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Abstract. In this paper we consider the asymptotic expansion of the energy
18 (v, i, s) associated with a nonlinear Schrédinger system with three wave in-
teraction as 8 — oo with a = " for a given k € R. In particular, we classify
the asymptotic expansion formula into five cases for the parameter k.
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81. Introduction

Recently, there are many studies on the existence of standing waves and their
stability for the nonlinear Schrédinger system with three wave interaction (see
Colin-Colin-Ohta [6, 7], Pomponio [14], Ardila [2], Kurata-Osada [10] and the
references therein) and related systems (see e.g. Gou-Jeanjean [9], Bhattarai
[3], Zhao-Zhao-Shi [15] and the references therein).

In particular, the L2-constrained variational problems associated with the
systems and the orbital stability of ground states have been studied by many
works (e.g. Bhattarai [3], Gou-Jeanjean [9], Ardila [2], Kurata-Osada [10]).
In this paper, we focus on the following L?-constrained variational problem:

I3 (v, p,8) o= int{EZ (@) | @ € H'(RY; CY),

luall =, lluzll3 = . Jusl3 = s},
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3
_ ﬁ ].El ox |uj [P de — aRe o uUoUg d,

where @ := (u1, ua, us), us is the complex conjugate of us, o, 5 > 0, N = 1,2, 3,
1 <p<1+4+4/N, v,u,s > 0 and each potential V; (j = 1,2,3) satisfies
some suitable conditions. In this paper, we assume only one of the following
conditions for the potentials V; (j = 1,2, 3).

(V1) V € L®(RN;R).
(V2) V e C(RY;R) and V(z) < limj,| o, V(y) =0, for all z € RY.

In the previous paper ([10]), for the case 5 = 1, we studied the energy
asymptotic expansion of I'(, i, s) as & — co. In this paper, we consider the
asymptotic expansion of the energy Ig(’y,u, s) as 8 — oo with a = " for a
given k € R.

To state the main result in this paper in details, we define the following
variational problems:

So(v, p,s) == inf{E°(@0) | & € H'(R"; C?),
[urll3 =, llualls = p, lusl3 = s},
Y1(7, i1, 8) := sup{ E*() | i is a minimizer for X (7, i, 5)},
To(7, 1, 8) := inf{E (@) | @ € H'(RN; C3),
luall3 =, lluall3 = p, lusl3 = s},
Soo(7) 1= inf{Joo(u) | u € H'(RY), ||ul3 =7},
Sl('y,,u, s) = sup{J1 (1) | u1,u2,us are minimizers for
Soo(7)s Soo (), Seo(s) respectively},

3
- 1 _
E%(1) := 3 E /RN |Vu;|? de — Re /RN ujulz de,
j=1
R
EYNi) = —— / | |PT da,
p+1 ]2 RN
1g 1 <
v R 12 dop — | p+1 _ 77
Ex(4) := 5 ]E_l /]RN |Vl d P jE_l /RN lu; [P da Re/RN ujulz de,

1 1
Joo(u) := Z/RN |Vu|? dz — P /RN Ju[PTt da,

Jl(ﬁ) = Re/ uiusz dr.
RN
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Remark 1.1. Let N < 3,1 <p<14+4/N, o, 8 > 0. Under the following three
assumptions on V; (j =1,2,3):

o V c L®°(RV;R),
o V(z) <limpy o V(y) =0 (ae. v € RM),

o V(—x1,2') =V(x1,2') (a.e. 11 €R, 2’ € RV,
V(s,z') <V(t,2') (ae. s,t € R with 0 <s <t ae 2/ € RV71),

the existence of a minimizer for 15(7, , s) is known (see [10]).

See also [10] about the existence of minimizer for ¥o(7v, i, s) under the

additional condition N < 2. Moreover, since it is easy to check that the set of
minimizers for Yo (7, , §) is uniformly bounded in H!(RY;C3), it follows that
Y17,y 8) < 00.
Remark 1.2. When N € N, 1 < p <1+4/N, for all v > 0, it is well-known
that there exists a unique positive, radially symmetric and strictly decreasing
minimizer V., € HY(RY) for So(7) such that for all minimizer u for Seo(7),
there exist y € RY and 6 € R such that

u(e) = 0 (@ +y)

(see [5, 8, 11]).

