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Abstract. Under a pull-back approach given by T. Aikou and L. Kozma
and firstly presented by D. Bao, S. S. Chern and Z. Shen, we introduce, in
this paper, the concepts of almost contact and normal almost contact Finsler
structures on the pull-back bundles. Properties of structures partly Sasakians
are studied. Using the hh-curvature tensor of Chern connection given by D.
Bao, S. S. Chern and Z. Shen, we obtain some characterizations of horizontal
Sasakian Finsler structures and K-contact structures via the horizontal Ricci
tensor and the flag curvature.
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§1. Introduction

Let (M,F ) be a Finsler manifold and TM0 be its slit tangent bundle. There
exist, in the literature, several frameworks for the study of Finsler geometry.
For instance, an approach through the double tangent bundle TTM0 (see
Grifone’s approach in [7]), an approach via the vertical subbundle of TTM0

(Bejancu-Farran, Abate-Patrizio, see [1]) and the pull-back bundle approach
(Bao-Chern-Shen, see [3]). The latter motivates this paper. In fact, let π
be a canonical submersion from TM0 onto M . The pull-back bundle π∗TM ,
which is nothing but a collection of fibers of TM on TM0, offers an adequate
framework of this study. The key idea is to construct, like in Riemannian case,
the Sasakian structures in Finsler geometry. Thus by using the horizontal
part of the curvature associated to the Chern connection, we obtain some
characterizations of Sasakian structures on the pull-back bundle, generalizing
their Riemannian’s analogues.

The paper is organized as follows. In Section 2, we recall some basic defini-
tions and necessary geometric concepts that are used throughout this paper.
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2 F. MASSAMBA AND S. J. MBATAKOU

We also define in an adapted tensorial formalism, an almost contact Finsler
structure (ϕ, η, ξ), on pull-back bundle π∗TM . We introduce in Section 3
almost contact and contact metric Finsler structures, and obtain some char-
acterizations. We define horizontal and vertically Sasakian Finsler structures
and K-contact Finsler structures. Under some conditions, we prove that con-
tact metric Finsler structure on π∗TM is horizontallyK-contact and vertically
K-contact. Using the Chern connection, we determine the covariant deriva-
tive of ϕ and ξ, in any direction, thereby generalizing the Riemannian case for
the Levi-civita connection. In the same section, we discuss some aspects of
hh-curvature with respect to the Chern connection of contact metric Finsler
pull-back bundle. We obtain the horizontal Ricci (1, 1; 0)-tensor relatively to
ξ and his horizontal representative. Finally, with the aid of the flag curvature
with transverse edge ξ, we obtain a Finslerian analogous characterization of
Hatakeyama, Ogawa and Tanno results on K-contact metric structures (see
[6] for more details).

§2. Preliminaries

Let π : TM −→ M be a tangent bundle of connected smooth Finsler manifold
M of odd-dimension m = 2n+1. We denote by v = (x, y) the points in TM if
y ∈ π−1(x) = TxM . We denote by O(M) the zero section of TM , and by TM0

the slit tangent bundle TM \ O(M). We introduce a coordinate system on
TM as follows. Let U ⊂ M be an open set with local coordinate (x1, ..., xm).
By setting v = yi ∂

∂xi for every v ∈ π−1(U), we introduce a local coordinate
(x, y) = (x1, ..., xm, y1, ..., ym) on π−1(U).

Definition 1. A function F : TM −→ [0,+∞) is called a Finsler structure
or Finsler metric on M if:

(i) F ∈ C∞(TM0),

(ii) F (x, λy) = λF (x, y), for all λ > 0,

(iii) The m × m Hessian matrix (gij), where gij :=
1

2
(F 2)yiyj is positive-

definite at all (x, y) of TM0.

The pair (M,F ) is called Finsler manifold. The pull-back bundle π∗TM is
a vector bundle over the slit tangent bundle TM0, defined by

π∗TM := {(x, y, v) ∈ TM0 × TM : v ∈ Tπ(x,y)M}.

By the objects (gij) given in Definition 1, the pull-back vector bundle π∗TM
admits a natural fibre metric

g := gijdx
i ⊗ dxj .
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This is the Finslerian fundamental tensor in a sense that we will specify later.
Likewise, there is the Finslerian Cartan tensor

(2.1) A = Aijkdx
i ⊗ dxj ⊗ dxk with Aijk :=

F

2

∂gij
∂yk

.

Note that, with a slight abuse of notation, ∂
∂xi and dxi are regarded as sections

of π∗TM and π∗T ∗M , respectively.

Now we will give some geometric tools for understanding the intrinsic for-
mulation of geometric objects that we used in this paper.

It is well known that the kernel of π∗ spans the vertical subbundle V of
TTM0. As shown in [10], an Ehresmann connection is the choice of the hori-
zontal complementary H ⊂ TTM0 such that

TTM0 = H⊕ V.

In this paper, we shall consider the choice of Ehresmann connection which
arises from the Finsler structure F : As shown in [11], every Finslerian struc-
ture F induces a spray

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

in which the spray coefficients Gi are defined by

Gi(x, y) :=
1

4
gil

[
F 2
xkyly

k − F 2
xl

]
where the matrix (gij) means the inverse of (gij).

Define a π∗TM -valued smooth 1-form on TM0 by

(2.2) θ =
∂

∂xi
⊗ 1

F
(dyi +N i

jdx
j)

where functions N i
j(x, y) are given by N i

j(x, y) :=
∂Gi

∂yj
(x, y). This π∗TM -

valued smooth 1-form θ is globally well-defined on TM0 (see [5]).

By the 1-form θ, defined in (2.2) which is called Finsler-Ehresmann form,
we can define a Finsler-Ehresmann connection as follow.

