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8§1. Introduction

It is an interesting problem to quantize isomonodromic deformation equa-
tions. In [11] Reshetikhin showed that the Knizhnik—Zamolodchikov system is
a quantization of the Schlesinger equations, which govern the isomonodromic
deformations of linear differential systems of the form

du  ~=~ R;
@:Zl‘*tiu’

=1

where the matrices R; do not depend on x (a similar result has been also
obtained by Harnad, see [7]). Reshetikhin’s result was generalized in [1, 5],
where the authors constructed a quantization of the equations of Jimbo—Miwa—
Méri-Sato [8], which govern the isomonodromic deformations of systems of the
form

m

du Ri
T
dx +Zx—tiu

=1

where the matrices T, R; do not depend on z and T is diagonal with distinct
eigenvalues. In [9] Nagoya—Sun further generalized the above results. They
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quantized the Hamiltonian system governing the isomonodromic deformations
of systems of the form

m

du R;
A B o
I T + +;ztiu’

where the matrices A, B, R; do not depend on z and A is diagonal with distinct
eigenvalues.

On the other hand, in [2] Boalch introduced an interesting class of Hamil-
tonian systems of isomonodromy type, called the simply-laced isomonodromy
systems. They partially govern the isomonodromic deformations of systems of
the form

m

du R;
—=A T+ AY
I x+T+[A, ]+Zx—tiu’

i=1

where the matrices A,T,Y, R; do not depend on x and A,T are diagonal.
Since A is not assumed to have distinct eigenvalues, such systems contain
the systems considered by Nagoya—Sun. Boalch showed that the simply-laced
isomonodromy systems have a beautiful SLy(C)-symmetry, which specializes
to the well-known Harnad duality (see [6]) when A = 0.

Recently, Rembado [10] quantized the simply-laced isomonodromy systems.
In this note, we give a different way to quantize the simply-laced isomon-
odromy systems. Our approach is to use the theory of Manin matrices and
Talalaev’s quantum spectral curve method (see [3, 13]). As mentioned in [10],
our result has been announced in 2015.

This note is organized as follows. Section 2 is the classical theory. The
first three subsections are devoted to a brief review on Boalch’s simply-laced
isomonodromy systems and their remarkable properties. In Section 2.4, we
give some useful expressions of the Hamiltonians of the simply-laced isomon-
odromy systems. For instance, we express the Hamiltonians in terms of the
spectral curve (see Theorem 2.10, which we call the determinant formula).
They are interesting in their own right and seem to be new. Section 3 is the
quantum theory. In Section 3.1 we first construct the deformation quantiza-
tion of the phase space and some commutative subalgebra A in which our
quantized Hamiltonians live. For the construction of H and the proof of com-
mutativity we use Talalaev’s quantum spectral curve method. In Section 3.2,
we show that  is invariant under some SLg(C)-symmetry using the theory of
Manin matrices. In Section 3.3, we finally construct the quantized Hamilto-
nians and prove that our quantized systems satisfy the integrability condition
(Theorem 3.10).
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82. Simply-laced isomonodromy systems

In this section we recall the definition of simply-laced isomonodromy systems
and their basic properties.

2.1. The Poisson structure

Throughout this note we fix the following data:
e non-empty finite sets X, I and a surjective map 7w: ¥ — [;
e a finite dimensional C-vector space V), for each A € X.

Put ¥; = 7 !(i) for each i € I (so ¥ = |,.; %;) and define

WZ:@V)\ (ZGI)7

AEX;
V= EB W; = EB 1%¥
el AEX

For I' € End(V) and 4,j € I, let I';; € Hom(W;, W;) be the (4, j)-block of I'
with respect to the decomposition V' = @, ; W;. We often write I' = © + &,
where © = @,.;0; € B,c;End(W;) is the block diagonal part of I' and
= = (Ejj) is the block off-diagonal part.

Let 3 be the center of the closed subgroup [[;.; GL(W;) € GL(V) and 3
be its Lie algebra. By the definition 3 consists of all C' € GL(V) of the form

C:@Cilwi (CZ'E(CX).

el

Let W = C(xz, 9) be the first Weyl algebra. Consider elements M = M (9, x)
of End(V) ®c W of the form

M(é),x) =A10—Apx—T (Ao,Al €3 I'= O+=¢€ End(V))
Since Ag, A1 € 3, they have the form

Ag = @aOi lw,, A= @ali lw, (api,a1; € C).
el iel

Let M C End(V) ®c W be the set consisting of all such M satisfying the
following conditions:

1. (aOi,au) 75 (0,0) for any ¢ € I.
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2. The map a: I — P! = CU {0}, i = ag;/ay; (which we call the spectral
map) is injective.

3. For any ¢ € I, the i-th diagonal block ©; of I' is semisimple with
eigenspaces V), A € ;. Namely, it has the form

@i = @ 6))\ ]-V)\7
AEY;
where 6y, A\ € ¥; are distinct complex numbers.

We may identify M with the direct product A x T x M, where

ag;  Qoj

wo= { amanier € @\ (0.00)' | |1 9 202},

T := {@9)\1{6 E@(ClvA

YD) YD)
M:={ZE€End(V)|E;=0(icl)}= € Hom(W,;,W,).
i,j€li#]

02 # 0, ifw(A)zww,A#u},

In this way we regard M as a non-singular affine variety. Observe that the
complex algebraic torus 3 freely acts on M by the left multiplication and the
spectral map is 3-invariant.

