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Abstract. For square contingency tables, the measure to represent the degree
of departure from the partial symmetry model was proposed. It is necessary
to estimate the measure because it is constructed of unknown parameters. Al-
though many studies consider using the plug-in estimator to estimate the mea-
sure, the bias of the plug-in estimator is large when the sample size is not so
large. In this study, we consider to estimate the measure when the sample size
is not so large. This paper presents the improved approximate unbiased estima-
tors of the measure which are obtained using the second-order term in Taylor
series expansion. Some simulation studies show the performances of proposed
estimators for finite sample cases.
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§1. Introduction

Consider an r×r square contingency table with the same row and column clas-
sifications. Let pij denote the probability that an observation will fall in the
ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). Many statisti-
cians are probably interested in symmetry rather than independence because
row and column variables of such contingency tables are rarely independent.
Bowker [3] proposed the symmetry (S) model defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji. For the analysis of data, the S model may fit the data poorly
because it has a strong restriction. In such cases, many statisticians may be
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interested in applying some models which have weaker restrictions than the
S model. Numerous studies have developed new models which have weaker
restrictions than the S model (see [1, 2, 4, 5, 6]). Saigusa et al. [7] proposed
the partial symmetry (PS) model defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψst = ψts for at least one (s, t) with s ̸= t. This model states that the
probability that an observation will fall in row category s and column category
t is equal to the probability that the observation falls in row category t and
column category s for at least one (s, t), s ̸= t. It is easy to know that the S
model implies the PS model since the S model indicates that pij equals pji for
all (i, j).

On the other hand, when the models fit the data poorly, we are also inter-
ested in measuring the degree of departure from the models. Tomizawa [10]
and Tomizawa et al. [11] proposed the measure to represent the degree of
departure from the S model for nominal data. Saigusa et al. [7] also proposed
the measure to represent the degree of departure from the PS model for square
contingency tables. Since the measures are constructed in the cell probabilities
which are unknown parameters, many studies considered the plug-in estima-
tor and derived its confidence interval for the measure. However, when the
sample size is not so large, the bias of the plug-in estimator is large. To over-
come this problem, Tomizawa et al. [12] proposed the improved approximate
unbiased estimators of the measure for departure from the S model when the
sample size is not so large. Moreover, using a similar technique, the improved
approximate unbiased estimators of log-odds ratio and the measures for the
marginal homogeneity model have been proposed in [8, 9].

The purpose of this paper is to propose the approximate unbiased estima-
tors which are better than the plug-in estimator of the measure for departure
from the PS model. The rest of this paper is organized as follows: In Section
2, we describe the measure to represent that degree of departure from the PS
model. Section 3 proposes the improved approximate unbiased estimators of
the measure for departure from the PS model for square contingency tables.
In section 4, we compare the biases and the mean square errors of proposed
estimators with that of [7] in simulation studies. Section 5 presents concluding
remarks.

§2. Measures

Saigusa et al. [7] proposed the following measure Φ(λ) to represent the degree
of departure from the PS model for square contingency tables. Let pij + pji ̸=
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0 (i ̸= j; i, j = 1, . . . , r) and let

δ =

r∑
s=1

r∑
t=1
t̸=s

pst, p∗ij =
pij
δ
, pcij =

pij
pij + pji

,

for i = 1, . . . , r; j = 1, . . . , r; i ̸= j, then the measure Φ(λ) is defined by

Φ(λ) =

r−1∏
i=1

r∏
j=i+1

[
1− λ2λ

2λ − 1
H

(λ)
ij

](p∗ij+p∗ji)

for λ > −1,

where

H
(λ)
ij =

1

λ

[
1−

(
pcij
)λ+1 −

(
pcji
)λ+1

]
,

and the value at λ = 0 is taken to be the limit as λ → 0 and λ is a real-
valued parameter which is chosen by the user. Note that Φ(λ) is expressed
as the weighted geometric mean of the diversity index. The measure Φ(λ)

must lie between 0 and 1 since 0 ≤ H
(λ)
ij ≤

(
2λ − 1

)
/
(
λ2λ
)
for i < j. For

any λ (> −1), (i) Φ(λ) takes the minimum value 0 if and only if there is a
structure of the PS model in the table and (ii) Φ(λ) takes the maximum value
1 if and only if the degree of departure from the PS model is the largest in
the sense that pcij = 1 (then pcji = 0) or pcji = 1 (then pcij = 0) for all i < j.