Unless otherwise noted, ¥, means the one in Remark 1.2. Also, we set
U= (¥, ¥,, V). Note that U is a maximizer for S'(v,x,s). See Lemma 2.3
for the proof.

For a given k € R, as a = " we define for simplicity

EF (@) = Ej, (1),
I7(y, 11, 8) o= T4 (v, 1, 5).
We show that there exist two critical numbers

pii= (4= N)/(4= N(p—1)), ryi=—N/(4=N(p—1))

such that the asymptotic expansion of I%(v, u, s) as B — oo are different in
the following five cases:

(i) & > k1, (i) K = K1, (iil) kK2 < kK < K1, (V) & = K2, (V) K < Ka.

We say {i,, }°2, is a minimizing sequence for 1% (v, u, s) with 8, — oo if

lurnll3 =7, lluznlld = p lusall = s,

EPr (i) = I (v, iy s) + 0o(1),  as n — oo.
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We also study the asymptotic behavior of minimizing sequences {, } by using
the rescaled functions of two types:

(1.1) Wy (x) == ﬁ;’@N/M—N)ﬁn(ﬁg%/(zx—zv)x)
for the case (i) and
(1.2) To(z) = B N/UNG-D) g (5=2/(=NE-1) )

for the cases (ii)—(v), respectively.
Now we state the main result in this paper.

Theorem 1.3. Let N =1,2,3, 1 <p < 1+4/N and let {ti,}22, be a min-
imizing sequence for I (v, u,s) with B, — co. Then we have the asymptotic
expansion of I8 (v, p, s) = Igﬁ (v, 1, 8) as B — oo in the five cases as follows:

(i) For the case k > K1, assume N < 2 and the condition (V1) for each
potential V; (j =1,2,3). Then

I°(v, 1,8) = B/ NS0 (y, p, 5) — BNEDE0HS, (4, 4, 5)
+ O(QKN(”*U/M*NHI), as B — oo.
Moreover, for the rescaled function W, defined by (1.1), up to a subse-
quence, there ezist {y,}°2, C RN and a maximizer i for $1(v, i, s)

such that
| Wn (- + yn) — W|gr =0, asn — oo.

(it) Forthe case k = K1, assume the condition (V2) for each potential V; (j =
1,2,3) and (V1,Va,V3) # (0,0,0). Then it holds that

1Py, p,8) = BYENE=DI T (4, 1, 5)

+ ;mrgﬂg}v{vl(x)'y + Va(x)p + Va(z)s} +o(1), asf — oo.

Moreover, for the rescaled function v, defined by (1.2), up to a subse-
quence, there exist {yn}o2, C RN, a minimizer ¥ for Io(7y, 1y s) and
20 € RN such that

| (- + yn) — Vg — 0, yn/ﬁz/@_N(p—l)) — 2 i RY,  asn — oo,

xrg]gg}v{‘/l(w)v + Va(@)p + Vs(z)s} = Vi(zo)y + Va(zo)p + Va(20)s.

(iii) For the case ko < k < K1, assume the condition (V1) for each potential
Vi (j=1,2,3). Then

17(3,1,8) = YN0 (S0 () + S () + S (5))



(iv)

(v)
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— BN/E=NE=D)FR gL (~ 1y 5) 4 o BN/ U=NE=DIFR) - s 8 — 0.
Moreover, for the rescaled function v, defined by (1.2), up to a subse-
quence, there exist {y, 2, C RN, and 61, 02,03 € R such that

||Uj,n(' +Yn) — €i6j\1/j||H1 — 0, asn— oo,

01 + 05 = 03,
where U1 =V, Uy =V, Wz =WV,
For the case k = ko, assume that the condition (V2) for each potential

Vi (4 =1,2,3), (V1,Va,V3) # (0,0,0). We also assume that V; has a
unique mainimum point zjo and 210 = 220 = 23,0 =: 20. LThen

12,1, ) = BYONE (5,0 (3) + S ) + ()
— SM )+ 5 1in {VA(0)y + Vel + Va(a)s) + (1)
as 3 — oo.