Let us introduce a Poisson structure on M. For convenience, fix a basis of
V' which respects the decomposition V' = @,y Vi. Define a bivector II on
M=AXxTxM by

0 0
A

“U )pq 8(Eji)qp 7

ap;  aoj
a1 Qa1j

DD

,jEI 1#£j P,q

where (Z;;)pq are the matrix entries of the (4, j)-block of = € M with respect
to the fixed basis. Obviously it defines a 3-invariant Poisson structure on M.
Recall that SLy(C) acts on the Weyl algebra W by

SLy(C) > g = <CCL Z) ‘ <2> —9 <i> - <Z§i§§)

This action induces a right SLy(C)-action on M commuting with the 3-action
as follows:

M= (A1 —A) <i> ~I+H M9= (A —Ao)g @) ~T.

By a direct calculation one can check that if a is the spectral map of M,
then the spectral map of M9 is g~ 'a, where g~ !: P! — P! is the Mébius
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transformation defined by ¢~ .

since the determinant

This action preserves the Poisson structure

api  Goj
a1; G1;

is invariant under the SLo(C)-action.

2.2. Symplectic fiber bundles

Fix an injective map a: I — P!, i +— a; and let us describe the closed Poisson
subvariety Mg C M consisting of all M € M whose spectral map is a.
Put

Ijn={icllali)#x}, U=P W, Wo= W

ie[ﬁn ie[\[ﬁn

Then V = Wo, ® U, and Woo = Wo-1( if 00 € a(l) (otherwise Wo, = 0).
For M = A10 — Aoz —T' € My, define C' = @,, ¢; 1w, € 3 by

¢ = {—am‘ (ai = 00)7

ai; (ai 75 OO)

In terms of the decomposition V = W, @ U, the matrix C~!1M is expressed
as
0 0 —1lw,. O
-1 - -1
— _ _
C—M (0 1 ) 0 ( 0 ) r—C T,

A= B ailw, € End(U).

€160

where

Put 7 = C~'© € T and decompose it as
T=@T, T cEnd(W;).
i€l

Each T; has the form

T = @txlvm

AEY;

where ty, A € 3; are given by

b = —a&-l%\ (a; = 00),
a0y (a; # o0).
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Proposition 2.1. The map
Mg —=3xMxT, M~ (C,C7'Z,T)
18 a 3-equivariant isomorphism, where 3 acts on 3 x Ml x T by
Zov:(C, X, T)— (nC, X, T).
In particular, Mgq/3 is isomorphic to M x T.

Proof. The map 3 x M x T — M, defined by

0 0 “lw. 0)
(C’,X,T)%C(O 1U>a—c< . A)x C(T + X)

gives an inverse. [

The Poisson structure on M, descends to a Poisson structure on the quo-
tient Mg /3, whose symplectic leaves are exactly the fibers of the projection
Mq/3 — T, [M] — T. Thus Mg/3 has a structure of symplectic fiber bundle
over T. On the other hand, the two-form on M defined by

-1

1 aopi Aoy
WaT 75 Z ay ay R 1 A
7/7]617175]
tr(dX;; A dX;;
_ Z I"( ij jl) o Z tI'(dXioo A dXoo’[,)y
e 2ai—a) -
5 ﬁn’17é] ZEIﬁn

where X, Xoo; are the blocks of X for Hom(W.o, W;), Hom(W;, W), makes
M into a symplectic manifold, which we denote by M,. It is easy to see that
the above isomorphism Mg /3 = Mg x T is an isomorphism of symplectic
fiber bundles. We regard M,/3 as the trivial symplectic fiber bundle in this
way.

2.3. Simply-laced isomonodromy systems

Fix an injective map a: I — P!. Take any M = A0 — Agz — ' € M,
and consider the differential equation Mv = 0 for (locally defined) V-valued
analytic function v(x). Clearly this equation is invariant under the 3-action.
Using the decomposition V = W, @ U, we write

T P>

T=Tsw®Ta, C'T= <Q B
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Note that the block diagonal part of B with respect to the decomposition
U= @ielﬁn W; is equal to Tg,. Define

L(z) = Az + B+ Q(z — Tio) "' P € End(U) @c C(z).
Then C~'M is decomposed as

-1 o JZ—TOO —P
¢ M‘( -Q 9-Ar-B

("0 (e voas)
R o [ = T

in End(V) ®c W ®c[y) ®C(z). Thus generically the equation Mv = 0 for
v =w @ u is equivalent to the system of equations
_ du
w = (z — Tso) ' Pu, = L(z)u,
which reduces to the second equation du/dx = L(z)u for u as the first equation
uniquely determines w from u.
If oo € a([), then T =T, -1(o) and

_1 QIdy\P
Qlz —To) 'P= > e
)\62071(00)
where Id) denotes the idempotent of End(W) for V). In particular, L(x) has
an at most simple pole at each eigenvalue of To,. If 0o & a(I), then Wy, =0
and
L(z)=Ax+ B, A=A'Ay, B=A]'T.