It is easily seen that the value of Φ(λ) is less than or equal to the value of the
measure of the S model proposed in [10, 11].

Assume that the observed frequencies {nij} have a multinomial distribu-
tion. The sample version Φ̂(λ) of Φ(λ) is given as Φ(λ) with pij replaced by p̂ij ,
where p̂ij = nij/n and n =

∑∑
nij . Using the delta method,

√
n(Φ̂(λ)−Φ(λ))

has asymptotically (as n → ∞) a normal distribution with mean zero and
σ2
[
Φ(λ)

]
(see [7] for the details of variances). Thus, when the sample size n

is large, the estimated measure Φ̂(λ) is an asymptotically unbiased estimator
of Φ(λ). However, when the sample size n is not so large, the bias of Φ̂(λ) is
large. Therefore, we consider improving the approximate unbiased estimator
Φ̂(λ) by using the same method in [12].

§3. Improved approximate unbiased estimators

Let p be the r2× 1 vector p = (p11, . . . , p1r, p21, . . . , p2r, . . . , pr1, pr2, . . . , prr)
⊤

and let p̂ be the r2 × 1 vector in the similar way. a⊤ denotes the transpose of
a. Using second Taylor expansion, the plug-in estimator Φ̂(λ) is expressed as
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Φ̂(λ) =Φ(λ) +
∂Φ(λ)

∂p⊤ (p̂− p) +
1

2
(p̂− p)⊤

∂2Φ(λ)

∂p∂p⊤ (p̂− p) + op(n
−1).

When the sample size n is large, E(Φ̂(λ)) is approximately equal to

E(Φ̂(λ)) =Φ(λ) +
1

2
tr

([
∂2Φ(λ)

∂p∂p⊤

]
E((p̂− p)(p̂− p)⊤)

)
+ o(n−1)

=Φ(λ) +
1

2n
tr

(
∂2Φ(λ)

∂p∂p⊤ (D(p)− pp⊤)

)
+ o(n−1),

(3.1)

where D(p) denotes the r2 × r2 diagonal matrix with the ith element of p as
the ith diagonal element. Thus it holds that

E

[
Φ̂(λ) − 1

2n
tr

([
∂2Φ(λ)

∂p∂p⊤

]
(D(p)− pp⊤)

)]
= Φ(λ) + o(n−1).

It is easy to know that it would approach Φ(λ) faster than Φ̂(λ) as n tends
to infinity. Therefore we now propose the improved approximate unbiased
estimator Φ̂∗(λ) of the true measure Φ(λ) as follows:

Φ̂∗(λ) = Φ̂(λ) − 1

2n
tr

{
∂̂2Φ(λ)

∂p∂p⊤ (D(p̂)− p̂p̂⊤)

}

= Φ̂(λ) − 1

2n

∑
i ̸=j

p̂ij
∂̂2Φ(λ)

∂pij∂pij
−
∑
(i,j)

∑
(k,l)

p̂ij p̂kl
∂̂2Φ(λ)

∂pij∂pkl

 .

Here ̂∂2Φ(λ)/∂pij∂pkl and ̂∂2Φ(λ)/∂p∂p⊤ are given as ∂2Φ(λ)/∂pij∂pkl and
∂2Φ(λ)/∂p∂p⊤ with pij replaced by p̂ij , respectively. The elements of the
Hessian matrix ∂2Φ(λ)/∂p∂p⊤ are given in Appendix. Then we have the
following theorem.

