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§1. Introduction

It is an interesting problem to quantize isomonodromic deformation equa-
tions. In [11] Reshetikhin showed that the Knizhnik–Zamolodchikov system is
a quantization of the Schlesinger equations, which govern the isomonodromic
deformations of linear differential systems of the form

du

dx
=

m∑
i=1

Ri

x− ti
u,

where the matrices Ri do not depend on x (a similar result has been also
obtained by Harnad, see [7]). Reshetikhin’s result was generalized in [1, 5],
where the authors constructed a quantization of the equations of Jimbo–Miwa–
Môri–Sato [8], which govern the isomonodromic deformations of systems of the
form

du

dx
= T +

m∑
i=1

Ri

x− ti
u

where the matrices T,Ri do not depend on x and T is diagonal with distinct
eigenvalues. In [9] Nagoya–Sun further generalized the above results. They
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quantized the Hamiltonian system governing the isomonodromic deformations
of systems of the form

du

dx
= Ax+B +

m∑
i=1

Ri

x− ti
u,

where the matrices A,B,Ri do not depend on x and A is diagonal with distinct
eigenvalues.

On the other hand, in [2] Boalch introduced an interesting class of Hamil-
tonian systems of isomonodromy type, called the simply-laced isomonodromy
systems. They partially govern the isomonodromic deformations of systems of
the form

du

dx
= Ax+ T + [A, Y ] +

m∑
i=1

Ri

x− ti
u,

where the matrices A, T, Y,Ri do not depend on x and A, T are diagonal.
Since A is not assumed to have distinct eigenvalues, such systems contain
the systems considered by Nagoya–Sun. Boalch showed that the simply-laced
isomonodromy systems have a beautiful SL2(C)-symmetry, which specializes
to the well-known Harnad duality (see [6]) when A = 0.

Recently, Rembado [10] quantized the simply-laced isomonodromy systems.
In this note, we give a different way to quantize the simply-laced isomon-
odromy systems. Our approach is to use the theory of Manin matrices and
Talalaev’s quantum spectral curve method (see [3, 13]). As mentioned in [10],
our result has been announced in 2015.

This note is organized as follows. Section 2 is the classical theory. The
first three subsections are devoted to a brief review on Boalch’s simply-laced
isomonodromy systems and their remarkable properties. In Section 2.4, we
give some useful expressions of the Hamiltonians of the simply-laced isomon-
odromy systems. For instance, we express the Hamiltonians in terms of the
spectral curve (see Theorem 2.10, which we call the determinant formula).
They are interesting in their own right and seem to be new. Section 3 is the
quantum theory. In Section 3.1 we first construct the deformation quantiza-
tion of the phase space and some commutative subalgebra H in which our
quantized Hamiltonians live. For the construction of H and the proof of com-
mutativity we use Talalaev’s quantum spectral curve method. In Section 3.2,
we show that H is invariant under some SL2(C)-symmetry using the theory of
Manin matrices. In Section 3.3, we finally construct the quantized Hamilto-
nians and prove that our quantized systems satisfy the integrability condition
(Theorem 3.10).
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§2. Simply-laced isomonodromy systems

In this section we recall the definition of simply-laced isomonodromy systems
and their basic properties.

2.1. The Poisson structure

Throughout this note we fix the following data:

• non-empty finite sets Σ, I and a surjective map π : Σ → I;

• a finite dimensional C-vector space Vλ for each λ ∈ Σ.

Put Σi = π−1(i) for each i ∈ I (so Σ =
⊔

i∈I Σi) and define

Wi =
⊕
λ∈Σi

Vλ (i ∈ I),

V =
⊕
i∈I

Wi =
⊕
λ∈Σ

Vλ.

For Γ ∈ End(V ) and i, j ∈ I, let Γij ∈ Hom(Wj ,Wi) be the (i, j)-block of Γ
with respect to the decomposition V =

⊕
i∈I Wi. We often write Γ = Θ + Ξ,

where Θ =
⊕

i∈I Θi ∈
⊕

i∈I End(Wi) is the block diagonal part of Γ and
Ξ = (Ξij) is the block off-diagonal part.

Let Z be the center of the closed subgroup
∏

i∈I GL(Wi) ⊂ GL(V ) and z
be its Lie algebra. By the definition Z consists of all C ∈ GL(V ) of the form

C =
⊕
i∈I

ci 1Wi (ci ∈ C×).

LetW = C〈x, ∂〉 be the first Weyl algebra. Consider elementsM = M(∂, x)
of End(V )⊗C W of the form

M(∂, x) = A1∂ −A0x− Γ (A0, A1 ∈ z, Γ = Θ+ Ξ ∈ End(V )).

Since A0, A1 ∈ z, they have the form

A0 =
⊕
i∈I

a0i 1Wi , A1 =
⊕
i∈I

a1i 1Wi (a0i, a1i ∈ C).

Let M ⊂ End(V ) ⊗C W be the set consisting of all such M satisfying the
following conditions:

1. (a0i, a1i) 6= (0, 0) for any i ∈ I.
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2. The map a : I → P1 = C ∪ {∞}, i 7→ a0i/a1i (which we call the spectral
map) is injective.

3. For any i ∈ I, the i-th diagonal block Θi of Γ is semisimple with
eigenspaces Vλ, λ ∈ Σi. Namely, it has the form

Θi =
⊕
λ∈Σi

θλ 1Vλ
,

where θλ, λ ∈ Σi are distinct complex numbers.

We may identify M with the direct product A× T×M, where

A :=

{
(a0i, a1i)i∈I ∈

(
C2 \ {(0, 0)}

)I ∣∣∣∣ ∣∣∣∣a0i a0j
a1i a1j

∣∣∣∣ 6= 0 (i 6= j)

}
,

T :=

{⊕
λ∈Σ

θλ 1Vλ
∈
⊕
λ∈Σ

C1Vλ

∣∣∣∣∣ θλ 6= θµ if π(λ) = π(µ), λ 6= µ

}
,

M := {Ξ ∈ End(V ) | Ξii = 0 (i ∈ I) } =
⊕

i,j∈I;i ̸=j

Hom(Wj ,Wi).

In this way we regard M as a non-singular affine variety. Observe that the
complex algebraic torus Z freely acts on M by the left multiplication and the
spectral map is Z-invariant.

Let us introduce a Poisson structure on M. For convenience, fix a basis of
V which respects the decomposition V =

⊕
λ∈Σ Vλ. Define a bivector Π on

M = A× T×M by

Π = −1

2

∑
i,j∈I, i ̸=j

∑
p,q

∣∣∣∣a0i a0j
a1i a1j

∣∣∣∣ ∂

∂(Ξij)pq
∧ ∂

∂(Ξji)qp
,

where (Ξij)pq are the matrix entries of the (i, j)-block of Ξ ∈ M with respect
to the fixed basis. Obviously it defines a Z-invariant Poisson structure on M.

