§5. Applications to real data from clinical studies

5.1. Example 1

Table 1 shows data collected in a pressure ulcer prevention study in patients
with SCIs (Clark, 2019). This study is a randomized controlled study to evalu-
ate the efficacy of the lifestyle-based intervention designed to reduce incidence
of MSPrIs for adult patients with SCIs. The intervention in this study is en-
titled Pressure Ulcer Prevention Program (PUPP). Table 1 shows the shifts
in the SF-36 general health subscale score at 12 months from the baseline in
patients with SCIs who received the PUPP intervention. The SF-36 subscale
score is a health-related QoL indicator. The SF-36 has eight subscales for
health concepts, and one is general health. In Table 1, the row and column
variables describe the SF-36 general health subscale score at the baseline and
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at 12 months, respectively. The original scale ranges from 0 to 100, where 0
and 100 indicate the maximum disability and no disability, respectively. We
divided the SF-36 subscale score into four categories (i.e., (1): 0− ≤ 25, (2):
> 25− ≤ 50, (3): > 50− ≤ 75, and (4): > 75− ≤ 100), where (1) is the worst
and (4) is the best.

From Table 2, since the NiMS, ENiMS and GNiMS models fit the data in
Table 1 well, we compare the goodness-of-fit of these nested models using the
likelihood ratio statistics shown in Section 4. The NiMS model is preferable
to the ENiMS and GNiMS models, this is because G2(NiMS|ENiMS) = 0.940
and G2(NiMS|GNiMS) = 1.009.

From Table 2, we see that all models applied to data in Table 1 fit well.
Since the MH model that is non-nested with the NiMS model includes in these
models, we compare the goodness-of-fit of these models using the AIC+. The
NiMS model, which has the minimum AIC+ among models applied to data in
Table 1, is the best fitting model.

Under the NiMS model, the probability of maintaining or improving the
SF-36 general health subscale is the same as the probability of maintaining
or deteriorating the SF-36 general health subscale in patients with SCIs who
received PUPP intervention. Under the ENiMS model, the MLE of ∆ is 1.190.
According to the test based on G2(NiMS|ENiMS), the hypothesis of ∆ = 1
cannot be rejected at the significance level of 0.05. Therefore, the PUPP
intervention tends to maintain or improve SF-36 general health subscale score
but it is not significant.

5.2. Example 2

Consider the data in Table 3 taken from Schuette et al. (2012). These data
were collected in the clinical study entitled performance status and influencing
factors during second-line treatment with pemetrexed in patients with stage
III/IV non-small cell lung cancer (NSCLC). This study is a prospective, non-
interventional phase IV multicenter study to evaluate the changes in physician-
rated performance status and patient-rated health related QoL during second-
line treatment with pemetrexed in routine clinical practice.

As Schuette et al. (2012) mentioned, the most important purpose of the
second-line treatment for patients with NSCLC Stage IIIa/b or IV is pallia-
tion. Therefore, the maintenance or improvement of patient’s overall health
condition measured by the performance status is highly relevant. Since the
performance status is an important prognostic factor, the treatment effect
may depend on the performance status at pre-treatment (i.e., having a poor
performance status at the pre-treatment is associated with a poor prognosis
for treatment).
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Table 3 shows the data obtained by cross-classifying for the Karnofsky
Index (KI) at the baseline and the KI after the second treatment cycle with
pemetrexed. The KI is a score to measure performance status for cancer
patients. Note that the range of the KI is from 0% to 100%, which is observed
in 10% increments and not a continuous value. A KI of 100% means “Normal,
No complaints”, and a KI of 0% means “Dead”. We categorized the KI into
four categories similar to Schuette et al. (2012): (1) ≥ 80%, (2) 70%, (3) 60%
and (4) ≤ 50%. (1) is the best condition and (4) is the worst condition.

From Table 4, the GNiMS model fits the data well, where the MLE of ∆
is 1.078 and Φ is 1.421. Therefore, under the GNiMS model, the probability
that the patient’s KI at the baseline is categorized as i or below and his/her
KI after the second cycle treatment is categorized as i or above (i.e., the KI
unchanged or deteriorated) is estimated to be 1.078 × 1.421i−1 times higher
than the probability that the patient’s KI at the baseline is categorized as i
or above and his/her KI after the second cycle treatment is categorized as
i or below (i.e., the KI unchanged or improved) for i = 1, 2, 3, 4 in Table 3.
When i = 4, the probability that the KI remains unchanged or deteriorated
is 3.093 times higher than the probability that the KI remains unchanged or
improved. Thus, the probability that the KI after the second treatment cycle
is maintained or deteriorated from the baseline is higher than the probability
that the KI after the second treatment cycle is maintained or improved from
the baseline in patients with NSCLC Stage IIIa/b or IV who are treated with
pemetrexed. In addition, this tendency becomes stronger in patients whose
baseline KI is poorer. In other words, the tendency is weak in patients whose
baseline KI is well.