Theorem 3.1. Let {p̂ij} denote the maximum likelihood estimators for i, j =
1, . . . , r. Then, as n→ ∞, it holds that

Bias
(
Φ̂∗(λ)

)
= E

[
Φ̂∗(λ)

]
− Φ(λ) = o(n−1).

Φ̂∗(λ) tends to approximate to Φ(λ) better than Φ̂(λ) when n is not so large.
However, it does not always fall within the range [0, 1] when the value of Φ(λ)
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is close to 0 or 1. Therefore, in addition to the improved approximate unbiased
estimator Φ̂∗(λ), we also propose another improved approximate unbiased es-
timator whose value always falls within [0, 1]. We consider that the monotone
function f : (0, 1) → R be 2 times differentiable on (0, 1), for example, the
logit function which is defined as

f(p) = log

(
p

1− p

)
.

The improved approximate unbiased estimator Φ̂
(λ)
f using f is defined as

Φ̂
(λ)
f = f−1

(
f(Φ̂(λ))− 1

2n
f ′(Φ̂(λ))tr

{
∂̂2Φ(λ)

∂p∂p⊤ (D(p̂)− p̂p̂⊤)

})
,

where f−1 and f ′ indicate the inverse function and the derivative function of

f . It is clear that Φ̂
(λ)
f always falls within the range of [0, 1] even when the

value of Φ(λ) is close to 0 or 1. Then it holds that the following theorem.

Theorem 3.2. Let {p̂ij} denote the maximum likelihood estimators for i, j =
1, . . . , r. Then, as n→ ∞, it holds that

Bias
(
Φ̂
(λ)
f

)
= E

[
Φ̂
(λ)
f

]
− Φ(λ) = o(n−1).

Proof. Put u =
√
n(p̂− p) and

S =
1

2
f ′
(
Φ̂(λ)

)
tr

{
∂̂2Φ(λ)

∂p∂p⊤ (D(p̂)− p̂p̂⊤)

}
.(3.2)

By using Taylor expansion, it is calculated as follows:

Φ̂
(λ)
f = f−1

(
f(Φ̂(λ))− 1

n
S

)
= f−1

(
f

(
Φ(λ) +

1√
n

∂Φ(λ)

∂p⊤ u+
1

2n
u⊤ ∂

2Φ(λ)

∂p∂p⊤u+ op(n
−1)

)
− 1

n
S

)

= f−1

(
f(Φ(λ)) +

1√
n
f ′(Φ(λ))

∂Φ(λ)

∂p⊤ u+
1

2n
f ′(Φ(λ))u⊤ ∂

2Φ(λ)

∂p∂p⊤u

+
1

2n
f ′′(Φ(λ))

(
∂Φ(λ)

∂p⊤ u

)2

− 1

n
S + op(n

−1)


= Φ(λ) +

1√
n

∂Φ(λ)

∂p⊤ u+
1

2n
u⊤ ∂

2Φ(λ)

∂p∂p⊤u
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+
1

2n

f ′′(Φ(λ))

f ′(Φ(λ))

(
∂Φ(λ)

∂p⊤ u

)2

− 1

n

1

f ′(Φ(λ))
S

− 1

2n

f ′′(Φ(λ))

{f ′(Φ(λ))}3

(
f ′(Φ(λ))

∂Φ(λ)

∂p⊤ u

)2

+ op(n
−1)

= Φ(λ) +
1√
n

∂Φ(λ)

∂p⊤ u+
1

2n
u⊤ ∂

2Φ(λ)

∂p∂p⊤u− 1

n

1

f ′(Φ(λ))
S + op(n

−1).

It is noted that the derivative functions of f−1 are given as

d

dx
f−1(x) =

1

f ′(f−1(x))
and

d2

dx2
f−1(x) = − f ′′(f−1(x))

{f ′(f−1(x))}2
.

