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Estimates on modulation spaces for Schrodinger
operators with first order magnetic fields
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Abstract. In this paper, we give the estimate of the solutions to Schrodinger
equation with vector potential on modulation spaces. We assume that vector
potential a(t, z) is first degree polynomial with respect to z, and it corresponds
to constant magnetic field or time-dependent magnetic field for physics.
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8§1. Introduction

In this paper, we consider the initial value problem for the Schrodinger equa-
tion with magnetic vector potential
1) idpu(t,z) + L (V —ia(t,2))’u(t,z) =0, (t,z) € R xR,

' u(0,z) = up(z), x€R",
and give estimates for the solutions in the frame work of modulation spaces,
where i = /—1, u(t,z) is a complex valued unknown function of (t,z) €
R x R™, up(z) is a complex valued given function of z € R", dyu = du/0t,
O;u=0u/0r; (j=1,...,n)and V = (0py,...,0z,)-

Throughout this paper, we assume the following Assumption 1.1 on the
magnetic vector potential a(t,z) = (a1(t, ), ..., an(t,x)).

Assumption 1.1. For k =1,...,n, k-th component a; of a has the form
n

(1.2) ap(t,z) = ap(t)z
=1

with ar; € C°R) for [,k =1,...,n.
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Definition 1.2 (Wave packet transform). Let ¢ € S(R™)\{0} and f € S'(R").
The wave packet transform W, f of f with the basic wave packet ¢ is defined
by

W@ﬂ%@ZZ/)My—@ewV@W% (2,6) € R" x R”,

R”

Definition 1.3 (Modulation space). Let ¢ € S(R™) \ {0} and 1 < p,q < cc.
We define the modulation spaces ME?(R™) as follows.

MymwzﬁfgmﬂMmmyzwwwu@hm%<w}
We remark the following properties of modulation spaces (For more details,
see §4 and §6 in [3]).
Lemma 1.4. Let 1 <p,q,p1,q1,p2,q2 < 0o. Then
1. Mgt (R™) < MZ»®(R™), for p1 < p2, 1 < go.

2. MET(R) < LP(R") 5 ME®(RY) for 1 < g1 < min(p,p/) and g> >
max(p, p') with 1/p+1/p = 1. In particular, M3*(R") = L*(R") holds.
3. S(R™) is dense in MEY(R™) for 1 < p,q < cc.

4. MEYR™) is a Banach space with norm || - ||M5,q.

5. The definition of MEY(R™) is independent of the choice of the basic wave
packet . More precisely, for any ¢, € S(R")\ {0}, the norm || - [[pza
is equivalent to the norm || - ||M5,q.

We denote the Fourier transform of f € S(R™) by f or Ff. The inverse
Fourier transform of f € S(R™) is defined by f or F*f, similarly. For our

statement, we define the Schrodinger operator of a free particle eits by
its % _as p n
("27) @) = Foa |5 FO] (@), fESRY).

Our purpose in this study is to estimate the solution of the initial value
problem (1.1) on modulation spaces. The following theorem is the main result
of this paper.

Theorem 1.5. Let 1 < p < oo, po € S(R")\ {0}, T > 0 and u(t,z) be the
solution of (1.1) in C(R; L2(R™)) for up € S(R™).
If a satisfies the Assumption 1.1, then there exists Cr > 0 such that

(1.3) [ut, M aer < Crlluollpzr, uo € S(R™)
() 0

for allt € [-T,T] where we denote ¢(t,x) by eit%goo(x).
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We often use the wave packet transform for the function u(t,z) on R x R"
with the basic wave packet ¢(¢,z) on R x R™, so we use the following notations

Wi yult, z,8) = W, [ult, )] (2, €) =/ oty — x)u(t,y)e ¥ Edy

n

and [u(t)||pze = |IWou(t, , &)l e for the sake of convenience.

lug
Remark 1.6. We cannot expect that Theorem 1.5 is valid with MP¢ for
p # q. In fact, for the constant magnetic potential a(t,z) = (—x2/2,21/2)
with n = 2, the L%-unitary operator U = e**1%2/2¢i021 923 transforms (1.1) to
Schrodinger equation with the harmonic oscillator (1.4).