Moreover, for the rescaled function v, defined by (1.2), up to a subse-
quence, there exist {yn}o>, C RY, and 61,605,603 € R such that

[Vjn(- 4+ yn) — €000 — 0, asn — oo,

b1 + 62 = 03,

Yn/BHENO=D) o0 in RY
where ¥ =V, Wy =V, U3=0,,

For the case k < kg, assume that the condition (V2) for each potential
‘/j (] = 1a2’3) and (ViaV27‘/E’>) 7_é (07070) Then

IP(y, p,8) = BYENEI(S () + Soo(pt) + Soo(5))
+5 (i Vi) + miy Voo i Vaa)s) +of0)

as B — oo.

Moreover, for the rescaled function v, defined by (1.2), up to a subse-
quence, there exist {ygj) © CRY (j=1,2,3), and 0, eR (j = 1,2,3)
and zjp € RN (j=1,2,3) such that

ijvn(’ + yr(i])) - eiaj\I]j”H1 — 07 as m — 090,

y\) g2/ (4=N{p-1)) _, zjo in RY,

min Vj(x) = V;(zj0),

zERN

where U4 =V, Uy =V, VU3 =W,
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Remark 1.4. By Theorem 1.3, we can say that the effect of the three wave
interaction appears in the first order term in the case K > k1 and in the
second order term in the case ko < Kk < K1, but disappears in the case k < ks.
We also emphasize that we use the different rescaled functions in the case
(ii)—(v) and in the case (i), respectively, to obtain the asymptotic behavior of
minimizing sequences precisely.

This paper is organized as follows: In Section 2, we prepare the characteri-
zation of St (7, i, 5) to prove Theorem 1.3 in the cases (iii) and (iv). In Section
3, we prove Theorem 1.3 concerning the asymptotic expansion of [ 5(7, [y S)
and the asymptotic behavior of a minimizing sequence for the cases (i)—(v).
In appendix, we note that the asymptotic expansion of I2" as a — oo for a
given 7 < 0 and the asymptotic behavior of a minimizing sequence for Igf
where «;, — 0.

82. Preliminaries

For simplicity, we prove Theorem 1.3 as v = 4 = s = 1. So for simplicity,

we write 17(7, 11, 5), Soo(7), S* (7, 11, 8), Too(5 11, 5), B0(7, 1, 8) and X1(v, p, 5)
as I8, S, S', I, ¥y and ¥;. Moreover, when v = 1, VU, in Remark 1.2 is
abbreviated as V.

As stated in Remark 1.2, the following compactness of the minimizing se-
quence for S, is known (see Lions [12, 13]).

Lemma 2.1. Let {u,}5>, be a minimizing sequence for Ss. Then up to a
subsequence, there exist {y,}°%; C RN and 6 € R such that

Hun( + yn) - eie‘PH}[l — 0, asn — oo.

Here, we note that the fact on rearrangements (see [4]).

Lemma 2.2. We assume that N € N and let f,g,h € C(RN) be functions
such that positive, radialy symmetric and strictly decreasing and

lim f(z)= lim g(z) = lim h(z) =0,
f(z)g(x)h(x)dx < co.
RN
For yo,y1 € RN, ifyog # 0 or y; # 0, then

f@)g(z —yo)h(z —yr)de < | f(z)g(x)h(z) dx
RN RN

holds.
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Lemma 2.3 (characterization of maximizer for S1). Let @ be a mazimizer for
SL. Then there exist y € RN and 61,604,605 € R with 01 + 03 = 05 such that

0= (eMU(-+1y),e20(- 4+ y), V(- +y)),
St :/ U3 dz (> 0).
RN
Proof. By the definition of S*,

S'= sup Re(eB1F02-03))  gyp / U(z)U(x + 21)V(x + 22) do
RN

01,02,03€R Z1,ZQERN
= sup / U(z)U(z + 21)V(x + 29) dx
Z1,22€]RN RN

with 61 4+ 63 = 65 + 2kw (k € Z). From Lemma 2.2, we have
sup / U(x)V(x + 21)¥(z + 22) do = / U(z)¥(z)¥(x)dx
Z1,ZQERN RN RN

and the supremum is attained only for the case z; = zo = 0. Thus

s :/Rqu(x) dz (> 0).

We note the following compactness of minimizing sequence for 1.

Lemma 2.4 ([10]). Let N < 3,1 <p < 14+4/N. Let {t,}>>, be a minimizing
sequence for In,. Then up to a subsequence, there exist {y,}5°; C RY and a
minimizer U for I such that

lwjm(- + yn) —ujllgr =0, asn — oo.