Then it is given as

E(Φ̂(λ)
f ) = E

[
Φ(λ) +

1√
n

∂Φ(λ)

∂p⊤ u+
1

2n
u⊤ ∂

2Φ(λ)

∂p∂p⊤u− 1

n

1

f ′(Φ(λ))
S

]
+ o(1)

= Φ(λ) +
1

2n
tr

{
∂2Φ(λ)

∂p∂p⊤

(
D(p)− pp⊤

)}
− 1

n

1

f ′(Φ(λ))
E(S) + o(n−1).

From (3.2), it holds that

E(S) =
1

2
f ′
(
Φ(λ)

)
tr

{
∂2Φ(λ)

∂p∂p⊤

(
D(p)− pp⊤

)}
+ o(1).

Therefore, we obtain as follows:

E(Φ̂(λ)
f ) = Φ(λ) + o(n−1).

From the above, the asymptotic bias of Φ̂
(λ)
f improves over that of Φ̂(λ).

The proposed estimator Φ̂
(λ)
f tends to approximate to Φ(λ) better than Φ̂(λ)

when n is not so large.

§4. Simulation studies

In this section, we demonstrate the accuracy of two proposed estimators Φ̂∗(λ)

and Φ̂
(λ)
f in the finite sample cases. Here we used the logit transformation as

function f , that is, f(x) = log(x/(1 − x)). In this simulation, we consider
artificial probability tables given in Table 1(a) to Table 1(f). Table 2 gives the
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value of Φ(λ) for each λ for Table 1. For each λ, the true values of Φ(λ) for
Table 1(a) and Table 1(d) are close to 1, and the true values of Φ(λ) for Table
1(c) and Table 1(f) are close to 0, and the true values of Φ(λ) for Table 1(b)
and Table 1(e) take around 0.5.

Using Monte Carlo simulation repeated 10000 times, we calculate the bias

and the mean square error (MSE) of Φ̂(λ), Φ̂∗(λ) and Φ̂
(λ)
f from the observed

frequencies of sample size n = 500, 1000, 3000, and 5000, which are obtained
from the true probability distribution for Table 1(a) to Table 1(f). Table 3 to

Table 8 give the bias values of Φ̂(λ), Φ̂∗(λ) and Φ̂
(λ)
f and the relative efficiency of

the proposed estimators to Φ̂(λ) corresponding Table 1(a) to Table 1(f). Here
Bias(Φ̂) indicates the bias value of an estimator Φ̂, and the relative efficiency
of an estimator Φ̂ to Φ̂(λ) is given by

e(Φ̂) =
MSE(Φ̂(λ))

MSE(Φ̂)
,

where MSE(Φ̂) indicates MSE of an estimator Φ̂, that is, MSE(Φ̂) = E{(Φ̂−
Φ(λ))2}.

From Table 3 to Table 8, we see that the proposed estimators have a smaller
bias than Φ̂(λ). This means that the proposed estimators approach to the true
value faster than Φ̂(λ). In addition, it can be seen that the relative efficiency
of proposed estimators are often greater than 1, which are more efficient than
Φ̂(λ). From Table 8, when the true value of the measure is close to 0 and n

is not so large, Φ̂
(λ)
f has a larger bias than Φ̂(λ) and Φ̂∗(λ). In addition, when

the true value of the measure is close to 0 and n is not so large, the relative
efficiency is less than 1. From these results, we can see that the proposed
estimators become unstable when Φ(λ) is close to 0 or 1. This is probably
because the variance of Φ̂(λ) is small and Φ̂(λ) is a stable estimation. On the
other hand, if the sample size is enough large, the proposed estimators improve
the bias of Φ̂(λ), which are more efficient than Φ̂(λ).