Definition 2. ([10]) A Finsler-Ehresmann connection of the submersion π :
TM0 −→ M is the subbundle H of TTM0 given by H = ker θ, where θ :
TTM0 −→ π∗TM is the bundle morphism defined in (2.2), and which is
complementary to the vertical subbundle V.



4 F. MASSAMBA AND S. J. MBATAKOU

It is well known that π∗TM can be naturally identified with the horizontal
subbundle H and the vertical one V (see [2]). Thus, any section X of π∗TM

is considered as a section of H or a section of V. We denote by X
H

and

X
V

respectively, the section of H and the section of V corresponding to X ∈
Γ(π∗TM) (see [2]):

X = X
i ∂

∂xi
∈ π∗TM ⇐⇒ X

H
= X

i δ

δxi
∈ Γ(H),

and

X = X
i ∂

∂xi
∈ π∗TM ⇐⇒ X

V
= X

i
F

∂

∂yi
∈ Γ(V)

where{
F

∂

∂yi
:= (

∂

∂xi
)V

}
i=1,...,m

and

{
δ

δxi
:=

∂

∂xi
−N i

j

∂

∂yi
= (

∂

∂xi
)H

}
i=1,...,m

are the vertical and horizontal lifts of natural local frame field { ∂
∂x1 , ...,

∂
∂xm }

with respect to the Finsler-Ehresmann connection H, respectively.

Proposition 2.1 ([2]). The bundle morphism π∗ and θ satisfy

π∗(X
H
) = X, π∗(X

V
) = 0 and θ(X

H
) = 0, θ(X

V
) = X

for every X ∈ Γ(π∗TM).

Proposition 2.1 means that HTM0, as well as VTM0, can be naturally
identified with the bundle π∗TM , that is,

(2.3) HTM0
∼= π∗TM and VTM0

∼= π∗TM.

Next, we recall the definition of the Chern connection on the pull-back bundle
which is going to be used throughout the paper. This connection is symmetric
but not always compatible with the metric of the underlying manifold.

Theorem 2.2 ([9]). Let (M,F ) be a Finsler manifold, g a fundamental tensor
of F and θ the vector form defined in (2.2). There exist a unique linear connec-
tion ∇ on π∗TM such that, for all X,Y ∈ Γ(TTM0) and Y , Z ∈ Γ(π∗TM),
we have,

(a) Symmetry

∇Xπ∗Y −∇Y π∗X = π∗[X,Y ],
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(b) Almost g-compatibility

(∇Xg)(Y , Z) = 2A(θ(X), Y , Z)

where A is the Cartan tensor defined in (2.1).

The connection ∇ in Theorem 2.2 is called the Chern connection.

Remark 1. If F is Riemannian (i.e., g(x,y) is independent of y), then A = 0
and hence ∇ is the Levi-Civita connection of the Riemannian metric g(x 7→
gx(= g(x,y))).

A Finslerian tensor field T of type (p1, p2; q) on (M,F ) is a map:

T : Γ((π∗TM)p1)× Γ((TTM0)
p2) −→ Γ((π∗TM)q),

which is C∞(TM0)-linear in each argument.
If T is of the type (p1, 1; q), then the tensor T has the following decompo-

sition
T = TH + T V ,

and for any ξ1, · · · , ξp1 and X ∈ Γ(TTM0), we have

TH(ξ1, · · · , ξp1 , X) = T (ξ1, · · · , ξp1 , XH)

and T V (ξ1, · · · , ξp1 , X) = T (ξ1, · · · , ξp1 , XV ).

If T is of type (p, 0; 0) and completely skew-symmetric, then it can be seen
as a differential p-form on π∗TM and its exterior differential according to the
horizontal and vertical directions are given by the following definition.

Definition 3 (Horizontal and vertical exterior differential [12]). Let T be a
p-form on π∗TM . Then the horizontal and vertical exterior differentials dHT
and dV T of T are the (p+ 1, 0; 0)-form given, respectively, by

dHT (X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1∇
X

H
i
T (X1, . . . , X̆i, . . . , Xp+1)

+
∑

1≤i<j≤p+1

(−1)i+jT (π∗[X
H
i , X

H
j ], X1, . . . , X̆i, . . . , X̆j , . . . , Xp+1)

and

dV T (X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1∇
X

V
i
T (X1, . . . , X̆i, . . . , Xp+1)

+
∑

1≤i<j≤p+1

(−1)i+jT (θ([X
V
i , X

V
j ]), X1, . . . , X̆i, . . . , X̆j , . . . , Xp+1)

for any Xi ∈ Γ(π∗TM), i = 1, . . . , p+ 1.
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In particular for p = 1, we have: ∀X,Y ∈ Γ(π∗TM),

dHT (X,Y ) = ∇
X

HT (Y )−∇
Y

HT (X)− T (π∗[X
H
, Y

H
])

and

dV T (X,Y ) = ∇
X

V T (Y )−∇
Y

V T (X)− T (θ[X
V
, Y

V
]).

In a similar way, for all X ∈ Γ(π∗TM), the Lie derivative LX of the (p, 0; r)-
Finslerian tensor is decomposed into the horizontal LH

X
and vertical LV

X
. Note

that, for f ∈ C∞(TM0) and Y ∈ Γ(π∗TM), we have

LH
X
f = X

H
(f), LV

X
f = X

V
(f), LH

X
Y = π∗[X

H
, Y

H
], LV

X
Y = θ[X

V
, Y

V
].