83. Proof of Theorem 1.3

Throughout this section, we assume that N < 3,1 <p < 1+4+4/N, 8 > 0,
a = p% with k € R and v = 4 = s = 1. First, we give the proof of the cases
(ii)—(v) of Theorem 1.3. Finally, we give the proof of the case (i) of Theorem
1.3.

To show the results in the cases (ii)—(v), we rescale the function @ as (1.2),
the functional Ef and its energy I? as follows:

Let @ be a function such that

|13 = lluzll3 = [lus|l3 = 1.
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We rescale the function @ as follows:

F(x) = gV ENE=1)g(g=2/U=Np=1) gy,

Then it follows that

o113 = llvall3 = [lus]l3 =1
and
Eﬁ(ﬁ) — 54/(4—1\7(1)—1))@6(17)’
18— 54/(4—N(p—1))j6’
where

3
1
ZQ;A&N ]ij\Qda:—Z/ lv; [P da

B /8(N4)/(4N(p1))+HRe/ ’1)1’1)263 dx
RN

2
54/4 Np 1) 9 Z/]RN <52/ >|Uj| dz,
I7 = nf{EF(¥) | 7€ H'(RY;C?), |loj|3 =1 (j =1,2,3)}.

So it is sufficient to prove the energy expansion of I? and the asymptotic
behavior of 7, to prove the cases (ii)—(v) in Theorem 1.3.

3.1. Proof of Theorem 1.3 (ii)

For the case k = k1, we have

B(0) = Bu(@) + /0N

l\')\r—l

3
153 [ (v

3.1.1. Upper bound

Lemma 3.1 (upper bound for I%). Under the assumptions in the case (i), it
follows that

zeR

+o(f~HU-NEP=)) " a5 f — oco.
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Proof. From Lemma 2.4, there exists a minimizer @ for I.. Let 2o € RY be a
point which attains

min {Vi(z) + Va() + Va(2)}.

zeRN

For g > 0, we set
Bp(x) == v(x — Y ENE=1)g).
Then it holds that

x 2 5. A - A 2
/RN Vi <52/(4_N(p_1))> pjp(z)|" dz = /RN Vi <52/(4_N(p_1)) +360> [vj(z)|” da.

From (V2), it follows that

T
LV (v + o0 @R de = [ il de, s o

Then we have

1 < EP(p)
4/(4—N(p—-1)) = A | )
e Z/RN <ﬁ2/4 N(p-1)) ) |pj,8(x)|" dx

= L+ g-Y/0-NE-)1 min {V1(z) + Va(z) 4 Va(z)}
2 zeRrN
+o(f~HE-NE-1)) as B — co.
O
3.1.2. Lower bound and the completion of the proof of Theorem
1.3 (ii)
Theorem 1.3 (ii) with v = u = s =1 is reduced to the following lemma.

Lemma 3.2. Under the assumptions in the case (ii), it follows that

I8 =Io+p3" 4/(4=N(p- 1))7 min {Vl( )+V2($) +V3(x)}
2 zeRN

Fo(~Y/U=NE=1)) " g5 B — co.

Moreover, for the rescaled function ¥, defined by (1.2), up to a subsequence,
there exist {yn}52, C RY, a minimizer ¥ for I, and zo € RY such that

1 Tn (- + yn) — U] g1 — O, yn/ﬁz/(4_N(p_1)) — 20 inRY, asn — oo,
min {V1(x) + Va(z) + Vs(2)} = Vi(20) + Va(z0) + Vs(20)-
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Proof. Note that v, satisfies

lornll3 = llvzall3 = llvsnll3 =
EPn (@) = P 4 o(8; 4/ (4= N = 1)))7

where 3, — co. From Lemma 3.1, it follows that

I +0(1)
> [P 4 o(B7 Y U=NE=1)y = EBn(5,)

4/(4—N(p-1)) 2
Eoo () + B,/ D) Z/RN <2/4N(p1>lvj,n| dx

> Ioo +o(1).

(3.1)

Therefore {,,}72 is a minimizing sequence for /. From Lemma 2.4, up to
a subsequence, there exist {y,}%; C RY and 7 € H L(RN; C3) such that
|0 (- 4+ yn) — T||gr — 0, asn — oo
¥ is a minimizer for I.
Since [|vjn(- + yn) — vjll2 = 0 (as n — 00), up to a subsequence, there exists
g; € L*(RY) such that
V(T +yn) = vj(z), asn — oo, ae. xRV,

[jn(z +yn)| < gj(z), forallneN, ae zeRY.