§5. Concluding remarks

This paper proposed the improved approximate unbiased estimators Φ̂∗(λ) and

Φ̂
(λ)
f of the true measure Φ(λ). From the simulation studies, we conclude that

if the sample size is enough large, the proposed estimators have a smaller bias
than Φ̂(λ) and improve MSE. In other words, the proposed estimators converge
to the true value Φ(λ) faster than Φ̂(λ). However, the proposed estimators
become unstable when Φ(λ) is close to 0 or 1. Therefore, it is better to use the
proposed estimators than Φ̂(λ) when the value of Φ̂(λ) is not close to 0 or 1,
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for example, it falls within the range [0.2, 0.8]. On the other hand, it is better
to use a plug-in estimator if Φ̂(λ) is close to 0 or 1 and n is not so large.
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§A. The elements of the second derivative of Φ(λ)

For λ > −1, the elements of ∂2Φ(λ)/∂p∂p⊤ (r2 × r2 matrix) are given as
follows:

∂2Φ(λ)

∂pij∂pij
=

Φ(λ)

δ2

{
K

(λ)
ij K

(λ)
ij − 2K

(λ)
ij +

δpcji
(pij + pji)

J
(λ)
ij

}
(i ̸= j),

∂2Φ(λ)

∂pij∂pji
=

Φ(λ)

δ2

{
K

(λ)
ij K

(λ)
ji −

(
K

(λ)
ij +K

(λ)
ji

)
−

δpcij
(pij + pji)

J
(λ)
ij

}
(i ̸= j),

∂2Φ(λ)

∂pij∂pkl
= 0 (i = j or k = l),

∂2Φ(λ)

∂pij∂pkl
=

Φ(λ)

δ2

{
K

(λ)
ij K

(λ)
kl −

(
K

(λ)
ij +K

(λ)
kl

)}
(otherwise),

where

K
(λ)
ij = log(w

(λ)
ij ) +

ξ
(λ)
ij

w
(λ)
ij

− log(Φ(λ)),

J
(λ)
ij =

2λ(λ+ 1)

(2λ − 1)w
(λ)
ij

{
λpcji

(
(pcij)

λ−1 + (pcji)
λ−1
)
−
(
(pcij)

λ − (pcji)
λ
) ξ(λ)ij

w
(λ)
ij

}
,

w
(λ)
ij = 1− 2λ

2λ − 1

{
1− (pcij)

λ+1 − (pcji)
λ+1
}
,

ξ
(λ)
ij =

2λ

2λ − 1
(λ+ 1)pcji

{
(pcij)

λ − (pcji)
λ
}
.

In particular, when λ = 0, it is given as follows:

K
(0)
ij = lim

λ→0
K

(λ)
ij = log(w

(0)
ij ) +

ξ
(0)
ij

w
(0)
ij

− log(Φ(0)),
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J
(0)
ij = lim

λ→0
J
(λ)
ij =

pcji

[
(pcij)

−1 + (pcji)
−1
]
−
[
log(pcij)− log(pcji)

]
(ξ

(0)
ij /w

(0)
ij )

w
(0)
ij log 2

,

w
(0)
ij = 1− 1

log 2

(
−pcij log pcij − pcji log p

c
ji

)
,

ξ
(0)
ij =

1

log 2
pcji
(
log pcij − log pcji

)
.
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Table 1: Artificial probability table.

(a)
(1) (2) (3)

(1) 0.000 0.011 0.011
(2) 0.322 0.000 0.011
(3) 0.322 0.323 0.000

(b)
(1) (2) (3)

(1) 0.000 0.037 0.037
(2) 0.297 0.000 0.037
(3) 0.296 0.296 0.000

(c)
(1) (2) (3)

(1) 0.000 0.095 0.095
(2) 0.239 0.000 0.095
(3) 0.238 0.238 0.000

(d)
(1) (2) (3) (4)

(1) 0.000 0.004 0.005 0.005
(2) 0.161 0.000 0.005 0.005
(3) 0.162 0.162 0.000 0.005
(4) 0.162 0.162 0.162 0.000

(e)
(1) (2) (3) (4)

(1) 0.000 0.004 0.005 0.005
(2) 0.161 0.000 0.005 0.005
(3) 0.162 0.162 0.000 0.005
(4) 0.162 0.162 0.162 0.000

(f)
(1) (2) (3) (4)

(1) 0.000 0.055 0.056 0.056
(2) 0.111 0.000 0.056 0.056
(3) 0.111 0.110 0.000 0.056
(4) 0.111 0.111 0.111 0.000

Table 2: The values of Φ(λ) for each λ corresponding to artificial probability
tables in Table 1.