Now more generally, we adapt the formula of the Lie derivative of tensors
given in [8] on a (p, 0; r)-Finslerian. tensor. Then we have:

Definition 4 (Horizontal and vertical Lie derivative). Let X ∈ Γ(π∗TM) and
T be a (p, 0; r)-tensor. The horizontal and vertical Lie derivative of T relative
to X are given respectively by(

LH
X
T
)
(Y1, . . . ,Yp, α1, . . . , αr) = X

H (
T (Y1, . . . , Yp, α1, . . . , αr)

)
−

p∑
i=1

T (Y1, . . . ,LH
X
Yi, . . . , Yp, α1, . . . , αr)

−
p∑

j=1

T (Y1, . . . , Yi, . . . , Yp, α1, . . . ,LH
X
αi, . . . αr)

and (
LV
X
T
)
(Y 1, . . . ,Y p, α1, . . . , αr) = X

V (
T (Y 1, . . . , Y p, α1, . . . , αr)

)
−

p∑
i=1

T (Y 1, . . . ,LV
X
Yi, . . . , Y p, α1, . . . , αr)

−
p∑

j=1

T (Y1, . . . , Yi, . . . , Yp, α1, . . . ,LV
X
αi, . . . αr)

where

(LH
X
αi)(Y ) = X

H
αi(Y )− αi(π∗[X

H
, Y

H
]),

and (LV
X
αi)(Y ) = X

V
αi(Y )− αi(θ[X

V
, Y

V
]).

In the same way, we adapt the definition of the covariant derivative of
tensors in [8] to the (p, q; r)-tensor with respect to the Chern connection :
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Definition 5 (Covariant Chern derivative). Let T a Finslerian tensor of type
(p, q; r) and let X ∈ Γ(TTM0). Then, we define the covariant Chern derivative
of T in the direction of X by the formula

(∇XT )(Y 1, . . . , Y p, X1, . . . , Xq, α1, . . . , αr)

= X(T (Y 1, . . . , Y p, X1, . . . , Xq, α1, . . . , αr))

−
p∑

i=1

T (Y 1, . . . ,∇XY i, . . . , Y p, X1, . . . , Xq, α1, . . . , αr)

−
q∑

j=1

T (Y 1, . . . , Y p, X1, . . . , (∇Xπ∗Xj)
H , . . . , Xq, α1, . . . , αr)

−
q∑

j=1

T (Y 1, . . . , Y p, X1, . . . , (∇XθXj)
V , . . . , Xq, α1, . . . , αr)

−
r∑

k=1

T (Y 1, . . . , Y p, X1, . . . , Xq, α1, . . . ,∇Xαk, . . . , αr)

where Xi ∈ Γ(TTM0), i = 1, . . . , p; Y j ∈ Γ(π∗TM), j = 1, . . . , q; αk ∈
Γ(π∗T ∗M), k = 1, . . . , r, and each of the quantities ∇Xαk is evaluated by
(∇Xαk)(Y ) = Xαk(Y )− αk(∇XY ).

§3. Almost contact Finsler structures

In this section, we adapt the definition of almost contact structures given in
[4] in the case of Finsler.

Let ϕ, ξ and η be the (1, 0; 1)-, (1, 0; 0)- and (0, 0; 1)-Finslerian tensor,
respectively, such that

ϕ2 = −I+ η ⊗ ξ and η(ξ) = 1.

Then the triplet (ϕ, η, ξ) is called an almost contact Finsler structure on π∗TM
and (π∗TM,ϕ, η, ξ) is called almost contact Finsler pull-back bundle.

First of all, we prove the following.

Proposition 3.1. Let (π∗TM,ϕ, η, ξ) be an almost contact Finsler pull-back
bundle. Then,

ϕ(ξ) = 0 and η ◦ ϕ = 0.

Moreover, ϕ is of rank 2n.

Proof. The proof is similar to the one given in [4].
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Now, we define the normality condition on an almost contact Finsler struc-
tures on (π∗TM,ϕ, η, ξ). Let T be a (1, 0; 1)-Finslerian tensor. The Nijenhuis
torsion of T is the (2, 0; 1)-Finslerian tensor decomposed into the horizontal
and vertical part NH

T and NV
T given, respectively, by

NH
T (X,Y ) =T 2π∗[X

H
, Y

H
] + π∗[(TX)H , (TY )H ]− Tπ∗[(TX)H , Y

H
]

− Tπ∗[X
H
, (TY )H ]

and

NV
T (X,Y ) =T 2θ[X

V
, Y

V
] + θ[(TX)V , (TY )V ]− Tθ[(TX)V , Y

V
]

− Tθ[X
V
, (TY )V ]

for any X,Y ∈ Γ(π∗TM).

Definition 6. The almost contact Finsler structure (ϕ, η, ξ) on pull-back bun-
dle π∗TM is horizontally normal if

N (1)
H (X,Y ) = NH

ϕ (X,Y ) + 2dHη(X,Y )ξ = 0

and it is vertically normal if

N (1)
V (X,Y ) = NV

ϕ (X,Y ) + 2dV η(X,Y )ξ = 0

for any X,Y ∈ Γ(π∗TM).

Next, we give some equivalent conditions for horizontal and vertical nor-

mality of the structure (ϕ, η, ξ). For this reason, we introduce six tensors N (2)
H ,

N (2)
V , N (3)

H , N (3)
V , N (4)

H and N (4)
V given by

N (2)
H (X,Y ) := (LH

ϕX
η)Y − (LH

ϕY
η)X,

N (2)
V (X,Y ) := (LV

ϕX
η)Y − (LV

ϕY
η)X,

N (3)
H := (LH

ξ ϕ)X,

N (3)
V := (LV

ξ ϕ)X,

N (4)
H := (LH

ξ η)X,

N (4)
V := (LV

ξ η)X

for all X,Y ∈ Γ(π∗TM).