Recall that SL2(C) acts on the Weyl algebra W by

SL2(C) 3 g =

(
a b
c d

)
:

(
∂
x

)
7−→ g

(
∂
x

)
=

(
a∂ + bx
c∂ + dx

)
.

This action induces a right SL2(C)-action on M commuting with the Z-action
as follows:

M =
(
A1 −A0

)(∂
x

)
− Γ

g7−→ Mg =
(
A1 −A0

)
g

(
∂
x

)
− Γ.

By a direct calculation one can check that if a is the spectral map of M ,
then the spectral map of Mg is g−1a, where g−1 : P1 → P1 is the Möbius
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transformation defined by g−1. This action preserves the Poisson structure
since the determinant ∣∣∣∣a0i a0j

a1i a1j

∣∣∣∣
is invariant under the SL2(C)-action.

2.2. Symplectic fiber bundles

Fix an injective map a : I → P1, i 7→ ai and let us describe the closed Poisson
subvariety Ma ⊂ M consisting of all M ∈ M whose spectral map is a.

Put

Ifin = { i ∈ I | a(i) 6= ∞}, U =
⊕
i∈Ifin

Wi, W∞ =
⊕

i∈I\Ifin

Wi.

Then V = W∞ ⊕ U , and W∞ = Wa−1(∞) if ∞ ∈ a(I) (otherwise W∞ = 0).
For M = A1∂ −A0x− Γ ∈ Ma, define C =

⊕
i∈i ci 1Wi ∈ Z by

ci =

{
−a0i (ai = ∞),

a1i (ai 6= ∞).

In terms of the decomposition V = W∞ ⊕ U , the matrix C−1M is expressed
as

C−1M =

(
0 0
0 1U

)
∂ −

(
−1W∞ 0

0 A

)
x− C−1Γ,

where

A =
⊕
i∈Ifin

ai 1Wi ∈ End(U).

Put T = C−1Θ ∈ T and decompose it as

T =
⊕
i∈I

Ti, Ti ∈ End(Wi).

Each Ti has the form

Ti =
⊕
λ∈Σi

tλ 1Vλ
,

where tλ, λ ∈ Σi are given by

tλ =

{
−a−1

0i θλ (ai = ∞),

a−1
1i θλ (ai 6= ∞).
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Proposition 2.1. The map

Ma → Z×M× T, M 7→ (C,C−1Ξ, T )

is a Z-equivariant isomorphism, where Z acts on Z×M× T by

Z 3 γ : (C,X, T ) 7→ (γC,X, T ).

In particular, Ma/Z is isomorphic to M× T.

Proof. The map Z×M× T → Ma defined by

(C,X, T ) 7→ C

(
0 0
0 1U

)
∂ − C

(
−1W∞ 0

0 A

)
x− C(T +X)

gives an inverse.

The Poisson structure on Ma descends to a Poisson structure on the quo-
tient Ma/Z, whose symplectic leaves are exactly the fibers of the projection
Ma/Z → T, [M ] 7→ T . Thus Ma/Z has a structure of symplectic fiber bundle
over T. On the other hand, the two-form on M defined by

ωa = −1

2

∑
i,j∈I, i ̸=j

cicj

∣∣∣∣a0i a0j
a1i a1j

∣∣∣∣−1

tr(dXij ∧ dXji)

= −
∑

i,j∈Ifin, i ̸=j

tr(dXij ∧ dXji)

2(ai − aj)
−
∑
i∈Ifin

tr(dXi∞ ∧ dX∞i),

where Xi∞, X∞i are the blocks of X for Hom(W∞,Wi), Hom(Wi,W∞), makes
M into a symplectic manifold, which we denote by Ma. It is easy to see that
the above isomorphism Ma/Z

≃−→ Ma × T is an isomorphism of symplectic
fiber bundles. We regard Ma/Z as the trivial symplectic fiber bundle in this
way.

2.3. Simply-laced isomonodromy systems

Fix an injective map a : I → P1. Take any M = A1∂ − A0x − Γ ∈ Ma

and consider the differential equation Mv = 0 for (locally defined) V -valued
analytic function v(x). Clearly this equation is invariant under the Z-action.
Using the decomposition V = W∞ ⊕ U , we write

T = T∞ ⊕ Tfin, C−1Γ =

(
T∞ P
Q B

)
.
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Note that the block diagonal part of B with respect to the decomposition
U =

⊕
i∈Ifin Wi is equal to Tfin. Define

L(x) = Ax+B +Q(x− T∞)−1P ∈ End(U)⊗C C(x).

Then C−1M is decomposed as

C−1M =

(
x− T∞ −P
−Q ∂ −Ax−B

)
=

(
x− T∞ 0

0 1

)(
1 −(x− T∞)−1P

−Q ∂ −Ax−B

)
=

(
x− T∞ 0

0 1

)(
1 0

−Q 1

)(
1 −(x− T∞)−1P
0 ∂ − L(x)

)
(2.1)

in End(V ) ⊗C W ⊗C[x] ⊗C(x). Thus generically the equation Mv = 0 for
v = w ⊕ u is equivalent to the system of equations

w = (x− T∞)−1Pu,
du

dx
= L(x)u,

which reduces to the second equation du/dx = L(x)u for u as the first equation
uniquely determines w from u.

If ∞ ∈ a(I), then T∞ = Ta−1(∞) and

Q(x− T∞)−1P =
∑

λ∈Σa−1(∞)

QIdλP

x− tλ
,

where Idλ denotes the idempotent of End(W∞) for Vλ. In particular, L(x) has
an at most simple pole at each eigenvalue of T∞. If ∞ 6∈ a(I), then W∞ = 0
and

L(x) = Ax+B, A = A−1
1 A0, B = A−1

1 Γ.

The map
La : Ma → End(U)⊗C C(x), M 7→ L(x)

is Z-invariant as so is the map M 7→ C−1M . Thus it descends to a map
Ma/Z ' Ma × T → End(U)⊗C C(x), which is explicitly given by

M× T 3 (X,T ) 7→ Ax+ Tfin +B◦ +Q(x− T∞)−1P,

where we write

X =

(
0 P
Q B◦

)
.

The following fact is well-known in the formal reduction theory of linear
ordinary differential equations (see [2, Lemma C.4]).
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Proposition 2.2. For any M ∈ Ma, there exists a formal series

F̂ = 1U + F1/x+ F2/x
2 + · · · , Fi ∈ End(U)

such that

F̂LF̂−1 +
dF̂

dx
F̂−1 = Ax+ Tfin + R̂(x), R̂(x) =

R+R1/x+R2/x
2 + · · ·

x

with R,Ri ∈ End(U) commuting with A, Tfin and [Rs, Ri] = −iRi, where Rs

is the semisimple part of R.