(1.4) iOp(t,x) + 302 v(t,z) = $23v(t,z), (t,z) € R x R?,
. v(0,2) = up(x), == (z1,22) € R?,

where v(t,z) = Uu(t,x). By the wave packet transform, the solution of (1.1)
u(t, x) can be represented by

!W@(t,.)u(t, z, )| = [Weouo(z1, z2 cost — &y sint, &,z sint — & cost)|

and according to [5] and the above equality, ||u(t)||ara < Cllug||arr.a does not
hold generally.

This short note is a first step for the estimate of the solutions to Schrodinger
equations with magnetic potentials in modulation spaces, which is an extension
of the result by K. Kato-M. Kobayashi-S. Ito [5]. In the forthcoming paper,
we will discuss the case that a(t,z) € C°(R x R") with |0%a(t,z)] < C(1+
z|)P~1el for p < 1.

Schrodinger equations with time-independent magnetic potential a(t,z) =
a(x) have been investigated by B. Simon [10], T. Kato [7], and so on. In [10],
B. Simon showed the essentially self-adjointness of Hy = —(V — ia(z))? on
C§° when diva =0, a € L] (R™) with ¢ > max(n,4). In [7], T. Kato relaxed
some conditions of a(z) for Hy to be essentially self-adjoint on C§° stated in
[10]. In H. Leinfelder and C. G. Simader’s work [9], they proved the existence
and uniqueness of the L2-solution to the equation (1.1) with a(x) under the
more general assumption which lets a(z) to be in L (R™) and its derivative
to be in L _(R™).

When the magnetic potential depends on time, this problem becomes more
difficult and delicate. K. Yajima, in the work of [13], proved the existence
and uniqueness of the L2-solution to the equation (1.1) and LP-smoothing
property of the unitary propagator {U(¢,s)|t,s € R} of (1.1) assuming that
growth of a(t,z) and d;a(t,x) are equal to first degree polynomial at infinity;
ie. |a(t,z)|+ |0wa(t,x)| ~ |z|.
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From these results, the equation (1.1) can be solved on L?(R™), while we
cannot expect to solve this equation on LP(R™) for p # 2. On the contrary,
there are many works on existence of solutions to the following Schrodinger
equations with scholar potentials V' € C*°(R x R™) in modulation spaces.

w5 {iatu(t,:r) + 1Au(t,z) = V(t,2)u(t,z), (t,z) € R x R™,
' u(0,z) = up(z), =x€R™

In the work of A. Bényi, K. Grochenig, K. A. Okoudjou and L. G. Rogers
[1], it is shown that the Schrodinger group eVI* for 0 < o < 2 is bounded on
MP2(R™) and this implies that the free Schrodinger equation (i.e. equation
(1.5) with V(¢t,z) = 0) can be solved in MP4(R") for 1 < p,q < oo. B.
Wang and H. Hudzik showed that the global well-posedness of the nonlinear
Schrédinger equation with power type nonlinearity by using the dispersive
estimate for the free Schrodinger equation in MP4(R™), ||u(t, )| arra < C(1 4+
1)~ (/2= |ug| e 5 see [11]. In the work of [6], the solutions to the free
Schrédinger equation or Schrodinger equation with the harmonic oscillator
preserve the norm of modulation spaces, |lu(t, ‘)HM% )= Hu0||M£bq. In the
case of time-dependent potential, the estimate of the solution to equation
(1.5) with quadratic or sub-quadratic potential on MP9(R™), |lu(t,-)|[ypr <

e(t,)
Cr|luol| mzp is obtained in [2] and [5].

However, it seems that there is no result about the Schrodinger equation
with time dependent magnetic potential in modulation spaces so far.