Theorem 3.2. For an almost contact Finsler structure (ϕ, η, ξ), the vanishing

of N (1)
H implies the vanishing of N (2)

H , N (3)
H and N (4)

H . Likewise, the vanishing

of N (1)
V implies the vanishing of N (2)

V , N (3)
V and N (4)

V .
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Proof. The proof is similar to the one given in Riemannian case by Blair in
[4].

Now, let (ϕ, η, ξ) be an almost contact Finsler structure on π∗TM . When
the fundamental tensor g of the Finslerian structure F satisfies

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any sections X and Y on π∗TM , we said that g is compatible with the
structure (ϕ, η, ξ). In this case, (π∗TM,ϕ, η, ξ, g) is called an almost contact
metric Finsler pull-back bundle.

Moreover, we define the generalized second fundamental 2-form Φ by:

Φ(X,Y ) := g(X,ϕY ), X, Y ∈ Γ(π∗TM).

Because of the isomorphisms in (2.3), we defined an almost contact metric
Finsler structure as follows.

Definition 7. An almost contact metric Finsler structure (ϕ, η, ξ, g) is a hor-
izontal contact Finsler structure if

Φ = 2dHη, and vertically if Φ = 2dV η.

Let (ϕ, η, ξ, g) be a contact metric Finsler structure on π∗TM . A section
X ∈ Γ(π∗TM) is horizontally Killing and vertically Killing, if it satisfies,
respectively

LH
X
g = 0 and LV

X
g = 0.

Definition 8. Let (ϕ, η, ξ, g) be a contact metric Finsler structure. If ξ is
horizontally Killing (respectively, vertically Killing), then (ϕ, η, ξ, g) is called
horizontalK-contact Finsler structure (respectively, verticalK-contact Finsler
structure).

Theorem 3.3. Let (ϕ, η, ξ, g) be a contact metric Finsler structure on π∗TM .
Then

N (4)
H = N (4)

V = 0, N (2)
H = N (2)

V = 0.

Moreover N (3)
H vanishes if and only if ξ is horizontally Killing and N (3)

V van-
ishes if and only if ξ is vertically Killing.

Proof. The proof is similar to the one for the Riemannian case in [4].
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Lemma 3.4. For an almost contact metric Finsler structure (ϕ, η, ξ, g) on
π∗TM with identification π∗TM ∼= HTM0, the covariant derivative of ϕ with
respect to the Chern connection is given by

2g((∇Xϕ)Y , Z) =3dHΦ(π∗X,ϕY , ϕZ)− 3dHΦ(π∗X,Y , Z)(3.1)

+ g(N (1)
H (Y , Z), ϕπ∗X) +N (2)

H (Y , Z)η(π∗X)

+ 2dHη(ϕY , π∗X)η(Z)− 2dHη(ϕZ, π∗X)η(Y )

− 2A(θ(X), ϕY , Z)− 2A(θ(X), Y , ϕZ)

where X ∈ Γ(TTM0) and Y , Z ∈ Γ(π∗TM).

Proof. For X,Y, Z ∈ Γ(TTM0), it is well known, by the Chern connection
that (see [9])

2g(∇Xπ∗Y, π∗Z) =X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y, Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z)

where

A(X,Y, Z) = A(θ(X), π∗Y, π∗Z))+A(θ(Y ), π∗Z, π∗X))−A(θ(Z), π∗X,π∗Y )).

Now we have,

2g((∇Xϕ)Y , Z) =2g(∇Xϕ(Y ), Z) + 2g(∇XY , ϕ(Z))

=XΦ(Z, Y ) + ϕY
H (

Φ(Z, π∗X) + η(Z)η(π∗X)
)

− Z
H
Φ(π∗X,Y )− Φ(π∗[X,ϕY

H
], ϕZ) + η(π∗[X,ϕY

H
])η(Z)

− g(ϕπ∗[ϕY
H
, Z

H
], ϕπ∗X)− η(π∗[ϕY

H
, Z

H
])η(π∗X)

+ Φ(π∗[Z
H
, X], Y )− 2A(θ(X), ϕY , Z) +XΦ(ϕY , ϕZ)

− Y
H
Φ(Z, π∗X)− ϕZ

H (
Φ(ϕY , π∗X) + η(π∗X, η(Y )

)
(3.2)

+ Φ(π∗[X,Y
H
], Z

H
)− g(ϕπ∗[Y

H
, ϕZ

H
], ϕπ∗X)

− η(π∗[Y
H
, ϕZ

H
])η(π∗X)− Φ(π∗[ϕZ

H
, X], ϕY )

+ η(π∗[ϕZ
H
, X])η(Y )− 2A(θ(X), Y , ϕZ)

+ Φ(π∗[Y
H
, Z

H
], π∗X)− g((π∗[Y

H
, Z

H
], ϕπ∗X))

− Φ(π∗[ϕY
H
, ϕZ

H
], π∗X) + g((π∗[ϕY

H
, ϕZ

H
], ϕπ∗X))

+ g(2dHη(Y , Z)ξ, ϕπ∗X).
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Note that, the sum of the last five terms of (3.2) is zero, and we keep it to
write this expression in terms of horizontal exterior differential of Φ, and the

tensors N (1)
H and N (2)

H . It follows that

2g((∇Xϕ)Y , Z) =XΦ(ϕY , ϕZ) + ϕY
H
Φ(ϕZ, π∗X) + ϕZ

H
Φ(π∗X,ϕY )

− Φ(π∗[X,ϕY
H
], ϕZ)− Φ(π∗[ϕY

H
, ϕZ

H
], π∗X)

− Φ(π∗[ϕZ
H
, X], ϕY )−XΦ(Y , Z)− Y

H
Φ(Z, π∗X)

− Z
H
Φ(π∗X,Y ) + Φ(π∗[X,Y

H
], Z)