The map
Lg: Mg — End(U) ®c C(z), M — L(z)

is 3-invariant as so is the map M — C~'M. Thus it descends to a map
Mg/3 ~Mg x T — End(U) ®c C(x), which is explicitly given by

M x T3 (X,T) = Az + Tin + B + Q(z — Too) "' P,

0 P
x=(g )

The following fact is well-known in the formal reduction theory of linear
ordinary differential equations (see [2, Lemma C.4]).

where we write
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Proposition 2.2. For any M € Mg, there exists a formal series
F=1y+F/z+F/s*+---, F,cEnd{U)

such that

PN F - . ~ 24 ...
LA+ Y p1 gy i T+ Ble), R(a) = DET0/2H Rofo” +
dr T
with R, R; € End(U) commuting with A, T, and [R®, R;] = —iR;, where R*

1s the semisimple part of R.

Using the above F , let us define our Hamiltonian systems.

Definition 2.3 ([2, Theorem 5.9]). The simply-laced isomonodromy system
is the non-autonomous Hamiltonian system on the symplectic fiber bundle
Ma/3 = Mg x T — T with the Hamiltonian one-form wg = Y o5 HY diy
defined by

- Rets (tr(L(z)?) dz) (ar(n) = 00),
w=t>
HY(M) =
Res tr (F_lldgx daz) (ar(n) # 00),

where IdY denotes the idempotent of End(U) for V.

Remark 2.4. Our symplectic form on M, is minus Boalch’s original one,
while the definition of Hamiltonians is the same. This is because our sign
convention for the associated Hamiltonian equation is different to Boalch’s:
if m; are local coordinates on M, then we consider the system of differential
equations Om; /0ty = {H$, m;}, while Boalch considers Om;/0ty = {m;, HY}.

The simply-laced isomonodromy system is completely integrable and gov-
erns the isomonodromic deformations of the linear differential system du/dx =
L(z)u along t)’s; see [2, Theorems 5.7, 6.1]. Furthermore, the systems for var-
ious a have the following beautiful symmetry. Recall that each g € SLs(C)
gives a 3-equivariant Poisson automorphism of M. It induces a Poisson iso-
morphism

@g: Ma/3 — Mg—la/37

covering some automorphism T+ T9 = @t 1y, of the base space T as
a bundle map. It follows from [2, Theorem 5.4] that for any g € SLy(C),
there exists A € 3 such that for any (local) solution T' +— X (T') € M, of the
Hamiltonian system with Hamiltonian one-form ®gw,-1,, the map

T — A’ X (T)e A
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is a solution of the simply-laced isomonodromy system wg,. In particular,
the two Hamiltonian systems ®yw,-14, wqe are gauge equivalent. Thus the
difference @y, -1, — wqe may be non-zero but comes from some gauge trans-
formation of the symplectic fiber bundle M, x T.

For instance, take any ¢ € I, and put

(2.2) gi = (“1 _01) € SLy(C).

Then g; *(a;) = oo, and a direct calculation shows

—1\ ()\ S Ei),
19 = (@r(n) = 00),

t
A (otherwise).

i — Qr())

Thus for any A € 3;, we have
* g ta g ta gi dté)]\i g ta gi
q)gi(H)\l dty) :H)\Z (M Z)Tt)\ dty = —H)\’ (M%) dty.

In this case, we can show the following:

Proposition 2.5. For any A € ¥; and M € Mg, we have
-1
H$(M) = —Hy “(M9%).

Note that if we put L;(z) = Eg_la(Mgi), then

i

~1 , 1
HY “(M9%) = - Res (tr(Li(z)?)dz).
2 r=—1)
Thus for any A € ¥, the Hamiltonian HY can be described as the residue of
the trace of the square of some matrix-valued rational function. The proof of
Proposition 2.5 will be given in the next subsection.

2.4. Trace and determinant formulae for Hamiltonians

Fix an injective map a: I — P'. In this section we introduce some useful
formulae for the Hamiltonians HY and use them to prove Proposition 2.5.
The results in this section are based on our earlier work [14].
For M = A10 — Agz — © — Z € My, let My = My(0,x) € Mg be its block
diagonal part:
Mg(a,aj‘) =M-== A16— Ao.CL‘ — 0.
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Theorem 2.6 (Trace formula). For i € Is,, A € X; and M € M,, the
following equality holds:

— 1
a0 == 3 Res (B e[Sty ) o
k=1

Let us prove the theorem. Fix i € Iy, A € ¥; and M € M. Using the fixed
basis of V', we identify the coordinate ring of the complex affine variety gl(V")
with the polynomial ring Clzpe;p,¢ = 1,2,...,dim V], and put Z = (zp,). Let
C[gl(V)] be the formal completion of the local ring of gl(V') at 0, which is
identified with the ring of formal power series C[zyq;p,q = 1,2,...,dim V].
The adjoint action of GL(V') on gl(V') induces an action on C[gl(V)].

Put ¥ = y — a;x — t\ and embed C(x,y) in C((7)(z~!) in the obvious
manner.