λ 0.0 0.5 1.0 1.5

Table 1(a) 0.791 0.853 0.872 0.876
Table 1(b) 0.497 0.574 0.605 0.612
Table 1(c) 0.138 0.169 0.185 0.189
Table 1(d) 0.811 0.869 0.887 0.890
Table 1(e) 0.491 0.568 0.599 0.606
Table 1(f) 0.080 0.099 0.109 0.111
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Table 3: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(a).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 0.345 0.103 0.101 1.018 1.018
0.5 0.064 0.032 0.032 1.003 1.003
1.0 −0.029 −0.003 −0.003 1.004 1.004
1.5 −0.030 0.003 0.003 1.005 1.005

1000

0.0 0.080 −0.041 −0.042 1.007 1.007
0.5 0.005 −0.012 −0.012 1.001 1.001
1.0 −0.032 −0.019 −0.019 1.002 1.002
1.5 0.007 0.024 0.024 1.002 1.002

3000

0.0 0.044 0.003 0.003 1.003 1.003
0.5 0.000 −0.006 −0.006 1.000 1.000
1.0 −0.010 −0.006 −0.006 1.001 1.001
1.5 −0.015 −0.009 −0.009 1.001 1.001

5000

0.0 0.030 0.006 0.006 1.002 1.002
0.5 0.008 0.005 0.005 1.000 1.000
1.0 −0.005 −0.002 −0.002 1.000 1.000
1.5 −0.018 −0.014 −0.014 1.001 1.001
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Table 4: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(b).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 0.067 −0.008 −0.008 1.010 1.010
0.5 −0.041 −0.013 −0.013 1.005 1.005
1.0 −0.095 −0.015 −0.015 1.005 1.005
1.5 −0.024 0.067 0.067 1.004 1.004

1000

0.0 0.070 0.032 0.032 1.005 1.005
0.5 −0.060 −0.046 −0.046 1.003 1.003
1.0 −0.011 0.028 0.028 1.002 1.002
1.5 −0.026 0.019 0.019 1.002 1.002

3000

0.0 0.036 0.023 0.023 1.002 1.002
0.5 0.012 0.017 0.017 1.001 1.001
1.0 −0.026 −0.012 −0.012 1.001 1.001
1.5 −0.017 −0.002 −0.002 1.001 1.001

5000

0.0 −0.019 −0.026 −0.026 1.001 1.001
0.5 0.009 0.012 0.012 1.000 1.000
1.0 −0.017 −0.009 −0.009 1.001 1.001
1.5 −0.004 0.005 0.005 1.000 1.000
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Table 5: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(c).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 −0.119 −0.026 −0.025 1.012 1.012
0.5 −0.167 −0.025 −0.025 1.010 1.010
1.0 −0.106 0.064 0.065 1.006 1.007
1.5 −0.131 0.048 0.049 1.006 1.007

1000

0.0 −0.039 0.006 0.006 1.005 1.005
0.5 −0.071 −0.002 −0.002 1.004 1.004
1.0 −0.095 −0.012 −0.012 1.004 1.004
1.5 −0.053 0.034 0.034 1.002 1.002

3000

0.0 −0.009 0.006 0.006 1.001 1.001
0.5 −0.021 0.001 0.001 1.001 1.001
1.0 −0.027 0.000 0.000 1.001 1.001
1.5 −0.006 0.023 0.023 1.000 1.000