Using the above F̂ , let us define our Hamiltonian systems.

Definition 2.3 ([2, Theorem 5.9]). The simply-laced isomonodromy system
is the non-autonomous Hamiltonian system on the symplectic fiber bundle
Ma/Z = Ma × T → T with the Hamiltonian one-form ϖa =

∑
λ∈ΣHa

λ dtλ
defined by

Ha
λ (M) :=


1

2
Res
x=tλ

(
tr(L(x)2) dx

)
(aπ(λ) = ∞),

Res
x=∞

tr

(
∂F̂

∂x
F̂−1IdUλ x dx

)
(aπ(λ) 6= ∞),

where IdUλ denotes the idempotent of End(U) for Vλ.

Remark 2.4. Our symplectic form on Ma is minus Boalch’s original one,
while the definition of Hamiltonians is the same. This is because our sign
convention for the associated Hamiltonian equation is different to Boalch’s:
if mi are local coordinates on Ma then we consider the system of differential
equations ∂mi/∂tλ = {Ha

λ ,mi}, while Boalch considers ∂mi/∂tλ = {mi,H
a
λ }.

The simply-laced isomonodromy system is completely integrable and gov-
erns the isomonodromic deformations of the linear differential system du/dx =
L(x)u along tλ’s; see [2, Theorems 5.7, 6.1]. Furthermore, the systems for var-
ious a have the following beautiful symmetry. Recall that each g ∈ SL2(C)
gives a Z-equivariant Poisson automorphism of M. It induces a Poisson iso-
morphism

Φg : Ma/Z → Mg−1a/Z,

covering some automorphism T 7→ T g =
⊕

tgλ 1Vλ
of the base space T as

a bundle map. It follows from [2, Theorem 5.4] that for any g ∈ SL2(C),
there exists Λ ∈ z such that for any (local) solution T 7→ X(T ) ∈ Ma of the
Hamiltonian system with Hamiltonian one-form Φ∗

gϖg−1a, the map

T 7→ eΛT
2
X(T )e−ΛT 2
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is a solution of the simply-laced isomonodromy system ϖa. In particular,
the two Hamiltonian systems Φ∗

gϖg−1a, ϖa are gauge equivalent. Thus the
difference Φ∗

gϖg−1a −ϖa may be non-zero but comes from some gauge trans-
formation of the symplectic fiber bundle Ma × T.

For instance, take any i ∈ Ifin and put

(2.2) gi =

(
ai −1
1 0

)
∈ SL2(C).

Then g−1
i (ai) = ∞, and a direct calculation shows

tgiλ =


−tλ (λ ∈ Σi),

tλ (aπ(λ) = ∞),

tλ
ai − aπ(λ)

(otherwise).

Thus for any λ ∈ Σi, we have

Φ∗
gi(H

g−1
i a

λ dtλ) = H
g−1
i a

λ (Mgi)
dtgiλ
dtλ

dtλ = −H
g−1
i a

λ (Mgi) dtλ.

In this case, we can show the following:

Proposition 2.5. For any λ ∈ Σi and M ∈ Ma, we have

Ha
λ (M) = −H

g−1
i a

λ (Mgi).

Note that if we put Li(x) = Lg−1
i a(M

gi), then

H
g−1
i a

λ (Mgi) =
1

2
Res

x=−tλ

(
tr(Li(x)

2) dx
)
.

Thus for any λ ∈ Σ, the Hamiltonian Ha
λ can be described as the residue of

the trace of the square of some matrix-valued rational function. The proof of
Proposition 2.5 will be given in the next subsection.

2.4. Trace and determinant formulae for Hamiltonians

Fix an injective map a : I → P1. In this section we introduce some useful
formulae for the Hamiltonians Ha

λ and use them to prove Proposition 2.5.
The results in this section are based on our earlier work [14].

For M = A1∂ −A0x−Θ−Ξ ∈ Ma, let M0 = M0(∂, x) ∈ Ma be its block
diagonal part:

M0(∂, x) = M − Ξ = A1∂ −A0x−Θ.
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Theorem 2.6 (Trace formula). For i ∈ Ifin, λ ∈ Σi and M ∈ Ma, the
following equality holds:

Ha
λ (M) = −

∞∑
k=1

1

k
Res
x=∞

(
Res

y=aix+tλ
x tr

[(
ΞM0(y, x)

−1
)k]

dy

)
dx.

Let us prove the theorem. Fix i ∈ Ifin, λ ∈ Σi andM ∈ Ma. Using the fixed
basis of V , we identify the coordinate ring of the complex affine variety gl(V )
with the polynomial ring C[zpq; p, q = 1, 2, . . . , dimV ], and put Z = (zpq). Let
C[[gl(V )]] be the formal completion of the local ring of gl(V ) at 0, which is
identified with the ring of formal power series C[[zpq; p, q = 1, 2, . . . , dimV ]].
The adjoint action of GL(V ) on gl(V ) induces an action on C[[gl(V )]].

Put y = y − aix − tλ and embed C(x, y) in C((y))((x−1)) in the obvious
manner.

Lemma 2.7. The substitution Z = ΞM0(y, x)
−1 gives a well-defined map

C[[gl(V )]]GL(V ) → C((y))((x−1)).

Proof. Since any element of C[[gl(V )]]GL(V ) is uniquely expressed as a formal
series

∑∞
k=0 ck tr(Z

k), it is sufficient to show

lim
k→∞

ord1/x

(
tr
[(
ΞM0(y, x)

−1
)k])

= ∞,

where ord1/x denotes the order of a formal Laurent series in x−1 with coeffi-
cients in C((y)). For µ, ν ∈ Σ, let Ξµν be the (µ, ν)-block of Ξ with respect to
the decomposition V =

⊕
µ∈Σ Vµ. Then we have

tr
[(
ΞM0(y, x)

−1
)k]

=
∑

µ1,...,µk∈Σ

tr (Ξµ1µ2Ξµ2µ3 · · ·Ξµkµ1)∏k
l=1 fµl

(y, x)
,

where

fµ(y, x) = a1π(µ)y − a0π(µ)x− θµ (µ ∈ Σ).