Lemma 2.7. The substitution Z = EMq(y, )" gives a well-defined map
Clat(MIY) = (@) (=)

Proof. Since any element of C[gl(V)]S™V) is uniquely expressed as a formal
series Y7o cx tr(ZF), it is sufficient to show

. _ —1\k
klg](f)lo ord; /4 (tr [(:Mo(y,w) ) D = 00,
where ord; /, denotes the order of a formal Laurent series in ™! with coeffi-

cients in C((y)). For p,v € ¥, let Z,,, be the (u,v)-block of = with respect to
the decomposition V = Py, V. Then we have

tr [(EMo(y,x)‘l)k} - Z tr(Euw]iEuzus“‘Eukm)’
[y o €D Hl:lfuz(yal')

where
fu(yax) = Qp(pw)Y — Qox(w)® — 9# (lu’ € Z)

For p € 3 with ar(,) = 0o, we have

1 1

fuly, ) —aor( (@ — 1)’
while for p € ¥ with w(u) € Isy, we have

1 1

fu, ) a1 (T — (apey — ai)z — (ty —t2))
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Hence
1 0 (nex
oty (my,w)) - {1 (neD\ ),

which implies

k
ordy (H Sy, )) > #{le {12, k} | w(m) #1}
=1

for p1, p2, ..., € X. On the other hand, =, = 0 if 7(p) = 7(v) (recall that

= is block off-diagonal). It follows that if
, k
#{l € {17277k} ‘ W(NZ) :Z} > 57

then
tr (5u1u2:u2u3 T ‘:'Mklil) =0.

Thus we obtain

ord; /, <tr [(EMO(y,x)_l)k]) > - >0 (k- o0).

o |

We apply Lemma 2.7 to the formal series

1
trlog(l — Z Z%ter,
k=1
which is equal to
logdet(l — Z il 1 —det(1 — 2))*.
k=1 k

Substituting =My (y, z)~! for Z, we obtain

1—Z=1-EMo(y,x)"" = (Mo(y, ) — Z)Mo(y,
and hence

(@] =304 (1- el

NE
| =

i
I

as elements of C((7))(x~1)). On the other hand, the decomposition (2.1) yields
det M(y,z)  det(y — L(x))
det Mo(y,z)  det(y — Az — Tgy)
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Taking the formal series F shown in Proposition 2.2, we have
det(y — L(z)) = det(F(y — L)F 1)
= det(y — Az — Ty — R+ F'F~1).

Thus PO
det M(y,z)  det(y — Az — Th, — R+ F'F 1)
det Mo(y,z) det(y — Az — Tgp) '

Lemma 2.8. The substitution Z = (R — F'F~1)(y — Az — Tgn) ™" gives a
well-defined map
Clat(V)]M") = C(@) (=)

Proof. For each p € ¥ with a,) # oo, we have

ordy <1 ) >0,
Y= Qn()T — tp

which together with the inequality ord; /x(]:? — F'F 1) > 1 shows

~ ~ o~ k
ondso (| (1R = FF )~ o~ 1) 1)) 2
This completes the proof. O

Applying the above lemma to the formal series trlog(1—2) = logdet(1-Z2),
we obtain

i % tr [((ﬁe —F'F )y - Az - Tﬁnrl)k}

k=1

oo ~ ~ ~ k
_Zl 1_det(y—Ax—Tﬁn—R+F’F_1)
N k det(y — Ax — Thy)

k=1
_ o0 l _M k;_ (%) l e x_l .
_;k <1 detMO(y,$)> _;kt [(HMO(@/, )7) ]

Thus Theorem 2.6 follows from the lemma below.

Lemma 2.9. The following equality holds:
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Proof. From the inequalities shown in the proof of the previous lemma we
easily deduce

P k
Res Resx tr [((R— F'F Yy — Az — Tﬁn)_l) ] dydz =0 (k> 3).

=00 y=0

Furthermore, since }AEW =0 (u # v) we have
PO 2
Res Begactr [((R —~F'F Y (y— Az — Tﬁn)_1> ] dy dx
T=00 y=
e (R PR (R - FF),0)
= Z Res x dx
T=00 (a; — aﬂ(#))J: + (th — tu)

HES
A () FO0r HFEX

tr ((ﬁ/ﬁ*lm(ﬁ'ﬁfl)m)
= Z Res z
=00 (a; — aw(u))x + (tx — tu)

HEXD
aw(u);ﬁoo, HFEN

dzx,

which is zero because ord, /m(ﬁ’ ﬁ_l) > 2. Finally, a direct calculation shows

Res Resz tr ((}AR — F'F Yy — Az — Tﬁn)—l) dy da:

r=00 y=0
= Res wtr ((ﬁ — ﬁ'ﬁ_l)»\) dx = tr(Ry)\ — HY(M).
Since [R*, R1] = Ry we have tr(R1),x = 0. Thus we obtain the desired formula.

O

The above arguments also yield the following formula:

Theorem 2.10 (Determinant formula). For i € Ig,, A € ¥; and M € M,,
the following equality holds:

) k
1 det M (y, x)
H* (M) = — — R R l—————=) dy|dx
A( ) ; k xzeo% (yzaigit/\ o ( det Mo(y7$)> y) !

For A € X with ar(y) = oo, we can also describe the Hamiltonian HY in a
similar form.