+ Φ(π∗[Y
H
, Z

H
], π∗X) + Φ(π∗[Z

H
, X], Y )

+ ϕY
H
η(Z)η(π∗X)− η(π∗[ϕY

H
, Z

H
])η(π∗X)

+ ϕZ
H
η(Y )η(π∗X)− η(π∗[Y

H
, ϕZ

H
])η(π∗X)

− g(ϕπ∗[ϕY
H
, Z

H
], ϕπ∗X)− g(ϕπ∗[Y

H
, ϕZ

H
], ϕπ∗X)

− g(π∗[Y
H
, Z

H
], ϕπ∗X) + g(π∗[ϕY

H
, ϕZ

H
], ϕπ∗X)

+ g(2dHη(Y , Z)ξ, ϕπ∗X) + η(π∗[X,ϕY
H
])η(Z)

+ η(π∗[ϕZ
H
, X])η(Y )− 2(A(θ(X), ϕY , Z) +A(θ(X), Y , ϕZ))

= 3dHΦ(π∗X,ϕY , ϕZ)− 3dHΦ(π∗X,Y , Z)

+N (2)
H (Y , Z)η(π∗X) + g(N (1)

H (Y , Z), ϕπ∗X)

+ 2dHη(ϕY , π∗X)η(Z)− 2dHη(ϕZ, π∗X)η(Y )

− 2(A(θ(X), ϕY , Z) +A(θ(X), Y , ϕZ)),

which completes the proof.

Remark 2. The relation (3.1) generalizes the one given by Blair in [4, page 82]
for the case of almost contact metric structure (ϕ, ξ, η, g). Indeed, when the
Finsler structure F is Riemannian, the Cartan tensor vanishes and the Chern
connection reduces to the Levi-Civita connection of g.

Corollary 3.5. For an almost contact metric Finsler structure (ϕ, η, ξ, g) on
π∗TM with identification π∗TM ∼= HTM0, the horizontal and vertical covari-
ant derivatives of ϕ, are given respectively by:

2g((∇H
Xϕ)Y , Z) = 3dHΦ(π∗X,ϕY , ϕZ)− 3dHΦ(π∗X,Y , Z)

+ g(N (1)
H (Y , Z), ϕπ∗X) +N (2)

H (Y , Z)η(π∗X)

+ 2dHη(ϕY , π∗X)η(Z)− 2dHη(ϕZ, π∗X)η(Y )

and

2g((∇V
Xϕ)Y , Z) = −2

(
A(θ(X), ϕY , Z) +A(θ(X), Y , ϕZ)

)
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where ∇H
X = ∇XH and ∇V

X = ∇XV .

Proof. The proof follows from a straightforward calculation using Lemma 3.4.

Definition 9. The horizontal normal contact Finsler structures (ϕ, η, ξ, g) are
called horizontal Sasakian Finsler structures, and the vertical ones are called
vertical Sasakian Finsler structures.

Theorem 3.6. An almost contact metric Finsler structure (ϕ, η, ξ, g) on
π∗TM , with identification π∗TM ∼= HTM0, is horizontally Sasakian if and
only if

(∇Xϕ)Y = g(π∗X,Y )ξ − η(Y )π∗X + ϕA♯(θ(X), Y , •)−A♯(θ(X), ϕY , •),

where
g(A♯(θ(X), Y , •), Z) = A(θ(X), Y , Z)

for all X ∈ Γ(TTM0) and Y , Z ∈ Γ(π∗TM).

Proof. If (ϕ, η, ξ, g) is horizontally Sasakian, then by Lemma 3.4,

2g((∇Xϕ)Y , Z) =2dHη(ϕY , π∗X)η(Z)− 2dHη(ϕZ, π∗X)η(Y )

− 2A(θ(X), ϕY , Z)− 2A(θ(X), Y , ϕZ)

=2g(Y , π∗X)η(Z)− 2g(π∗X,Z)η(Y )

− 2g(A♯(θ(X), ϕY , •), Z)− 2g(A♯(θ(X), Y , •), ϕZ)

=2g(g(Y , π∗X)ξ − η(Y )π∗X + ϕA♯(θ(X), Y , •), Z)

− 2g(A♯(θ(X), ϕY , •), Z).

From which the result follows. Conversely, assuming that

(∇Xϕ)Y = g(π∗X,Y )ξ − η(Y )π∗X + ϕA♯(θ(X), Y , •)−A♯(θ(X), ϕY , •)

and taking Y = ξ, we have

(∇Xϕ)ξ = η(π∗X)ξ − π∗X + ϕA♯(θ(X), ξ, •).

Hence, one obtains

∇Xξ = −ϕπ∗X + ϕ2A♯(θ(X), ξ, •).

Therefore, we have

dHη(X,Y ) =
1

2
(g(Y ,∇

X
H ξ)− g(X,∇

Y
H ξ)) = g(X,ϕY ) = Φ(X,Y ).
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Thus (ϕ, ξ, η, g) is a contact metric Finsler structure. Now, by definition,

NH
ϕ (X,Y ) = ϕ(∇

Y
Hϕ)X − ϕ(∇

X
Hϕ)Y + (∇(ϕX)Hϕ)Y − (∇(ϕY )Hϕ)X,

and using the hypothesis, we obtain

NH
ϕ (X,Y ) = −2dHη(X,Y )ξ,

which completes the proof.

Corollary 3.7. For an almost contact metric Finsler structure (ϕ, η, ξ, g) on
π∗TM , with identification π∗TM ∼= HTM0, the following holds:

∇ξHϕ = 0 and (∇ξV ϕ)Y = ϕA♯(θ(ξV ), Y , •)−A♯(θ(ξV ), ϕY , •)

for all Y ∈ Γ(π∗TM).