Claim. {yn/ﬁ2/4 Ne=Dheo s hounded.

n 1

|/ﬁ2/4 N(p-1))

If not, up to a subsequence, |y, — o0 (as n — 00). From

<V2)7

T+ yYn
/]:QN V7 <52/(4—]\7(p—1))> "UjVn(l' + yn)|2d$ — 0, as n — 0.

From Lemma 3.1, we have

T + B YN i V3 (0) + Va (o) + Va(a)} + (5, ¥V
> [P = EPn(5,) + o(p; 4/ (=N E=1))
> Ino + o(B74/E=NE=D)) a5 n — 0.

Then we have

Q:Iélﬂl%n {Vi(z) + Va(x) + Va(x)} > 0.
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On the other hand, since Vj(z) < 0 (for all z € RY) and V; £ 0 or Vo #Z 0 or
V3 # 0, it follows that

Jnin {Vi(z) + Va(z) + V3(z)} <O0.

This is a contradiction. Thus the claim holds. Therefore, up to a subsequence,
there exists zp € R such that

Yn/BHENE=D) 25 asn — oo,

From (V2), we have

(et
/RNVJ (52/( N(p— ) ‘an(ﬁﬂ—i—yn” dx

(3.2)
—>/ (20)|vj(2)|* dz, asn — oo.

From (3.1)—(3.2), we have

I, +ﬂ;4/(4—1v(p—1))% min {Vi(z) + Va(z) + Va(2)} + 0(8, 4/(4=Np=1)))
€R

> B — Eﬁn( )+0(671_4/(4_N(p_1)))

> Ioo + 3,070 (’"1”%(%(20) + Va(20) + Va(20)) + o(8, ¥/ (=N 1)

.
> Lo+ ;Y0002 min (Vi(@) + Valw) + Vaa)} + o8 /0N,

as n — oo.
Therefore, we have
Jnin {Vi(z) + Va(z) + Va(z)} = Vi(z0) + Va(z0) + V5(20),
Jim fY/ONEDNT ) = 2 min {Vi(e) + Vale) + Va(a)}

Since {f,}7, is arbitrary sequence satisfying 3, — oo (as n — 00), we have

I/B_I + B~ 4/(4=N(p— 1) 3] m1n{V1( )+V2(x)—|—‘/é(x)}

+ o(fY/(U=N - ))), as f — oo.
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Remark 3.3. The result of Theorem 1.3 (ii) indicates that i, concentrates at
zo. Indeed, u,, behaves like

lin () = ﬁN/4 N(p—-1)) (52/4 N(p-1)) )
~ BN/U=N=1) g2/ A=NP=1) g _ )

~ BN/E=NE-D) 782/ (A=NE=1) (5 — 2)), as B, — .

3.2. Proof of Theorem 1.3 (iii)
Note that for the case (iii)

~4/(4=N(p-1) < (N —4)/(4 = N(p—1)) +x <0

and

3
EO () = Ja(v)) — BN/ AN =D g (5

—4/(4—N(p-1) 1 2

First, we prove the upper bound for I°. Taking U = (U, ¥, U), where ¥ is the
function ¥, defined in Remark 1.2 with v = 1, under the assumption in the
case (iii), from Lemma 2.3, it is easy to obtain

1% < EP(U) <38, — VH/E=NP-D)+rgl - a5 8 5 0.
Theorem 1.3 (iii) with v = g = s = 1 is reduced to the following lemma.
Lemma 3.4. Under the assumption in the case (iii), it holds that
1P =38, — BN-V/U=NE-1)trgl 4 o(g(N-9/U=NE-1)+r) g5 8 o0,

Moreover, for the rescaled function ¥, defined by (1.2), up to a subsequence,
there exist {y,}°2; C RN, and 61, 02,03 € R such that

1Vjm(- 4+ yn) — ewj\Ile —0, asn— o0, j=1,2,3,
01 + 05 = 05.