For µ ∈ Σ with aπ(µ) = ∞, we have

1

fµ(y, x)
=

1

−a0π(µ)(x− tµ)
,

while for µ ∈ Σ with π(µ) ∈ Ifin, we have

1

fµ(y, x)
=

1

a1π(µ)(y − (aπ(µ) − ai)x− (tµ − tλ))
.
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Hence

ord1/x

(
1

fµ(y, x)

)
≥

{
0 (µ ∈ Σi),

1 (µ ∈ Σ \ Σi),

which implies

ord1/x

(
k∏

l=1

fµl
(y, x)−1

)
≥ #{ l ∈ {1, 2, . . . , k} | π(µl) 6= i }

for µ1, µ2, . . . , µl ∈ Σ. On the other hand, Ξµν = 0 if π(µ) = π(ν) (recall that
Ξ is block off-diagonal). It follows that if

#{ l ∈ {1, 2, . . . , k} | π(µl) = i } >
k

2
,

then
tr (Ξµ1µ2Ξµ2µ3 · · ·Ξµkµ1) = 0.

Thus we obtain

ord1/x

(
tr
[(
ΞM0(y, x)

−1
)k]) ≥ k

2
→ ∞ (k → ∞).

We apply Lemma 2.7 to the formal series

tr log(1− Z) =
∞∑
k=1

1

k
trZk,

which is equal to

log det(1− Z) =

∞∑
k=1

1

k
(1− det(1− Z))k.

Substituting ΞM0(y, x)
−1 for Z, we obtain

1− Z = 1− ΞM0(y, x)
−1 = (M0(y, x)− Ξ)M0(y, x)

−1 = M(y, x)M0(y, x)
−1,

and hence

∞∑
k=1

1

k
tr
[(
ΞM0(y, x)

−1
)k]

=
∞∑
k=1

1

k

(
1− detM(y, x)

detM0(y, x)

)k

as elements of C((y))((x−1)). On the other hand, the decomposition (2.1) yields

detM(y, x)

detM0(y, x)
=

det(y − L(x))

det(y −Ax− Tfin)
.
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Taking the formal series F̂ shown in Proposition 2.2, we have

det(y − L(x)) = det(F̂ (y − L)F̂−1)

= det(y −Ax− Tfin − R̂+ F̂ ′F̂−1).

Thus
detM(y, x)

detM0(y, x)
=

det(y −Ax− Tfin − R̂+ F̂ ′F̂−1)

det(y −Ax− Tfin)
.

Lemma 2.8. The substitution Z = (R̂ − F̂ ′F̂−1)(y − Ax − Tfin)
−1 gives a

well-defined map

C[[gl(V )]]GL(V ) → C((y))((x−1)).

Proof. For each µ ∈ Σ with aπ(µ) 6= ∞, we have

ord1/x

(
1

y − aπ(µ)x− tµ

)
≥ 0,

which together with the inequality ord1/x(R̂− F̂ ′F̂−1) ≥ 1 shows

ord1/x

(
tr

[(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)k])

≥ k.

This completes the proof.

Applying the above lemma to the formal series tr log(1−Z) = log det(1−Z),
we obtain

∞∑
k=1

1

k
tr

[(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)k]

=
∞∑
k=1

1

k

(
1− det(y −Ax− Tfin − R̂+ F̂ ′F̂−1)

det(y −Ax− Tfin)

)k

=

∞∑
k=1

1

k

(
1− detM(y, x)

detM0(y, x)

)k

=

∞∑
k=1

1

k
tr
[(
ΞM0(y, x)

−1
)k]

.

Thus Theorem 2.6 follows from the lemma below.

Lemma 2.9. The following equality holds:

∞∑
k=1

1

k
Res
x=∞

Res
y=0

x tr

[(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)k]

dy dx = −Ha
λ (M).
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Proof. From the inequalities shown in the proof of the previous lemma we
easily deduce

Res
x=∞

Res
y=0

x tr

[(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)k]

dy dx = 0 (k ≥ 3).

Furthermore, since R̂µν = 0 (µ 6= ν) we have

Res
x=∞

Res
y=0

x tr

[(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)2]

dy dx

=
∑
µ∈Σ

aπ(µ) ̸=∞, µ ̸=λ

Res
x=∞

x
tr
(
(R̂− F̂ ′F̂−1)λµ(R̂− F̂ ′F̂−1)µλ

)
(ai − aπ(µ))x+ (tλ − tµ)

dx

=
∑
µ∈Σ

aπ(µ) ̸=∞, µ ̸=λ

Res
x=∞

x
tr
(
(F̂ ′F̂−1)λµ(F̂

′F̂−1)µλ

)
(ai − aπ(µ))x+ (tλ − tµ)

dx,

which is zero because ord1/x(F̂
′F̂−1) ≥ 2. Finally, a direct calculation shows

Res
x=∞

Res
y=0

x tr
(
(R̂− F̂ ′F̂−1)(y −Ax− Tfin)

−1
)
dy dx

= Res
x=∞

x tr
(
(R̂− F̂ ′F̂−1)λλ

)
dx = tr(R1)λλ −Ha

λ (M).

Since [Rs, R1] = R1 we have tr(R1)λλ = 0. Thus we obtain the desired formula.

The above arguments also yield the following formula:

Theorem 2.10 (Determinant formula). For i ∈ Ifin, λ ∈ Σi and M ∈ Ma,
the following equality holds:

Ha
λ (M) = −

∞∑
k=1

1

k
Res
x=∞

(
Res

y=aix+tλ
x

(
1− detM(y, x)

detM0(y, x)

)k

dy

)
dx.

For λ ∈ Σ with aπ(λ) = ∞, we can also describe the Hamiltonian Ha
λ in a

similar form.

Proposition 2.11. For λ ∈ Σ with aπ(λ) = ∞ and M ∈ Ma, the following
equalities hold:

Ha
λ (M) = −

∞∑
k=1

1

k
Res
y=∞

(
Res
x=tλ

y tr
[(
ΞM0(y, x)

−1
)k]

dx

)
dy

= −
∞∑
k=1

1

k
Res
y=∞

(
Res
x=tλ

y

(
1− detM(y, x)

detM0(y, x)

)k

dx

)
dy.
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Proof. We embed C(x, y) in C((x−tλ))((y
−1)). Then a direct calculation shows

ord1/y

(
1

a0π(µ)y − a1π(µ)x− θµ

)
≥

{
0 (aπ(µ) = ∞),

1 (aπ(µ) 6= ∞)

for every µ ∈ Σ. Thus arguments similar to the proofs of Lemmas 2.7, 2.9
yield the equalities among the infinite sums

∞∑
k=1

1

k
tr
[(
ΞM0(y, x)

−1
)k]

=

∞∑
k=1

1

k

(
1− detM(y, x)

detM0(y, x)

)k

=
∞∑
k=1

1

k

(
1− det(y − L(x))

det(y −Ax− Tfin)

)k

=
∞∑
k=1

1

k
tr
[(
(L(x)−Ax− Tfin)(y −Ax− Tfin)

−1
)k]

in C((x− tλ))((y
−1)). Since

(y −Ax− Tfin)
−1 = y−1

∑
l≥0

(Ax+ Tfin)
ly−l,

the order counting shows

Res
y=∞

y tr
[(
(L(x)−Ax− Tfin)(y −Ax− Tfin)

−1
)k]

dy

=


0 (k ≥ 3),

− tr
[
(L−Ax− Tfin)

2
]

(k = 2),

− tr [(L−Ax− Tfin)(Ax+ Tfin)] (k = 1).