This paper is organized as follows. In Section 2, we introduce terminology
and preliminalies. We will give the representation of solution of (1.1) by wave
packet transform and introduce some lemmas on characteristics corresponding

o (1.1). In Section 3, we will prove Theorem 1.5.

§2. Preliminaries

In this section, we give proofs of lemmas to prove Theorem 1.5.

Definition 2.1 (Inverse wave packet transform). Let ¢ € S(R™) \ {0} and
F € 8'(R?"), we define the adjoint operator W of Wy, by

WalF( / /R _ple—y)e ™ Py, dyde, xR,
where d¢ = (27)"d¢.

Then, for f € §'(R™), the following inversion formula holds (see [4, Corol-
lary 11.2.7]);

Wi W f](x).



MODULATION NORM ESTIMATE WITH MAGNETIC POTENTIAL 205

For the proof of Theorem 1.5, we reduce (1.1) to a first-order partial dif-
ferential equation in R?” by using the wave packet transform. Using formula

1 1 1, o
E(V—za) u:§Au—§(z(V-a)+a Ju—ia-Vu
and substituting V (¢, z) = i(V - a)(t,z) + a(t, z) into [5, (8)-(10)], we have

(2.1) Wap(t,-) [z&tu + %Au — } (’L(V ca)+ a2) u] (t,z,§)

2
(a4 €7
= ’Lat +7/€ . VI - 7 - §(Vx . a)(t,x)
Ly i 2 1 2
— 5@ (t,x) — ivwa (t,x) - Ve+ ivwa (t,x) - :E) W, yult, z,§)

+ W(iatJr%)tp(t,-)u(t? €, 5) + RlU(t, €T, 6)7

where

n

1 -, .~ 72‘ .
Ryu(t,z,8) = -3 > ak,l(t)ak,l’(t)/‘Pl,l’(tay_x)u(ta y)e W idy,

k,0,l'=1
oty —x) = (g — o) (yr — av)e(t,y — ).

By integration by parts, we have

(2.2) Wo,y [—ia - Vu (t,z,8)

- ( —ia(t,z) Vo +i(Vy - alt,z)) + & a(t,)
+Va( - alt,2)) - (Ve — @) ) W, yults 2, €) + Rault,2,6),

where

n

Rou(t,z,§) = ) iaxl“k(t’x)/WU(t,y)e_iy'gdy,
k=1

er(ty —x) = (g — 1)y, p(t,y — ).

Taking ¢(t,z) = e“%gpg(az) for ¢o(z) € S(R™) and combining (2.1) and
(2.2), we transform (1.1) into

(10, + iVeH (t,2,€) - Vo — iVo H(t,z,€) - Ve
+h(t7 xz, g))Ww(t,~)u(ta xz, 5) = Ru(t¢ xz, 5)»
Wap((],-)u(ov x, 5) = tho“O(xa f)v
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where
H(t,2,€) = 3 | - alt, o),
h(t,z,&) = —H(t,z,§) + Vo H(t,z,§) - v+ %Vm ~a(t,x),
Ru(t,z,&) = —Ryu(t,z,&) — Rou(t, x,§).
By the method of characteristics, we obtain the following lemma.

Lemma 2.2. For t € R and z,§ € R", we define x(s) = xz(s;t,x,&) and

&(s) =&(s5t,x,€) as the solutions of

23) {5@ = VeH(s,2(s),(5)),
S(S) = _VIH(S7x(S)7€(S))7 g(t) = 5

Then the solution u(t,z) to (1.1) satisfies the integral equation

(24)  Wygyu(t,z,€) = et o hlsw()£()ds (me,)uo(x(o» £(0))

¢
—2'/ et i h(s’z(s)’g(s))dsRu(T,1:(7'),5(7'))(17’).

0

We will introduce some properties of the characteristics defined as the so-
lutions of (2.3) and won’t prove the following lemma because this is proved in
[5, Appendix A.].