Table 4 shows that the ENiMS model fits the data in Table 3 poorly. We
also see the CDE model fits poorly, whereas the GNiMS model fits well. There-
fore, from Theorem 2, the poor fit of the ENiMS model is due to the lack of
structure of the CDE model rather than the GNiMS model. Similarly, from
Table 4, we see the NiMS and ZM[g1] models fit the data in Table 3 poorly.
Thus, from Corollary 1, the poor fit of the NiMS model is due to the lack of
structure of the CDE and ZM[g1] models rather than the GNiMS model.

§6. Discussion

Read (1977) noted that the S model holds if and only if both the CS and GS
models hold. Tomizawa (1991) gave that the MH model holds if and only
if both the EMH and ME models hold. In this paper, we showed that the
NiMS model holds if and only if both the ENiMS and ZM[g1] models hold.
As described in Section 3, the GS and ME models are special cases of the
ZM[g] model. Namely, the zero mean model based on the function g is useful
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to consider the equivalence condition of symmetry (or homogeneity).

Many studies have proposed extensions of the MH model. Therefore, ad-
ditional expansions of the NiMS model should be considered. For example,
Tahata and Tomizawa (2008) proposed the m-additional parameter marginal
homogeneity (MH(m)) model for fixedm (m = 1, 2, . . . , r−1), which is defined
by

G1(i) = ∆
(m)
i G2(i) (i = 1, . . . , r − 1),

where ∆
(m)
i =

∏m−1
k=0 δ

ik

k . The MH(1) and MH(2) models are equivalent to
the EMH and GMH models, respectively. Similar to the MH(m) model, the
m-additional parameter NiMS model should be further evaluated to consider
the m-additional parameter.

§7. Concluding remarks

The MH model and its extensions are often used to analyze agreement/dis-
agreement between rating of paired evaluations. The EMH and GMH models
can analyze which paired rating is better. However, they do not consider that
one of the paired evaluation is the same as or better than the another one. To
tackle this issue, we proposed the NiMS, ENiMS, and GNiMS models. These
proposed models can easily interpret situations where the paired evaluation is
meaningful even if the rating is unchanged/maintained within the pair. When
we consider the pre- and post-treatment for drug efficacy/safety, the NiMS
model indicates that compared to the pre-treatment status, the probability
that the post-treatment status is maintained or improved equals the probabil-
ity that the post-treatment status is deteriorated or maintained. On the other
hand, the ENiMS and GNiMS models are useful to assess that whether the
subsequent rating is maintaining or improving the previous one. The ENiMS
model assumes that the treatment effect is always constant and independent
of the pre-treatment status. Whereas, the GNiMS model assumes that the
treatment effect depends on the pre-treatment status.

Additionally, we gave the decompositions of the NiMS and ENiMS models.
These decompositions (i.e., Theorems 1 and 2) may help visualize the reason
for a poor fit of the NiMS and ENiMS models.
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Appendix

We shall consider the MLE of the expected frequencies under each proposed
model.
(i) NiMS model

To obtain the MLEs of the expected frequencies under the NiMS model,
we must maximize the Lagrangian

L =

r∑
i=1

r∑
j=1

nij log pij − λ(

r∑
i=1

r∑
j=1

pij − 1)−
r∑

i=1

ψi(W1(i) −W2(i))

with respect to {pij}, λ, and {ψi}. We obtain the partial derivatives of L as

∂L

∂pst
=



nst
pst

− λ−
t∑

k=s

ψk (s < t),

nst
pst

− λ+
s∑

k=t

ψk (s > t),

nst
pst

− λ (s = t),

for s = 1, . . . , r and t = 1, . . . , r,

∂L

∂λ
= −

r∑
i=1

r∑
j=1

pij + 1,

and

∂L

∂ψs
= −W1(s) +W2(s)

for s = 1, . . . , r. The MLEs are obtained as solutions of equations for these
partial derivatives of L that are equal to zero.