Proposition 2.11. For A € ¥ with azy) = 00 and M € Ma, the following
equalities hold:

HY(M) =— i ! Res (Res ytr [(EMo(y,m)*l)k} d:c> dy

rx=t)

_ &l o et My, 2) V7 g
> ey (iei Y < det Mo(y,2)) )Y
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Proof. We embed C(z,y) in C((z—t,))(y~1)). Then a direct calculation shows

ord < 1 ) > 0 (aT((M) = 00)7
1 -
1\ Qg Y — Aty @ = Op 1 (ar() # o0)

for every p € ¥. Thus arguments similar to the proofs of Lemmas 2.7, 2.9
yield the equalities among the infinite sums

{1 det M(y,z) \*
detMO(yvx)

det(y — L(z)) \"
b= det(y — Az — Tﬁn)>

=3 o [(E) — Ar— Tan)y — Av — Tan) )]

the order counting shows

Zfieo%ytr {((L(x) — Ax — Tqy)(y — Az — Tﬁn)_l)k] dy

0 (k= 3),
= —tr[(L — Az — Ti)?] (k=2),
—tr[(L — Az — Thn)(Az + Thn)] (B =1).

_ _% tr [(L = Az = Tjn)?] = tr (L — Az — Tin)(Az + Tin)]
= —% tr [(L — Az — Tﬁn>(L + Az + Tﬁn)}
= —é tr [LQ — (A.ZU + Tﬁn)Q] )

whose residue at x = ty is equal to that of — tr(L?)/2. O
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As an application of Theorem 2.6 and Proposition 2.11, we will give a proof
of Proposition 2.5.

Proof of Proposition 2.5. Define variables z;,y; by
iy _ (Y _ [@WY—T
()=o) (")

Mgi(yax) = M(yl7xl)7 M(‘]qz(yaw) = MO(ylaxl)
Also, for F' € C(z,y) = C(z;,y;) we have

Then
Res ( Res Fda:) dy = — Res < Res de,-) dx;.
y=oo \ z=—t) ;=00 \ yi=a;x;+tx

Thus Theorem 2.6 and Proposition 2.11 yield

-1
_Hii a(Mgi)

% es ( 1_%68 ytr {(EMOQZ' (y,:c)_l)k} daz) dy

= - i; Res ( Res z;tr [(EMO(yi,xi)_l)k] dyi> dx;

Yi=a;Ti+ix

§3. Quantization

Fix an injective map a: I — P'. This section is devoted to quantize the
simply-laced Hamiltonian system on Mg /3.
We denote the coordinate ring of a complex affine variety S by C[S].

3.1. Formal deformation quantization and Lax matrices

We first construct a formal deformation quantization of the affine Poisson
variety Mg /3. Recall that for each M = A;0 — Agz — © — E € M, we have

defined
C=cilw,, T=Cc"'0=Ftrly,.
el AEXD

Varying M we thus obtain functions ¢;, tx, (Eij)pq on Mg, which satisfy

—_ —_ apg; aopq
{Eij)pgs Cr)rs} = —00k0ps0qr | 00 "Y1, {eiy} = {ta, -} =0,

% 1j
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where ag;, a1; (i € I) are defined by

(@14, —agi) = {(07 <) (a; = 00)
(ci,—cia;)  (a; # o0).
We also regard ¢;,ty as coordinate functions on 3 x T. Then C[M,] is a
C[3 x TJ-algebra and every element of C[3 x T] is Casimir.
Let A, be the C[3 x T|[h]-algebra with generators (éij)pq (i #j €1,
p=12...,dmW;, ¢=1,2,...,dim W;) and fundamental relations

(Eij)pq7 (Ekl)rs] = _5i15jk5p55qrh

ap;  agj
ai;  aij

This is obviously a formal deformation quantization of the Poisson algebra
C[Ma].

The matrices €, ©,T may now be regarded as elements of End(V) ®c 4,1.
Let = = (E;5) € End(V) ®c Aq be the block off-diagonal matrix with each =;;
having matrix entries (Eij)pq. Define

M(9,7) = 410 — Apz — © — Z € End(V) ®¢ Aq ®c W,

where

Ag = @am 1Wi7 A = @ah‘ 1Wi S End(V) ®c Ag.
iel i€l

Fori,j € I, let ]\//Ej be the (7, j)-block of M and (Z\/Zij)pq be its matrix entries.
Proposition 3.1. The equality

—

[(Mij)pq, (Mit)rs| = (8i00pg0rs — 81x0psOgr )l |0 2%

a1 Qig

holds for any i,j,k,l, p,q,7,s.

Proof. By the definition we have

(Mi)pq = 6130pq(1:0 — a0ix = 05p) = (Zij)pa,
where 0; ;, is the p-th diagonal entry of the i-th block ©; of ©. Since the matrix
entries of = commute with z, 0 and the elements of C[3 x T], we obtain the
desired formula as follows:

—

[(Mij)pqa (]/\Zkl)rs} = 0i0pqOkiOrs[a1;0 — agix — b p, 410 — agpx — O]

+ [(Eij)p(b (Ekl)Ts]
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= 0;j0pqOriOrsN(—ar;a0r, + aoiary) + [(gij)pm (Ekl)rs}

ap; aok

= (04j0k10pgOrs — 0§10, 0psOgr ) a1 a

We let 3 act on A, by
= -1 —1/a
337 = vitwi: (et Eiglpg) = (1 ity H(Eijpa),
el

so that ~: M 7_1]/\4\ . This action induces an action on the quasi-classical
limit C[M,], which coincides with the one induced from the 3-action on M.
Hence the invariant part A3 C A, is a formal deformation quantization of the
quotient space Mgy /3.

Using the decomposition V = W, & U we write

s (0 P
:X: ~ ~ ; T:TOO Tn.