Hence

∞∑
k=1

1

k
Res
y=∞

y tr
[(
(L(x)−Ax− Tfin)(y −Ax− Tfin)

−1
)k]

dy

= −1

2
tr
[
(L−Ax− Tfin)

2
]
− tr [(L−Ax− Tfin)(Ax+ Tfin)]

= −1

2
tr [(L−Ax− Tfin)(L+Ax+ Tfin)]

= −1

2
tr
[
L2 − (Ax+ Tfin)

2
]
,

whose residue at x = tλ is equal to that of − tr(L2)/2.
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As an application of Theorem 2.6 and Proposition 2.11, we will give a proof
of Proposition 2.5.

Proof of Proposition 2.5. Define variables xi, yi by(
yi
xi

)
= gi

(
y
x

)
=

(
aiy − x

y

)
.

Then
Mgi(y, x) = M(yi, xi), Mgi

0 (y, x) = M0(yi, xi).

Also, for F ∈ C(x, y) = C(xi, yi) we have

Res
y=∞

(
Res

x=−tλ
F dx

)
dy = − Res

xi=∞

(
Res

yi=aixi+tλ
F dyi

)
dxi.

Thus Theorem 2.6 and Proposition 2.11 yield

−H
g−1
i a

λ (Mgi) =

∞∑
k=1

1

k
Res
y=∞

(
Res

x=−tλ
y tr

[(
ΞMgi

0 (y, x)−1
)k]

dx

)
dy

= −
∞∑
k=1

1

k
Res
xi=∞

(
Res

yi=aixi+tλ
xi tr

[(
ΞM0(yi, xi)

−1
)k]

dyi

)
dxi

= Ha
λ (M).

§3. Quantization

Fix an injective map a : I → P1. This section is devoted to quantize the
simply-laced Hamiltonian system on Ma/Z.

We denote the coordinate ring of a complex affine variety S by C[S].

3.1. Formal deformation quantization and Lax matrices

We first construct a formal deformation quantization of the affine Poisson
variety Ma/Z. Recall that for each M = A1∂ − A0x−Θ− Ξ ∈ Ma we have
defined

C =
⊕
i∈I

ci 1Wi , T = C−1Θ =
⊕
λ∈Σ

tλ 1Vλ
.

Varying M we thus obtain functions ci, tλ, (Ξij)pq on Ma, which satisfy

{(Ξij)pq, (Ξkl)rs} = −δilδjkδpsδqr

∣∣∣∣a0i a0j
a1i a1j

∣∣∣∣ , {ci, ·} = {tλ, ·} = 0,
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where a0i, a1i (i ∈ I) are defined by

(a1i,−a0i) =

{
(0, ci) (ai = ∞),

(ci,−ciai) (ai 6= ∞).

We also regard ci, tλ as coordinate functions on Z × T. Then C[Ma] is a
C[Z× T]-algebra and every element of C[Z× T] is Casimir.

Let Aa be the C[Z × T][[ℏ]]-algebra with generators (Ξ̂ij)pq (i 6= j ∈ I,
p = 1, 2, . . . , dimWi, q = 1, 2, . . . , dimWj) and fundamental relations[

(Ξ̂ij)pq, (Ξ̂kl)rs

]
= −δilδjkδpsδqrℏ

∣∣∣∣a0i a0j
a1i a1j

∣∣∣∣ .
This is obviously a formal deformation quantization of the Poisson algebra
C[Ma].

The matrices C,Θ, T may now be regarded as elements of End(V )⊗C Aa.
Let Ξ̂ = (Ξ̂ij) ∈ End(V )⊗CAa be the block off-diagonal matrix with each Ξ̂ij

having matrix entries (Ξ̂ij)pq. Define

M̂(∂, x) = A1∂ −A0x−Θ− Ξ̂ ∈ End(V )⊗C Aa ⊗C W,

where
A0 =

⊕
i∈I

a0i 1Wi , A1 =
⊕
i∈I

a1i 1Wi ∈ End(V )⊗C Aa.

For i, j ∈ I, let M̂ij be the (i, j)-block of M̂ and (M̂ij)pq be its matrix entries.

Proposition 3.1. The equality[
(M̂ij)pq, (M̂kl)rs

]
= (δijδklδpqδrs − δilδjkδpsδqr)ℏ

∣∣∣∣a0i a0k
a1i a1k

∣∣∣∣
holds for any i, j, k, l, p, q, r, s.

Proof. By the definition we have

(M̂ij)pq = δijδpq(a1i∂ − a0ix− θi,p)− (Ξ̂ij)pq,

where θi,p is the p-th diagonal entry of the i-th block Θi of Θ. Since the matrix

entries of Ξ̂ commute with x, ∂ and the elements of C[Z × T], we obtain the
desired formula as follows:[

(M̂ij)pq, (M̂kl)rs

]
= δijδpqδklδrs[a1i∂ − a0ix− θi,p, a1k∂ − a0kx− θk,r]

+
[
(Ξ̂ij)pq, (Ξ̂kl)rs

]
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= δijδpqδklδrsℏ(−a1ia0k + a0ia1k) +
[
(Ξ̂ij)pq, (Ξ̂kl)rs

]
= (δijδklδpqδrs − δilδjkδpsδqr)ℏ

∣∣∣∣a0i a0k
a1i a1k

∣∣∣∣ .
We let Z act on Aa by

Z 3 γ =
⊕
i∈I

γi 1Wi : (ci, tλ, (Ξ̂ij)pq) 7→ (γ−1
i ci, tλ, γ

−1
i (Ξ̂ij)pq),

so that γ : M̂ 7→ γ−1M̂ . This action induces an action on the quasi-classical
limit C[Ma], which coincides with the one induced from the Z-action on Ma.
Hence the invariant part AZ

a ⊂ Aa is a formal deformation quantization of the
quotient space Ma/Z.

Using the decomposition V = W∞ ⊕ U we write

C−1Ξ̂ = X̂ =

(
0 P̂

Q̂ B̂◦

)
, T = T∞ ⊕ Tfin.