5000

0.0 −0.015 −0.006 −0.006 1.001 1.001
0.5 −0.041 −0.027 −0.027 1.001 1.001
1.0 −0.012 0.005 0.005 1.001 1.001
1.5 −0.021 −0.004 −0.004 1.001 1.001
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Table 6: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(d).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 0.502 0.274 0.272 0.976 0.976
0.5 0.028 0.027 0.027 1.006 1.006
1.0 −0.063 0.029 0.029 1.017 1.017
1.5 −0.165 −0.062 −0.063 1.021 1.021

1000

0.0 0.201 −0.002 −0.003 1.014 1.014
0.5 0.032 0.027 0.027 1.006 1.006
1.0 −0.057 −0.011 −0.011 1.009 1.009
1.5 −0.072 −0.021 −0.021 1.010 1.010

3000

0.0 0.077 0.006 0.006 1.008 1.008
0.5 0.031 0.028 0.028 1.002 1.002
1.0 −0.013 0.002 0.002 1.003 1.003
1.5 −0.016 0.001 0.001 1.003 1.003

5000

0.0 0.054 0.012 0.012 1.005 1.005
0.5 −0.001 −0.003 −0.003 1.001 1.001
1.0 −0.013 −0.004 −0.004 1.002 1.002
1.5 −0.012 −0.002 −0.002 1.002 1.002
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Table 7: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(e).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 −0.024 0.018 0.018 1.026 1.026
0.5 −0.225 0.016 0.015 1.021 1.021
1.0 −0.393 −0.059 −0.060 1.025 1.025
1.5 −0.402 −0.048 −0.049 1.026 1.026

1000

0.0 0.010 0.029 0.029 1.013 1.013
0.5 −0.120 −0.003 −0.003 1.010 1.010
1.0 −0.168 −0.005 −0.005 1.011 1.011
1.5 −0.204 −0.031 −0.031 1.013 1.013

3000

0.0 −0.022 −0.016 −0.016 1.004 1.004
0.5 −0.023 0.015 0.015 1.003 1.003
1.0 −0.093 −0.039 −0.039 1.005 1.005
1.5 −0.034 0.023 0.023 1.003 1.003

5000

0.0 −0.005 −0.002 −0.002 1.003 1.003
0.5 −0.050 −0.027 −0.027 1.003 1.003
1.0 −0.068 −0.036 −0.036 1.003 1.003
1.5 −0.046 −0.012 −0.012 1.003 1.003
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Table 8: The bias values of the estimators multiplied by 100, and the ratios
of MSE of the proposed estimators to Φ̂(λ) for Table 1(f).

n λ Bias(Φ̂(λ)) Bias(Φ̂∗(λ)) Bias(Φ̂
(λ)
f ) e(Φ̂∗(λ)) e(Φ̂

(λ)
f )

500

0.0 −0.598 0.277 0.832 0.831 0.098
0.5 −0.724 0.349 0.846 0.921 0.174
1.0 −0.763 0.457 1.004 0.802 0.173
1.5 −0.893 0.369 0.953 0.852 0.169

1000

0.0 −0.265 0.024 0.041 1.063 0.846
0.5 −0.331 0.032 0.039 1.063 1.066
1.0 −0.371 0.037 0.056 1.061 0.875
1.5 −0.364 0.051 0.059 1.059 1.062

3000

0.0 −0.092 −0.006 −0.005 1.016 1.016
0.5 −0.113 −0.003 −0.002 1.016 1.016
1.0 −0.121 0.002 0.003 1.015 1.015
1.5 −0.123 0.003 0.004 1.015 1.016

5000

0.0 −0.044 0.006 0.006 1.007 1.007
0.5 −0.059 0.006 0.006 1.007 1.007
1.0 −0.084 −0.011 −0.011 1.011 1.011
1.5 −0.069 0.006 0.006 1.008 1.008
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