Lemma 3.8. For a contact metric Finsler structure (ϕ, η, ξ, g) on π∗TM , with
identification π∗TM ∼= HTM0, the following holds:

2g((∇Xϕ)Y , Z) = g(N (1)
H (Y , Z), ϕπ∗X) + 2dHη(ϕY , π∗X)η(Z)

− 2dHη(ϕZ, π∗X)η(Y )− 2
(
A(θ(X), ϕY , Z) +A(θ(X), Y , ϕZ)

)
.

Proof. The proof is obtained by Lemma 3.4 and Theorem 3.3.

On a contact metric Finsler structure (Theorem 3.3), N (3)
H = 0 if and only if

ξ is horizontally Killing, andN (3)
V = 0 if and only if ξ is vertically Killing. Then

the horizontal Sasakian Finsler structure is horizontalK-contact structure and
the vertical Sasakian Finsler structure is vertical K-contact structure.

Due to the use of tensors N (3)
H and N (3)

V , it would be important to investi-
gate some properties of these tensors.

Let

h =
1

2
N (3)

H =
1

2
LξHϕ and v =

1

2
N (3)

V =
1

2
LξV ϕ.

We firstly notice that

hξ = 0 and vξ = 0.

Proposition 3.9. For a contact metric Finsler (ϕ, η, ξ, g), h is a symmetric
operator, whereas v is a symmetric operator if

A(θ(X
V
), ξ, ϕY ) +A(θ(ϕX

V
), ξ, Y ) = A(θ(Y

V
), ξ, ϕX) +A(θ(ϕY

V
), ξ,X)

for all X,Y ∈ Γ(π∗TM).
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Proof. Let X,Y ∈ Γ(π∗TM). Then we have

2g(hX,Y ) = g((LξHϕ)X,Y ) = g(π∗[ξ
H , (ϕX)H ]− ϕ(π∗[ξ

H , X
H
]), Y )

= g(−∇(ϕX)H ξ + ϕ(∇
X

H ξ), Y ).

It follows that if X or Y is equal to ξ, then g(hX,Y ) = 0. Recall that N (2)
H = 0

for contact metric Finsler structures. Then for X and Y orthogonal to ξ,

0 = N (2)
H = (L(ϕX)Hη)Y − (L(ϕY )Hη)X

= η(π∗[(ϕY )H , X
H
])− η(π∗[(ϕX)H , Y

H
]).

Thus

η(∇(ϕX)HY ) + η(∇
X

HϕY ) = η(∇(ϕY )HX) + η(∇
Y

HϕX).

On the other hand, g(ξ, Y ) = 0 implies that g(ξ,∇(ϕX)HY ) = −g(∇(ϕX)H ξ, Y ),
so we have

2g(hX,Y ) = g(−∇(ϕX)H ξ + ϕ(∇
X

H ξ), Y )

= η(∇(ϕX)HY ) + η(∇
X

HϕY )

= η(∇(ϕY )HX) + η(∇
Y

HϕX)

= 2g(hY ,X),

which proves that h is symmetric. For the operator v, using the fact that (see
[2] for details)

∇Xθ(Y )−∇Y θ(X) = θ([X,Y ]),

we obtain

η(∇(ϕX)V Y ) + η(∇
X

V ϕY ) = η(∇(ϕY )V X) + η(∇
Y

V ϕX).

By observing that

g(ξ,∇
X

V ϕY ) + g(∇
X

V ξ, ϕY ) = 2A(θ(X
V
), ξ, ϕY )),

one gets

2g(vX,Y ) =g(ξ,∇(πX)V Y ) + g(ξ,∇
X

V ϕY )− 2A((ϕX)V , ξ, Y )

− 2A(θ(X
V
), ξ, ϕY )

=η(∇(πX)V Y ) + η(∇
X

V ϕY )− 2(A((ϕX)V , ξ, Y )

+A(θ(X
V
), ξ, ϕY ))
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=η(∇(πY )V X) + η(∇
Y

V ϕX)− 2(A((ϕX)V , ξ, Y )

+A(θ(X
V
), ξ, ϕY )).

Then, v is a symmetric operator if

A(θ(X
V
), ξ, ϕY ) +A(θ(ϕX

V
), ξ, Y ) = A(θ(Y

V
), ξ, ϕX) +A(θ(ϕY

V
), ξ,X).

This completes the proof.

Lemma 3.10. For a contact metric Finsler structure (ϕ, η, ξ, g), the covariant
derivative of ξ in the direction of X ∈ Γ(TTM0) is given by

∇Xξ = −ϕh(π∗X)− ϕπ∗X +A♯(θ(X), ξ, •)− 2A(θ(X), ξ, ξ)ξ

where

g(A♯(θ(X), ξ, •), Z) = A(θ(X), ξ, Z)

for all Z ∈ Γ(π∗TM).

Proof. By Lemma 3.8, we have

2g((∇Xϕ)ξ, Z) = g(N (1)
H (ξ, Z), ϕπ∗X)− 2dHη(ϕZ, π∗X)− 2A(θ(X), ξ, ϕZ)

= −g((LξHϕ)Z, π∗X)− 2g(Z, π∗X) + 2g(Z, η(π∗X)ξ)− 2A(θ(X), ξ, ϕZ)

= −2g(hZ, π∗X)− 2g(Z, π∗X) + 2g(Z, η(π∗X)ξ)− 2A(θ(X), ξ, ϕZ).

Thus, by symmetry of h we have

ϕ∇Xξ = hπ∗X + π∗X − η(π∗X)ξ + ϕA♯(θ(X), ξ, •).

Applying ϕ to this equation, we obtain

∇Xξ = −ϕh(π∗X)− ϕπ∗X +A♯(θ(X), ξ, •)− 2A(θ(X), ξ, ξ)ξ,

which completes the proof.