Let B̂◦
ij , Q̂i, P̂i be the blocks of B̂

◦, Q̂, P̂ with respect to the decomposition U =⊕
i∈Ifin Wi (so they are the blocks of X̂). Then their matrix entries generate

AZ
a as a C[T][[ℏ]]-algebra and satisfy the following commutation relation:[
(B̂◦

ij)pq, (B̂
◦
kl)rs

]
= −δilδjkδprδqsℏ(ai − aj),

[
(P̂i)pq, (Q̂j)rs

]
= δijδpsδqrℏ,

[
(B̂◦

ij)pq, (Q̂k)rs

]
=
[
(B̂◦

ij)pq, (P̂k)rs

]
=
[
(Q̂i)pq, (Q̂j)rs

]
=
[
(P̂i)pq, (P̂j)rs

]
= 0.

Define

L̂(x) = Ax+ Tfin + B̂◦ + Q̂(x− T∞)−1P̂ ∈ End(U)⊗C AZ
a ⊗C C(x).

Observe that the quasi-classical limit of L̂(x) is the map

Ma/Z → End(U)⊗C C(x), [M ] 7→ L(x)

regarded as an element of End(U)⊗CC[Ma/Z]⊗CC(x) (which we also denote
by L(x)).

Proposition 3.2. L̂(x) is a Lax matrix of Gaudin type, i.e., it satisfies the
following “RLL = LLR” relation:[

(L̂ij)pq(x), (L̂kl)rs(y)
]
=

δjkδqrℏ
x− y

(
(L̂il)ps(y)− (L̂il)ps(x)

)
− δliδspℏ

x− y

(
(L̂kj)qr(y)− (L̂kj)qr(x)

)
.
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Proof. Put

L̂+(x) = Ax+ Tfin + B̂◦, L̂−(x) = Q̂(x− T∞)−1P̂ ,

so that L̂(x) = L̂+(x) + L̂−(x). Denoting the diagonal entries of Ti by ti,p, we
have

(L̂+
ij)pq(x) = δijδpq(aix+ ti,p) + (B̂◦

ij)pq, (L̂−
ij)pq(x) =

∑
r

(Q̂i)pr(P̂j)rq
x− t∞,r

,

and obviously [
(L̂+

ij)pq(x), (L̂
−
kl)rs(y)

]
= 0.

Thus it is sufficient to show that both L̂+, L̂− satisfy the RLL = LLR relation.
First, we have[

(L̂+
ij)pq(x), (L̂

+
kl)rs(y)

]
=
[
(B̂◦

ij)pq, (B̂
◦
kl)rs

]
= −δilδjkδpsδqrℏ(ai − aj).

On the other hand,

(L̂+
il )ps(y)− (L̂+

il )ps(x) = δilδpsai(y − x),

and hence

δjkδqr
x− y

(
(L̂+

il )ps(y)− (L̂+
il )ps(x)

)
− δliδsp

x− y

(
(L̂+

kj)qr(y)− (L̂+
kj)qr(x)

)
= −δilδpsδjkδqrai + δkjδrqδliδspak = −δilδpsδjkδqr(ai − aj).

Thus L̂+ satisfy the RLL = LLR relation. Next we have

[
(L̂−

ij)pq(x), (L̂
−
kl)rs(y)

]
=
∑
u,v

[
(Q̂i)pu(P̂j)uq, (Q̂k)rv(P̂l)vs

]
(x− t∞,u)(y − t∞,v)

.

The commutation relation for (Q̂i)pq, (P̂j)rs implies[
(Q̂i)pu(P̂j)uq, (Q̂k)rv(P̂l)vs

]
= δjkδqrδuvℏ(Q̂i)pu(P̂l)vs−δliδspδvuℏ(Q̂k)rv(P̂j)uq.

Hence

∑
u,v

[
(Q̂i)pu(P̂j)uq, (Q̂k)rv(P̂l)vs

]
(x− t∞,u)(y − t∞,v)

=
∑
u

δjkδqr(Q̂i)pu(P̂l)us − δliδsp(Q̂k)ru(P̂j)uq
(x− t∞,u)(y − t∞,u)
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=
ℏ

x− y

(∑
u

δjkδqr(Q̂i)pu(P̂l)us − δliδsp(Q̂k)ru(P̂j)uq
y − t∞,u

−
∑
u

δjkδqr(Q̂i)pu(P̂l)us − δliδsp(Q̂k)ru(P̂j)uq
x− t∞,u

)

=
ℏ

x− y

(
δjkδqr(L̂

−
il )ps(y)− δilδsp(L̂

−
kj)rq(y)

− δjkδqr(L̂
−
il )ps(x)− δliδsp(L̂

−
kj)rq(x)

)
,

which shows the RLL = LLR relation for L̂−.

For a square matrix N = (Npq) with entries in a possibly non-commutative
ring, let detcolN be the column determinant of N :

detcolN :=
∑
σ∈Sn

sgn(σ)Nσ(1)1 · · ·Nσ(n)n.

Corollary 3.3. Define qchp(L̂)(x) ∈ AZ
a ⊗C C(x), p = 0, 1, . . . , dimU by

detcol(∂ − L̂(x)) =

dimU∑
p=0

qchp(L̂)(x) ∂
dimU−p.

1. We have qchp(L̂)(x)|ℏ=0 = chp(L)(x), where

det(y − L(x)) =
dimU∑
p=0

chp(L)(x) y
dimU−p.

2. We have [
qchp(L̂)(x), qchq(L̂)(y)

]
= 0

as rational functions of x, y for all p, q.

Proof. This follows from Proposition 3.2 and Talalaev’s result [12, Theorem 1]
(see also [3, p. 3]).

Take the Laurent expansion of each qchp(L̂)(x) at x = ∞:

qchp(L̂)(x) =
∑
m∈Z

qchp,m(L̂)xm ∈ AZ
a ⊗C C((x−1)).

LetH be the C[T][[ℏ]]-subalgebra ofAZ
a generated by qchp,m(L̂), p = 1, 2, . . . , dimU ,

m ∈ Z. Then the above corollary implies:

Corollary 3.4. The algebra H is commutative.
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3.2. SL2(C)-invariance of H

Take any g ∈ SL2(C). One can define a Z-equivariant C-algebra isomorphism
g∗ : Ag−1a → Aa by

(ci, tλ, (Ξ̂ij)pq) 7→ (cgi , t
g
λ, (Ξ̂ij)pq),

where cgi (i ∈ I), tgλ (λ ∈ Σ) are defined so that

(a1i,−a0i)g =

{
(0, cgi ) (g−1(ai) = ∞),

(cgi ,−cgi g
−1(ai)) (g−1(ai) 6= ∞),

and

cgπ(λ)t
g
λ = cπ(λ)tλ.

Note that cgi ∈ C×ci, t
g
λ ∈ C×tλ, and the isomorphism between the quasi-

classical limits induced from g∗ coincides with the pull-back by the action
Ma → Mg−1a, M 7→ Mg.