(1

C*l

Let Ef], @i, f’l be the blocks of EO, @, P with respect to the decomposition U =

D 1., Wi (so they are the blocks of X ). Then their matrix entries generate
A3 as a C[T][h]-algebra and satisfy the following commutation relation:

[(ﬁfj)pm (Eiz)rs} = —0udjk0progsh(a; — a;), [(ﬁi)pq, (Q\j)rs} = 04j0psOqrh,
(B)as (@0rs| = |(Beas (Pdrs| = [(@0)pas @i)rs| = [(Pgas (By)rs| = 0.

L(z) = Az + Tgn 4+ B° + Q(z — Tao) "' P € End(U) ®¢ A3 ®¢ C(x).
Observe that the quasi-classical limit of L(z) is the map
Mq/3 = End(U) ®c C(z), [M]~— L(z)
regarded as an element of End(U) ®c C[Mg/3]®c C(x) (which we also denote
by L(x)).

Proposition 3.2. Z(IL‘) is a Lax matriz of Gaudin type, i.e., it satisfies the
following “RLL = LLR” relation:
-~ -~ Oirdgrh 1, = N
[(Eigdoa(a), Ea)rs(y)] = 222 (adpaly) — (Lia)ys())

_ (%L ((fkj)qr(y) - (Ekﬂ‘)m“(x)) '
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Proof. Put
E+(CE) = Ax + Tgn + EO, Z_(x) = @(m — TOO)_lﬁ,

so that L(z) = L*(2) + L™ (z). Denoting the diagonal entries of T; by tip, We
have

N N ~ Ai r ﬁ s
(L;;)pq(x) = 0ij0pg(aiz + tip) + (Bjj)pg: (Li_j)pq(w) - Z W

9

and obviously
(CE)al@). (Ersw)| = 0.

Thus it is sufficient to show that both E*, L~ satisfy the RLL = LLR relation.
First, we have

(L)al@) E)rsW)| = | (BS)par (Bia)rs| = —0usadpsbyrhlai — aj).
On the other hand,

(L) ps(y) — (L)ps(x) = Sudpsaily — ),

and hence
(5' 6qr = o 5i55p ~ ~
220 (EDps() = Epe)) = 222 ((Eor) = (E)ar()

= —0i10ps0jk0qra; + Ok;0rq01idspar, = —0i10ps0;k0qr(a; — aj).
Thus L satisfy the RLL = LLR relation. Next we have

{(@i)pu(ﬁj)utp (@k)’/‘fu(ﬁl)fus}
(2 = toou) (Y — toow) .

[CAMORCANEIESY

U,

The commutation relation for (@i)pq, (ﬁj)m implies

~ ~

[(Qi)pu(ﬁj)uqy (Qk‘)rv(ﬁl)vs} = jkéqrauvh(@i)pu(f)l)vs_(sliéspévuh(@k)rv(ﬁj)uq
Hence

[(@i)lm(ﬁj)uqv (Q\k)rv(ﬁl)vs}
Z (@ — toou)(y — tooyw)

)pu(ﬁl)us - 5li55p(©k)ru(ﬁj)uq
(T = toou) (Y — toou)

_ Z 5jk‘5qr(©i
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h 5 83100 (@) pu(P)us — 01i0sp(Qk)ru(P))ug
T -y Y — toou

u

B Z 5jk5qr(@i)pu(ﬁl)us 6lz sp(Qk)ru(f)) )

T —loou
= :Eﬁy <5Jk5qr( i)ps(y) — 5@’!5810(51;]')7“(1(9)
= 800 (L7 )ps ) = 1idop (Ligy)ra () )

which shows the RLL = LLR relation for L. O

For a square matrix N = (IV,,) with entries in a possibly non-commutative
ring, let det® N be the column determinant of N:

detcol N = Z sgn(O’)Ng(Ul o NU(n)n'
ceS,

Corollary 3.3. Define qchp(f)(x) € A3 @c C(z), p=0,1,...,dimU by

dim U

det (9 — L(z)) = Y qch,(L)(z) 94mU~r.
p=0

1. We have qch,,(L L)(z)|pe0 = ch »(L)(x), where

dim U

det(y — L(x) = 3 ehy(L)() y ™V,

p=0

2. We have R R
[ach, (E)(x), ach, (£)(9)] =0

as rational functions of x,y for all p,q.

Proof. This follows from Proposition 3.2 and Talalaev’s result [12, Theorem 1]
(see also [3, p. 3]). O

Take the Laurent expansion of each qchp(i) (z) at x = oc:

qch,,(L Z qch,, ., (L) 2™ € A3 @c C(z71)).
meZ

Let H be the C[T][/i]-subalgebra of A3 generated by qchpym(f), p=12,...,dimU,
m € Z. Then the above corollary implies:

Corollary 3.4. The algebra H is commutative.
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3.2. SLy(C)-invariance of H

Take any g € SLy(C). One can define a 3-equivariant C-algebra isomorphism
gs: Ag-14 = Aa by

where ¢] (i € I), t§ (A € ¥) are defined so that

(0,¢7) (97 (ai) = 00),
(cf, —clg™(a)) (97 (ai) # o),

(a1, —aoi)g = {

and

Ttk = rpnta-
Note that ¢/ € C*¢;, t§ € C*ty, and the isomorphism between the quasi-
classical limits induced from g, coincides with the pull-back by the action
Mg — Mg—la, M — MS9.