Remark 3. When the Finsler structure is Riemannian, the Cartan tensor A
vanishes and the Chern connection coincides with the Levi-Civita ones. Then
we find the covariant derivative of the characteristic tensor ξ given in [4, p.
84].

Corollary 3.11. Let (ϕ, η, ξ, g) be a contact metric structure. Under the
identification π∗TM ∼= HTM0, the operator h anti-commutes with ϕ and

tracegh = 0.
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Proof. For all X,Y ∈ Γ(π∗TM), we have

2g(X,ϕY ) = g(∇
X

H ξ, Y )− g(∇
Y

H ξ,X)

= g(−ϕh(X)− ϕX, Y )− g(−ϕh(Y )− ϕY ,X)

= 2g(X,ϕY )− g(ϕh(X), Y ) + g(ϕh(Y ), X).

Consequently,
−g(ϕh(X), Y ) + g(ϕh(Y ), X) = 0

and we obtain
hϕ+ ϕh = 0.

So h anti-commutes with ϕ. For the last assertion, if hX = λX, then

hϕX = −ϕhX = −λϕX.

Thus if λ is an eigenvalue of h, so is −λ and hence tracegh = 0.

Now, we discuss some aspects of the hh-curvature R with respect to the
Chern connection of contact metric Finsler pull-back bundle (π∗TM,ϕ, η, ξ, g).

Definition 10 ([10]). The full curvature C of Chern connection ∇ is defined
by:

C(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

where X,Y ∈ Γ(TTM0) and Z ∈ Γ(π∗TM).

Using the decomposition∇X = ∇XH+∇XV , we can write the full curvature
as

C(X,Y )Z =CHH(X,Y )Z + CHV (X,Y )Z + CV H(X,Y )ξ(3.6)

+ CV V (X,Y )Z

where CHH(X,Y )Z = C(XH , Y H)Z, CHV (X,Y )Z = C(XH , Y V )Z and
CV V (X,Y )Z = C(XV , Y V )Z.

The component CHH given in (3.6) is called hh-curvature tensor of Chern
connection ∇ and will be denoted by R, i.e.,

R(X,Y )Z = CHH(X,Y )Z.

Proposition 3.12. On contact metric Finsler pull-back bundle (π∗TM,ϕ, η, ξ, g),
we have: (

∇ξHh
)
π∗X =ϕπ∗X − h2ϕπ∗X + ϕR(ξH , X)ξ(3.7)

+ ϕA♯(θ[ξH , X], ξ, •)
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and

(3.8)
1

2

(
R(ξH , X)ξ − ϕR(ξH , (ϕπ∗X)H)ξ

)
= h2π∗X +

1

2
ϕ2A♯(θ([ξH , X]), ξ, •) + ϕ2π∗X

1

2
ϕA♯(θ([ξH , (ϕπ∗X)H ]), ξ, •)

for any X ∈ Γ(TTM0) and any ξ ∈ Γ(π∗TM).

Proof. For any X ∈ Γ(TTM0) and since ∇ξH ξ = 0, one has

R(ξH , X)ξ = ∇ξH∇Xξ −∇[ξH ,X]ξ.

By Lemma 3.10, we obtain

(3.9) R(ξH , X)ξ = −ϕ∇ξHh(π∗X)− ϕ∇ξHπ∗X + ϕh(π∗[ξ
H , X])

+ ϕπ∗[ξ
H , X] +A♯(θ([ξ,H X]), ξ, •)− 2A(θ([ξ,H X]), ξ, ξ)ξ.

Applying ϕ to the equation (3.9) and using the fact that ∇ξHϕ = 0 we have,

ϕR(ξH , X)ξ =∇ξH (π∗X + hπ∗X)− η(∇ξH (π∗X + hπ∗X))ξ − hπ∗[ξ
H , X]

+ η(π∗[ξ
H , X])ξ − π∗[ξ

H , X] + ϕA♯(θ([ξH , X], ξ, •)
=∇ξH (π∗X + hπ∗X)− hπ∗[ξ

H , X]− π∗[ξ
H , X]

+ ϕA♯(θ([ξH , X], ξ, •)

by Corollary 3.11 and the fact that η(∇ξHhπ∗X) = 0, we obtain

ϕR(ξH , X)ξ =(∇ξHh)π∗X − ϕπ∗X + h2ϕπ∗X(3.10)

− ϕA♯(θ([ξH , X], ξ, •),

which leads to the relation (3.7). Now, from (3.10) we have

ϕR(ξH , (ϕ(π∗X))H)ξ =(∇ξHh)ϕ(π∗X)− ϕ2(π∗X) + h2ϕ2π∗X(3.11)

− ϕA♯(θ([ξH , (ϕ(π∗X))H ], ξ, •)
=− ϕ(∇ξHh)(π∗X)− h2π∗X − ϕ2π∗X

− ϕA♯(θ([ξH , (ϕ(π∗X))H ], ξ, •)

and

R(ξH , X)ξ =− ϕ((∇ξHh)π∗X) + ϕ2(π∗X) + h2π∗X(3.12)

− ϕ2(A♯(θ([ξH , X], ξ, •)).

Subtracting (3.12) by (3.11), we get (3.8).
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Theorem 3.13. On the manifold with horizontal Sasakian Finsler structure,
the hh-curvature and the characteristic section ξ satisfy

R(X,Y )ξ =η(π∗X)π∗Y − η(π∗Y )π∗X +Aϕ(Y,X)−Aϕ(X,Y )(3.13)

+∇XBξ(Y )−∇Y Bξ(X)− Bξ([X,Y ]),

where A is the (0, 2; 1)-tensor given by

Aϕ(X,Y ) = ϕA♯(θ(X), π∗Y, •)−A♯(θ(X), ϕπ∗Y, •)

and Bξ the (0, 1; 1)-tensor given by

Bξ(X) = A♯(θ(X), ξ, •)− 2A♯(θ(X), ξ, ξ)ξ

for any X, Y ∈ Γ(TTM0).