Lemma 2.3 (see [5]). Let wj(s;t,x,§) = x;(s), wntj(s;t,x,&) = &i(s) (1 <

Jj < n) and Jacobian matriz of (w1, , W, Wni1, - , Wan)(S;t, x,&) with re-
spect to variable (Ula 0y Uny Untd,y 0t ,v2n) = (xl’ U axn’gh e 7§n) as fOl_
lows:
dw;(s;t,x,€)
J(87t7 x?f) - <8’l}k ]_}1”271 .

ki1, 2n

Then for any s,t € R satisfying |s —t| < T and x,§ € R™, det J(s;t,x,&) = 1.

§83. Proof of Theoreml.5

In this section, we prove Theorem 1.5 by using the lemmas in Section 2.

Proof of Theorem 1.5. Taking LP(R7)-LP(RE) norm of the both sides of (2.4),
we have

(3.1) HWso(tr)u(t’x’f)HLng
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< Cr (IWt0, 100 €O+ [ I1RuCr (7)ol 7).

First, we estimate the first term on the right hand side (3.1). Taking new
variables X = z(0;t,z,¢) and E = £(0;t,x,§) we have from Lemma 2.3.

HW30(0,~)u0<x(0)7§<O)>HL§L7§ = (/ ‘W¢(0,~)u0<x(0)7é-(o))‘pd.%'dg) ’

Iz, ¢§)
a(X,2)

%
dX dE)

= (/ W09 0 (X, E) P

= Wt €) 2.z

Next let us estimate the second term of the right hand side of (3.1). Since
u<T7 y) - H‘POHZEW;(TJ [W¢(7,~)u] (7—7 y)v

/¢vw—xv»Mameﬂﬂﬂ@

o7
LELE

- H/ oy — (7)) o) Weroyu] (7, y)e W dy

Lt Lg

N H/ / / o1,y — 2(r)p(r,y = 2) W yu(r, 2, n)e =D dydzdy

L7LE

holds for ¢ € C(R; S(R™)). Using the equality (n—£&(7))2(1—A,)e (1=¢(7) =
e (1=€(7) and integration by parts for 2N times, we have

/ / / By — 2(1) (7, y — 2) Wz yulr, z,m)e ) dydzzdy
= > // 0y d(r,y — x(7))02 (1, y — 2)

|B1]+]B2|<2N

ety (n=¢&(7)) dnded
T e/ wanN dyazan.
(n—&(r))*N
Taking LP(R7)-LP(R¢) norm of the both sides of the above equality and new
variables X = x(7;t,2,£) and =2 = £(7;t,x,§), we have

X Wo(ryu(T, 2,m)

LEL?

H/ / / A1,y — 2 (M)@(7,y = YWop(r,yulr, z,m)e 1= dydzdn
13
<Cr

>

|B1]+]B2|<2N
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'///862 Pmy =2 “W (72, )] }a ¢T’ ZJ(VT))‘dydzdn

L’;@Lé7
)aﬁ ory ())} ]
=Cr Y (,9,m) dydn
ot +ipalsa | // = £ 1235
9y o(7)
=C Z F(T) * (2N ’ (1) ’
|B1]+1B2]<2N || | oLy

where F(7,y,n) [‘85290 * }W@(T’,)U(T)u (y,m). Taking N € N large as
2N > n and using Hausdorff-Young’s inequality, we get

IR0,y

<ZCT

/ Sty — a(n)ulr,y)e Ve dy

k,l=1 LﬁLg
1 & ,
+3 Y | [yt e v
k=1 17974
coo 8 (Slstol, s 3 paol,)
|B1|+|B2|<2N N k,i=1 kll—=1
3
X H@y%D(T)‘ Ly Hch(T U T)HL?Z’Lf,

< ChCr. HWw(T )U(T)HLQL’,”, ’

where C,, = 3C H<'>_2NHL1‘
n
Thus, using the above inequality and Gronwall inequality for (3.1), we
obtain (1.3). O
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