Let ]\79, L9 be the transforms of the matrices ]\/4\, L associated to g 'a by
g«. Then

0

T

]\//.79(8,33) = (A1 —Ao)g< ) ~—e-Z¢ End(V) ®c Agq ®c W.

Theorem 3.5. We have qchpm(fg) € H for all p,m.

In our proof of Theorem 3.5 we will use the general theory of Manin matri-
ces. A square matrix N = (NNp,) with entries in a possibly non-commutative
ring is called a Manin matrix if the equality

[Npqv NTS] = [qu’ NpS]

holds for any p,q,r,s. It is known that the column determinants of Manin
matrices have the following nice properties (see [4]):

1. The column determinant of a Manin matrix is anti-symmetric with re-
spect to columns/rows.

2. If two Manin matrices N = (Np,), N' = (N,,) of the same size satisfy
[Npq, N,,] = 0 for all p,q,r, s, then NN’ is also a Manin matrix and

det®(NN') = det®!(N) det ! (N”).
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3. Let N be a Manin matrix expressed in a block form

Nixi lem)
N = ,
<Nm><l Nixm

and assume that N;y; has a two-sided inverse. Then the following Schur’s
formula holds:

detc‘)l N = detC()l(Nle) detC()l(Nme - NleNl;%lem)‘

Proposition 3.1 implies:

Corollary 3.6. M is a Manin matriz, i.e., the equality

— —

|:(Mkj)7‘q7 (Mil)ps} = [(Mij)pqa (Mkl)rs]
holds for any i,j,k,l, p,q,r,s.
Proof.

apk,  aog

{(Mkj)rqa (Mil)pS] = (5kj5il(57“q6ps — Ok10i0rs0qp)h a1 a1;

aop; Aok

= —(5jk6il5rq5ps - 5kl6ij57“56QP)h ay; a1k

o~

= [(Mij)pqv (]/\/-Tkl)rs} .
]

Proof of Theorem 8.5. Since the entries of C' are central, the product c—M
is a Manin matrix and

det!(C'M) = det(C) " det*! (M).
On the other hand, we have
—~ ~T -p
CIM =" A
( -Q 8—A:c—Tﬁn—B°>
up to conjugation by a permutation matrix, and hence
(3.1) det®(CTI M) = det(z — Tno) det® (8 — L(x))

by Schur’s formula. Since det® (0 — L(z)) € H®¢ C(@™1) ®c W, the column
determinant of M may be expressed as

det M (9, z) = det(C) Y Tynna™0", Ty € H.

m,n>0
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Now we write

and put

o\ [0\ _ (ad+bx
i) " 9\a) T \co+dz)
Since Z\/Zg(a,x) = ]\/Z(é, z), we have
det M9(9,z) = det(C) Y @™ 0"
m,n>0
=det(C) Y hunn(ad + bx)™(cd + dx)".

m,n>0

The right hand side lives in det(C)H ®cW. Thus the equality (3.1) for M9, L9
shows

-~ det(C) _
col 1
_I9
det® (0 (x)) € det(C9) HecC(z™) @c W,
where C9 == @, ¢! 1w,. Since det(C')/ det(C?) € C*, we obtain the asser-
tion. O

3.3. Quantized simply-laced isomonodromy systems

For i € I and \ € 3;, we define

]. = 2 .
.32 QE{:eti tr (L(x) ) dz (i ¢ Ian),
AT 1 R
~ > Res tr (Lgi (x)2) dr (i € Igy),
r=—t)

where g; € SL2(C) is defined in (2.2). Proposition 2.5 shows that the quasi-
classical limit of each h{ is equal to HY.

The following lemma implies that Ef\’ € H for all A € ¥ (note that the
residue of any exact meromorphic one-form is zero):

Lemma 3.7. Let R be a possibly non-commutative ring and suppose that a
matriz N(z) = (Npg(x)) € Mp(R®c C(x)) satisfies the RLL = LLR relation:

6QT(NPS(y) — Nps(x)) B 6sp(qu(y) — qu(y)) )

[Npq(x)’Nrs(y)] = T —y

Then
tr(N (2)?) = qchy (N)(2)? = 2qchy(N)(2) — (n — 1) tr(N'(z)),
where N'(z) = dN/dx.
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Proof. A direct calculation shows

n

qchy (N) = tr(N),  qchy(N) = (NppNgg = NopNpg) = > _(p — )Ny,
p<q p=1

On the other hand, the RLL = LLR relation implies
Npquq = quNppv quNpq = Nquqp - Néq + N;;p'
Using the above we have

tr(NQ) — (tr N)2 = Z(_Npquq — NogNpp + NpgNap + NopNpq)

p<q
= Z(_QNpquq + 2NgpNpg + Néq - Nz/zp)

p<q

n
= —2qchy(N) — QZ(p — )Ny, + Z(Néq — Ny
p=1 p<q
n
= —2qchy(N) = (n—1) Y _ N},
p=1
which gives the desired equality. O

Take any \,u € ¥ and put i = w(\), j = 7(u). We calculate Oﬁf\‘/@t” -
ahz/at)\.