Proof. For any X, Y ∈ Γ(TTM0), we have

R(X,Y )ξ =−∇X(ϕπ∗Y ) +∇XA♯(θ(Y ), ξ, •)− 2∇XA(θ(Y ), ξ, ξ)ξ

+∇Y (ϕπ∗X)−∇Y A
♯(θ(X), ξ, •) + 2∇Y A(θ(X), ξ, ξ)ξ

+ ϕπ∗([X,Y ])−A♯(θ([X,Y ]), ξ, •) + 2A(θ([X,Y ]), ξ, ξ)ξ

=− (∇Xϕ)(π∗Y ) +∇XA♯(θ(Y ), ξ, •)− 2∇XA(θ(Y ), ξ, ξ)ξ

+ (∇Y ϕ)(π∗X)−∇Y A
♯(θ(X), ξ, •) + 2∇Y A(θ(X), ξ, ξ)ξ

−A♯(θ([X,Y ]), ξ, •) + 2A(θ([X,Y ]), ξ, ξ)ξ.

Letting
Aϕ(X,Y ) = ϕA♯(θ(X), π∗Y, •)−A♯(θ(X), ϕπ∗Y, •)

and
Bξ(X) = A♯(θ(X), ξ, •)− 2A♯(θ(X), ξ, ξ)ξ,

we complete the proof.

Remark 4. The formula (3.13) generalizes in Finsler case the curvature of
Sasakian manifold R(X,Y )ξ = η(Y )X − η(X)Y given by Blair in [4, p. 113].

Recall that the pull-back bundle π∗TM is locally of dimension (2n + 1).
Then, as in Riemannian case, we define a ϕ-basis of π∗TM as

{∂i, ∂i∗ := ϕ∂i, ξ}i=1,··· ,n .

It is well known that (see [10] for more details), by the trace of hh-curvature
of Chern connection, we have a Finslerian analogous of Ricci tensor, called
horizontal Ricci (1,1;0)-tensor, denoted by RicH and given by

(3.14) RicH(Z,X) = traceg(Y 7→ R(X,Y
H
)Z)

for any X ∈ Γ(TTM0) and Y , Z ∈ Γ(π∗TM).
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Proposition 3.14. On contact metric Finsler pull-back bundle
(π∗TM,ϕ, η, ξ, g), the horizontal Ricci (1, 1; 0)-tensor curvature with respect
to ξ and ξH is given by

RicH(ξ, ξH) =− 2n+ 2tracegh
2

+
n∑

i=1

1

2

{
A(θ([ξH , δi]), ξ, ∂i) −A(θ([ξH , δi∗ ]), ξ, ϕ∂i)

}
,

where δi = ∂H
i and δi∗ = ∂H

i∗ , for all i = 1, · · · , n.

Proof. By (3.14), and the fact that R(ξH , ξH)ξ = 0, we have

RicH(ξ, ξH) =

n∑
i=1

[
g(R(ξH , δi)ξ, ∂i) + g(R(ξH , δi∗)ξ, ∂i∗)

]
=

n∑
i=1

[
g(R(ξH , δi)ξ − ϕR(ξH , ϕδi)ξ, ∂i)

]
.

Then, by Proposition 3.12, we obtain

RicH(ξ, ξH) =

n∑
i=1

2g

(
h2∂i + ϕ2∂i +

1

2
ϕ2A♯(θ([ξH , δi]), ξ, •), ∂i

)

+

n∑
i=1

g
(
ϕA♯(θ([ξH , ϕδi], ξ, •)), ∂i

)
,

which completes the assertion.

Theorem 3.15. A contact metric Finsler pull-back bundle (π∗TM,ϕ, η, ξ, g)
is horizontally K-contact if and only if

RicH(ξ, ξH) = −2n+
n∑

i=1

(
A(θ([ξH , δi]), ξ, ∂i)−A(θ([ξH , δi∗ ]), ξ, ϕ∂i)

)
.

Proof. The proof is derived from Proposition 3.14 and the fact that h = 0 for
the horizontal K-contact metric Finsler structures.

Recall that there is a distinguished section l of π∗TM which is globally
defined on the manifold TM0 (see [3] for more details). It is defined by

l = l(x,y) :=
yi

F (y)

∂

∂xi
=

yi

F

∂

∂xi
=: li

∂

∂xi
.
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There is also a geometrical invariant that generalizes the sectional curvature
of Riemannian geometry (see [3]). This is, in fact, the flag curvature defined
by

K(l, V ) :=
vi(ljRjiksl

s)vk

g(l, l)g(V, V )− [g(l, V )]2
,

where V is the section of the pull-back bundle π∗TM .

Note that the flag curvature is the Finslerian analogous part of Hatakeyama,
Ogawa and Tanno result (see [6]).

Theorem 3.16. Let (π∗TM,ϕ, η, ξ, g) be a horizontal K-contact metric
Finsler pull-back bundle. Then, the flag curvature with the transverse edge ξ
is equal to 1.

Proof. Assume that (π∗TM,ϕ, η, ξ, g) is horizontally K-contact then h = 0.
On the other hand, the flag curvature with the transverse edge ξ is given by

K(l, ξ) = g(R(lH , ξH)ξ, l)

= g(ϕ∇ξHhl − ϕ2l − h2l − ϕ2A♯(θ[ξH , lH ], ξ, •), l)
= −g(∇ξHhl, ϕl) + 1− g(h2l, l),

and the assertion follows by hypothesis.
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