(ii) ENiMS model

Similarly, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

nij log pij − λ(
r∑

i=1

r∑
j=1

pij − 1)−
r∑

i=1

ψi(W1(i) −∆W2(i))

with respect to {pij}, λ, {ψi}, and ∆. We obtain the partial derivatives of L
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as

∂L

∂pst
=



nst
pst

− λ−
t∑

k=s

ψk (s < t),

nst
pst

− λ+∆

s∑
k=t

ψk (s > t),

nst
pst

− λ− (1−∆)ψs (s = t),

for s = 1, . . . , r and t = 1, . . . , r,

∂L

∂λ
= −

r∑
i=1

r∑
j=1

pij + 1,

∂L

∂ψs
= −W1(s) +∆W2(s)

for s = 1, . . . , r and

∂L

∂∆
=

r∑
i=1

ψiW2(i).

The MLEs are obtained as solutions of equations for these partial deriva-
tives of L that are equal to zero.

(iii) GNiMS model

Similarly, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

nij log pij − λ(
r∑

i=1

r∑
j=1

pij − 1)−
r∑

i=1

ψi(W1(i) −∆Φi−1W2(i))

with respect to {pij}, λ, {ψi}, ∆, and Φ. We obtain the partial derivatives of
L as

∂L

∂pst
=



nst
pst

− λ−
t∑

k=s

ψk (s < t),

nst
pst

− λ+∆
s∑

k=t

Φk−1ψk (s > t),

nst
pst

− λ− (1−∆Φs−1)ψs (s = t),
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for s = 1, . . . , r and t = 1, . . . , r,

∂L

∂λ
= −

r∑
i=1

r∑
j=1

pij + 1,

∂L

∂ψs
= −W1(s) +∆Φs−1W2(s)

for s = 1, . . . , r,

∂L

∂∆
=

r∑
i=1

Φi−1ψiW2(i)

and

∂L

∂Φ
= ∆

r∑
i=1

(i− 1)Φi−2ψiW2(i).

The MLEs are obtained as solutions of equations for these partial deriva-
tives of L that are equal to zero.
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Table 1: Shifts in the SF-36 general health subscale score 12 months from the
baseline in patients with SCIs who received PUPP intervention. Data from
Clark (2019).

SF-36 subscale SF-36 subscale score at 12 months
score at baseline (1) (2) (3) (4) Total

(1) 2 3 2 1 8
(2.00) (2.49) (1.76) (0.77)

(2) 1 8 6 5 20
(1.26) (8.00) (5.24) (3.81)

(3) 2 4 17 5 28
(2.32) (4.68) (17.00) (4.55)

(4) 1 3 3 10 17
(1.44) (4.37) (3.33) (10.00)

Total 6 18 28 21 73

(1):0− ≤ 25, (2):> 25− ≤ 50, (3):> 50− ≤ 75, (4):> 75− ≤ 100.
The parenthesized values are the MLEs of the expected frequencies
under the NiMS model.

Table 2: Values of the likelihood ratio chi-square statistic G2 and AIC+ for
each model applied to the data in Table 1.

Applied For Table 1
Model df G2 p-value AIC+

NiMS 4 1.552 0.817 −6.448
MH 3 1.190 0.756 −4.810

ENiMS 3 0.612 0.894 −5.388
GNiMS 2 0.543 0.762 −3.457
ZM[g1] 1 1.419 0.234 −0.581
CDE 1 0.074 0.786 −1.926
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Table 3: Shift table presenting the number of patients by the baseline KI and
KI after the second treatment cycle with pemetrexed. Data from Schuette et
al. (2012).

KI at KI after second treatment cycle
baseline (1) (2) (3) (4) Total

(1) 248 36 5 10 299
(248.87) (42.00) (4.98) (9.68)

(2) 36 49 23 15 123
(29.05) (44.55) (23.98) (15.18)

(3) 4 11 13 9 37
(4.35) (11.37) (15.72) (7.65)

(4) 1 1 1 9 12
(1.21) (1.14) (1.69) (9.58)

Total 289 97 42 43 471

(1):≥ 80%, (2):70%, (3):60%, (4):≤ 50%.
KI means Karnofsky Index.
The parenthesized values are the MLEs of the expected frequencies
under the GNiMS model.

Table 4: Values of the likelihood ratio chi-square statistic G2 and AIC+ for
each model applied to the data in Table 3.

Applied For Table 3
Model df G2 p-value AIC+

NiMS 4 34.853* < 0.001 26.853
MH 3 33.898* < 0.001 27.898

ENiMS 3 34.785* < 0.001 28.785
GNiMS 2 4.122 0.127 0.122
ZM[g1] 1 17.905* < 0.001 15.905
CDE 1 33.229* < 0.001 31.229

* means significant at 0.05 level.
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