Let M̂g, L̂g be the transforms of the matrices M̂, L̂ associated to g−1a by
g∗. Then

M̂g(∂, x) =
(
A1 −A0

)
g

(
∂
x

)
−Θ− Ξ̂ ∈ End(V )⊗C Aa ⊗C W.

Theorem 3.5. We have qchp,m(L̂g) ∈ H for all p,m.

In our proof of Theorem 3.5 we will use the general theory of Manin matri-
ces. A square matrix N = (Npq) with entries in a possibly non-commutative
ring is called a Manin matrix if the equality

[Npq, Nrs] = [Nrq, Nps]

holds for any p, q, r, s. It is known that the column determinants of Manin
matrices have the following nice properties (see [4]):

1. The column determinant of a Manin matrix is anti-symmetric with re-
spect to columns/rows.

2. If two Manin matrices N = (Npq), N
′ = (N ′

pq) of the same size satisfy
[Npq, N

′
rs] = 0 for all p, q, r, s, then NN ′ is also a Manin matrix and

detcol(NN ′) = detcol(N) detcol(N ′).
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3. Let N be a Manin matrix expressed in a block form

N =

(
Nl×l Nl×m

Nm×l Nm×m

)
,

and assume thatNl×l has a two-sided inverse. Then the following Schur’s
formula holds:

detcolN = detcol(Nl×l) det
col(Nm×m −Nm×lN

−1
l×lNl×m).

Proposition 3.1 implies:

Corollary 3.6. M̂ is a Manin matrix, i.e., the equality[
(M̂kj)rq, (M̂il)ps

]
=
[
(M̂ij)pq, (M̂kl)rs

]
holds for any i, j, k, l, p, q, r, s.

Proof. [
(M̂kj)rq, (M̂il)ps

]
= (δkjδilδrqδps − δklδjiδrsδqp)ℏ

∣∣∣∣a0k a0i
a1k a1i

∣∣∣∣
= −(δjkδilδrqδps − δklδijδrsδqp)ℏ

∣∣∣∣a0i a0k
a1i a1k

∣∣∣∣
=
[
(M̂ij)pq, (M̂kl)rs

]
.

Proof of Theorem 3.5. Since the entries of C are central, the product C−1M̂
is a Manin matrix and

detcol(C−1M̂) = det(C)−1 detcol(M̂).

On the other hand, we have

C−1M̂ =

(
x− T∞ −P̂

−Q̂ ∂ −Ax− Tfin − B̂◦

)
up to conjugation by a permutation matrix, and hence

(3.1) detcol(C−1M̂) = det(x− T∞) detcol(∂ − L̂(x))

by Schur’s formula. Since detcol(∂− L̂(x)) ∈ H⊗CC((x−1))⊗CW, the column

determinant of M̂ may be expressed as

detcol M̂(∂, x) = det(C)
∑

m,n≥0

hmnx
m∂n, hmn ∈ H.
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Now we write

g =

(
a b
c d

)
,

and put (
∂̃
x̃

)
= g

(
∂
x

)
=

(
a∂ + bx
c∂ + dx

)
.

Since M̂g(∂, x) = M̂(∂̃, x̃), we have

detcol M̂g(∂, x) = det(C)
∑

m,n≥0

hmnx̃
m∂̃n

= det(C)
∑

m,n≥0

hmn(a∂ + bx)m(c∂ + dx)n.

The right hand side lives in det(C)H⊗CW. Thus the equality (3.1) for M̂g, L̂g

shows

detcol(∂ − L̂g(x)) ∈ det(C)

det(Cg)
H⊗C C((x−1))⊗C W,

where Cg :=
⊕

i∈I c
g
i 1Wi . Since det(C)/det(Cg) ∈ C×, we obtain the asser-

tion.

3.3. Quantized simply-laced isomonodromy systems

For i ∈ I and λ ∈ Σi, we define

ĥaλ =


1

2
Res
x=tλ

tr
(
L̂(x)2

)
dx (i /∈ Ifin),

−1

2
Res

x=−tλ
tr
(
L̂gi(x)2

)
dx (i ∈ Ifin),

where gi ∈ SL2(C) is defined in (2.2). Proposition 2.5 shows that the quasi-
classical limit of each ĥaλ is equal to Ha

λ .

The following lemma implies that ĥaλ ∈ H for all λ ∈ Σ (note that the
residue of any exact meromorphic one-form is zero):

Lemma 3.7. Let R be a possibly non-commutative ring and suppose that a
matrix N(x) = (Npq(x)) ∈ Mn(R⊗CC(x)) satisfies the RLL = LLR relation:

[Npq(x), Nrs(y)] =
δqr(Nps(y)−Nps(x))− δsp(Nqr(y)−Nqr(y))

x− y
.

Then

tr(N(x)2) = qch1(N)(x)2 − 2 qch2(N)(x)− (n− 1) tr(N ′(x)),

where N ′(x) = dN/dx.
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Proof. A direct calculation shows

qch1(N) = tr(N), qch2(N) =
∑
p<q

(NppNqq −NqpNpq)−
n∑

p=1

(p− 1)N ′
pp.

On the other hand, the RLL = LLR relation implies

NppNqq = NqqNpp, NqpNpq = NpqNqp −N ′
qq +N ′

pp.

Using the above we have

tr(N2)− (trN)2 =
∑
p<q

(−NppNqq −NqqNpp +NpqNqp +NqpNpq)

=
∑
p<q

(−2NppNqq + 2NqpNpq +N ′
qq −N ′

pp)

= −2 qch2(N)− 2
n∑

p=1

(p− 1)N ′
pp +

∑
p<q

(N ′
qq −N ′

pp)

= −2 qch2(N)− (n− 1)
n∑

p=1

N ′
pp,

which gives the desired equality.

Take any λ, µ ∈ Σ and put i = π(λ), j = π(µ). We calculate ∂ĥaλ/∂tµ −
∂ĥaµ/∂tλ.

Lemma 3.8. If ai = ∞ then

∂ĥaλ
∂tµ

=


1

2(tλ − tµ)2
tr
(
Q̂IdλP̂ Q̂IdµP̂ + Q̂IdµP̂ Q̂IdλP̂

)
(aj = ∞),

1

cicj
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂
)

(aj 6= ∞),

where IdVλ , Id
V
µ denote the idempotents of End(V ) for Vλ, Vµ, respectively.

Proof. Decompose L̂ = L̂+ + L̂− as in the proof of Proposition 3.2. Since the
matrix entries of L̂+(x) commute with those of L̂−(x) and are holomorphic at
x = tλ, we have

Res
x=tλ

tr
(
L̂(x)2

)
dx = 2 Res

x=tλ
tr
(
L̂+(x)L̂−(x)

)
dx+ Res

x=tλ
tr
(
L̂−(x)2

)
dx.