Lemma 3.8. If a; = oo then

1 e~
- —— tr (Q1d,PQI1d, P + Q1d, PQId,\P =
ohg | 2ty —tu)? r(Q AP P+ Q1d, PO, ) (a7 = 00),

au o
P | = (10 21)E) (aj # %),
Cicj

where Idf\/,IdL/ denote the idempotents of End(V') for Vi, V), respectively.

Proof. Decompose L=L%+1" asin the proof of Proposition 3.2. Since the
matrix entries of L (z) commute with those of L™ (x) and are holomorphic at
x =t), we have

Res tr (E(w)2> dx = 2 Res tr (E+($)E_ (x)) dx + Res tr (Z_ (m)2> dx.

=ty x=t) r=t)

The two terms on the right hand side may be calculated as

Res tr (EJF(:L')E*(CU)) dx = Res tr ((Aa: + Thn + B°)Q(x — Too)*lﬁ) dx

T=t) =ty
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— tr ((AtA 4 Ty + ]§°)@Id,\13) :
Res tr (Z*(m)2> dx = Res tr (@(a: - Too)*lﬁ@(a: - Too)*llg> dz

r=t) =ty

tr (@Id,\ﬁ@Id,,lB + 014, PO1d A13)

ves; t)‘ - tl’
vFEN
Thus
h$ = tr ((AtA + Thin + EO)@IdAﬁ)
Lot (@Id \POI1d, P + @Idyﬁéld,\ﬁ)
*3 Z t —t, ’
veS;
DN
and hence

tr (@IdAﬁ@Iduﬁ n @Iduﬁ@IdA?>
(aj = OO)’
2(tr — £,)2
tr (Idg@ld,\ﬁ) (a; # o),

ohg _
ot,

where recall that Idg denotes the idempotent of End(U) for V,,. Note that
@, P are blocks of C~'Z. Thus if a; # oo then

UAT1. D) _ = V=
tr (147 Q1d,\P) = o (14 21a)’E).

Define x;; € C by

0 (t=17),
-1 (a; = 00, aj # 00),
Kij =41 (a; # 00, aj = 00),
1
(otherwise).
a; (Lj

Proposition 3.9. The following equality holds:

oh  Ohg . .
aT: — 875 = (dim V)(dim V},) ;.
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Proof. First, suppose i = j. If a; = a; = oo, then Lemma 3.8 shows

ghe (@Id \PQ1d, P + Q1d, PQ1d Aﬁ)
ot, 2ty — tu)? ’

which is a symmetric function of (A, ). Hence

ohe  Ohg
Oty Oty

~ ~,—1
If a; = aj # oo, then h§ = —(g;)«(hy ) and hence

~ ~ ~ 1 ~,—1
OhS _ _dtji OhS _ dtj; (). ony “\ _ (). ony *
ot, dt, ot dt, ot,, o,
ol
because tj; = —t,. Since \,u € ¥; and g; '(a;) = oo, 6h‘§]f /0t,, is a sym-

metric function of (A, u). Hence
ot, oty

Next, suppose i # j. If a; = 0o, then Lemma 3.8 shows

one 1 SN
Al W (IdVEIdA E)
oty  cicj #
and
ohe 9; ~g;'a 9;
AL o i R B e
Oty diy 77\ oty dty ¢’ AT =)

A direct calculation shows

¢ (k = ])7
ch =< ¢ (ap = 00),
(a; —ag)cy  (otherwise).
Hence -
oh% 1 ~ a
p VaLIVE
T g (Id 21d :).
at)\ C;iCq g A #

Thus we obtain

aﬁg aﬁz 1 Var Ve Var Ve
PN 0 % (1aYEIdVE — 1dYEId E)
ot, 0Oty ¢ : ( ® A A ®
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If a;,a; # oo, then

oo\ e (1a)EmayE

N—

ot,  dt,

(gi)*

8?5“ N ((Li — aj)Qcicj ’

and hence L L
gha  ohs  tr (Idxaldya—ldyaldga)

8tu at)\ N (ai — aj)%icj

On the other hand, the commutation relations for the entries of = yield

tr (Idﬁld‘fé - Id‘;éldﬁ) = —h(dim V3 )(dim V},) Z(l)j Z? .
Also, by the definition we have
CiCj (a; = 00, aj # 00),
Z(l); Z(l)j = { —Ci¢j (a; # 00, aj = 00),
—cicj(a; —a;) (otherwise).
Now the assertion immediately follows. O

For A\ € ¥, we define

Sa ~a hdim V)\ .
v =h- —5 Z(dlm Vi) Er(r(wtn
HFEX

Z Kr(\)j tr Tj
J#T(N)

_ Eﬁf _ hdim V)
The quasi-classical limit of each .FAIE\’ is equal to HY.

Theorem 3.10. For any A\, u € X, the following equalities hold:
pHe  OH?

ot, Oty

[ﬁlg, ﬁ;}} —0,

Proof. All the ﬁg live in ‘H, and hence pairwise commute. Also, for A # y €
we have R R
OHY _ ohy  h

o, Ot 2
By Proposition 3.9, we thus obtain

(dlm V)\) (dlm V,U)Kﬂ()\)ﬁ(u) .

oHE OHS  ohe  Oh%
ot, Oty Ot, oty
which completes the proof. O

— h(dim V)\)(dim V) K (ayr(
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Thus the family {ﬁf} Aex gives a quantization of the simply-laced isomon-
odromy system.
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