The two terms on the right hand side may be calculated as

Res
x=tλ

tr
(
L̂+(x)L̂−(x)

)
dx = Res

x=tλ
tr
(
(Ax+ Tfin + B̂◦)Q̂(x− T∞)−1P̂

)
dx
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= tr
(
(Atλ + Tfin + B̂◦)Q̂IdλP̂

)
,

Res
x=tλ

tr
(
L̂−(x)2

)
dx = Res

x=tλ
tr
(
Q̂(x− T∞)−1P̂ Q̂(x− T∞)−1P̂

)
dx

=
∑
ν∈Σi
ν ̸=λ

tr
(
Q̂IdλP̂ Q̂IdνP̂ + Q̂IdνP̂ Q̂IdλP̂

)
tλ − tν

.

Thus

ĥaλ = tr
(
(Atλ + Tfin + B̂◦)Q̂IdλP̂

)
+

1

2

∑
ν∈Σi
ν ̸=λ

tr
(
Q̂IdλP̂ Q̂IdνP̂ + Q̂IdνP̂ Q̂IdλP̂

)
tλ − tν

,

and hence

∂ĥaλ
∂tµ

=


tr
(
Q̂IdλP̂ Q̂IdµP̂ + Q̂IdµP̂ Q̂IdλP̂

)
2(tλ − tµ)2

(aj = ∞),

tr
(
IdUµ Q̂IdλP̂

)
(aj 6= ∞),

where recall that IdUµ denotes the idempotent of End(U) for Vµ. Note that

Q̂, P̂ are blocks of C−1Ξ̂. Thus if aj 6= ∞ then

tr
(
IdUµ Q̂IdλP̂

)
=

1

cicj
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂
)
.

Define κij ∈ C by

κij =



0 (i = j),

−1 (ai = ∞, aj 6= ∞),

1 (ai 6= ∞, aj = ∞),

1

ai − aj
(otherwise).

Proposition 3.9. The following equality holds:

∂ĥaλ
∂tµ

−
∂ĥaµ
∂tλ

= ℏ(dimVλ)(dimVµ)κij .
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Proof. First, suppose i = j. If ai = aj = ∞, then Lemma 3.8 shows

∂ĥaλ
∂tµ

=
tr
(
Q̂IdλP̂ Q̂IdµP̂ + Q̂IdµP̂ Q̂IdλP̂

)
2(tλ − tµ)2

,

which is a symmetric function of (λ, µ). Hence

∂ĥaλ
∂tµ

=
∂ĥaµ
∂tλ

.

If ai = aj 6= ∞, then ĥaλ = −(gi)∗(ĥ
g−1
i a

λ ) and hence

∂ĥaλ
∂tµ

= −dtgiµ
dtµ

∂ĥaλ
∂tgiµ

= −dtgiµ
dtµ

(gi)∗

∂ĥ
g−1
i a

λ

∂tµ

 = (gi)∗

∂ĥ
g−1
i a

λ

∂tµ


because tgiµ = −tµ. Since λ, µ ∈ Σi and g−1

i (ai) = ∞, ∂ĥ
g−1
i a

λ /∂tµ is a sym-
metric function of (λ, µ). Hence

∂ĥaλ
∂tµ

=
∂ĥaµ
∂tλ

.

Next, suppose i 6= j. If ai = ∞, then Lemma 3.8 shows

∂ĥaλ
∂tµ

=
1

cicj
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂
)
,

and

∂ĥaµ
∂tλ

= −
dt

gj
λ

dtλ
g∗j

∂ĥ
g−1
j a

µ

∂tλ

 = −
dt

gj
λ

dtλ

1

c
gj
j c

gj
i

tr
(
IdVλ Ξ̂Id

V
µ Ξ̂
)
.

A direct calculation shows

c
gj
k =


−cj (k = j),

ck (ak = ∞),

(aj − ak)ck (otherwise).

Hence
∂ĥaµ
∂tλ

=
1

cjci
tr
(
IdVλ Ξ̂Id

V
µ Ξ̂
)
.

Thus we obtain

∂ĥaλ
∂tµ

−
∂ĥaµ
∂tλ

=
1

cicj
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂− IdVλ Ξ̂Id

V
µ Ξ̂
)
.
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If ai, aj 6= ∞, then

∂ĥaλ
∂tµ

= −dtgiµ
dtµ

(gi)∗

∂ĥ
g−1
i a

λ

∂tµ

 =
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂
)

(ai − aj)2cicj
,

and hence

∂ĥaλ
∂tµ

−
∂ĥaµ
∂tλ

=
tr
(
IdVµ Ξ̂Id

V
λ Ξ̂− IdVλ Ξ̂Id

V
µ Ξ̂
)

(ai − aj)2cicj
.

On the other hand, the commutation relations for the entries of Ξ̂ yield

tr
(
IdVµ Ξ̂Id

V
λ Ξ̂− IdVλ Ξ̂Id

V
µ Ξ̂
)
= −ℏ(dimVλ)(dimVµ)

∣∣∣∣a0j a0i
a1j a1i

∣∣∣∣ .
Also, by the definition we have

∣∣∣∣a0j a0i
a1j a1i

∣∣∣∣ =

cicj (ai = ∞, aj 6= ∞),

−cicj (ai 6= ∞, aj = ∞),

−cicj(ai − aj) (otherwise).

Now the assertion immediately follows.

For λ ∈ Σ, we define

Ĥa
λ = ĥaλ − ℏdimVλ

2

∑
µ ̸=λ

(dimVµ)κπ(λ)π(µ)tµ

= ĥaλ − ℏdimVλ

2

∑
j ̸=π(λ)

κπ(λ)j trTj .

The quasi-classical limit of each Ĥa
λ is equal to Ha

λ .

Theorem 3.10. For any λ, µ ∈ Σ, the following equalities hold:[
Ĥa

λ , Ĥ
a
µ

]
= 0,

∂Ĥa
λ

∂tµ
=

∂Ĥa
µ

∂tλ
.

Proof. All the Ĥa
λ live in H, and hence pairwise commute. Also, for λ 6= µ ∈ Σ

we have
∂Ĥa

λ

∂tµ
=

∂ĥaλ
∂tµ

− ℏ
2
(dimVλ)(dimVµ)κπ(λ)π(µ).

By Proposition 3.9, we thus obtain

∂Ĥa
λ

∂tµ
−

∂Ĥa
µ

∂tλ
=

∂ĥaλ
∂tµ

−
∂ĥaµ
∂tλ

− ℏ(dimVλ)(dimVµ)κπ(λ)π(µ) = 0,

which completes the proof.
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Thus the family {Ĥa
λ }λ∈Σ gives a quantization of the simply-laced isomon-

odromy system.
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