Proof. (Step 1) Note that 7, satisfies

(3.3) [v1,0l13 = lv2nll3 = llvsnl3 = 1,
(34) E‘ﬁn (1771,) — jﬁn + 0(5774/(4—]\/(1)—1)))‘
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From the upper bound for I?, it holds that

380 + 0B /(A= NP=1))
> P o TN = B (3,)
> Joo(vl,n) + Joo(UZ,n) + Joo(v?),n)

+O(1)Y/=Nw-1)) _ gN-0)/(4-N@p-1)+rR,, / 1 s T dit

(3.5) RY
Iy 2 RS +1
> . _ - P
2 5 ;/RN |Vvjn|®dx P ;/RN |vjn|PT da
AN . BY(LN74)/(47N(p71))+ 3 5
+0(1/5H6-NE-) 5 > [ el de
j=1

Here we note that N < 3,1 <p<1+44/N and (N—4)/(4—N(p—1))+x <0.
Then for sufficiently large n, it follows that BfLN_4)/ (4-N(p-1))+r < 1. From
Gagliardo-Nirenberg’s inequality (see Adams [1]) and (3.3), for ¢ = p+ 1 and

q = 3, we have

N(g—2)/2 —N(g—2)/2
vjnlld < CN, @)[Vojnlls @2 |fvj a4 N2/

(3.6) )
<el|Vuj,l|l3+ C(e,N,q), foralle>D0.

Here C'(N,q),C(e,N,q) > 0 is a constant. From (3.5),(3.6), we have

3
1 1 1 2
35« +0(1) > <2 - ﬁé" - 35) JZ::I IV 0jnl3-

Fix € > 0 such that 1/2—¢/(p+1) —&/3 > 0. Combining with (3.3), we find
that there exists a positive constant C' > 0 such that for all n € N,

3
(37) Z ||vj,n
=1

i < C.

(Step 2) From the upper bound for I8, we have

38 > IPn = EP(3,) + o84/ 4N =1))
> Joo(vl,n) + Joo(UQ,n) + Joo(vii,n)
(3.8) + O(1/BY/-Nw=1))y

_ BIN-0)/A=-NG-1)+rR / L2 Tm .
]RN
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From (3.7) and N <3,1<p<1+4/N and (N—-4)/(4—N(p—1))+x <0,
we deduce that

BN-0/(4-NE-1)+rR /

V1nU2n 03, dr =o0(l), asmn — oo.
RN

From (3.3),(3.8) and the definition of S, we have

3Soo > j'Bn > Joo(Ul,n) + Joo('UQ,n) + Joo(”Sm) + 0(1)
> 35 +0(1), asn— co.

Thus we have

lim Jo(vjn) = Seo, J7=1,2,3.

n—oo
Thus {v1n}02 . {v2n}oe; . {v3n}o2, are minimizing sequences for So. From

Lemma 2.1, up to a subsequence, there exist {y,(lj )}20:1 c RN and 0; € R such
that

(3.9) [0jn(- +y9) — €)1 -0, asn—o0, j=1,2,3
(Step 3) Set
- 6191\11(. _ y(j))7 j=1,2,3

n

-

Uy, o= (Vg 0, Uop, Us ).
From (3.9) and {,}22, and {¥,}°° | are bounded in H*(R™;C3), we have
PACHERAC]
ey =y rallonalion = ol s [ oulian = ¥l

+/ |'U17n - \Ill,nH\IJQ,n
RN

|3 p|de — 0, asmn— oo.

Moreover, since ¥, ,, is a minimizer for S, it follows that
JHT,) < St
From the upper bound for I?, it follows that
3Soo - IBT(LN74)/(47N(p71))+I€51
> [P = EPn () + o(B; 4/ A= NP=1))y
= Joo(vl,n) + Joo(”?,n) + Joo(’”S,n) - B7(LN_4)/(4_N(})_1))+HJ1(1711)
+ o( BN/ A=Np=1)+r)

n
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> 38, — 67(LN74)/(47N(p71))+KJ1(\I_}n) + O(ﬁ(N74)/(4fN(pfl))+li)

n

> 38, — BT(LN_4)/(4_N(p_1))+HSI +0(67(LN_4)/(4_N(Z)_1))+H)7 as 1 — oo,

Thus we have

. fﬁn — 3500 1 . 1/7 1
(3.11) A ANy 0 S (Fn) = 5

Since {8, }52 is arbitrary sequence satisfying 5, — 0o, we have

9 = 35, — BN-D/U-No-1)txgl | o(gN-D/U-NE-1)tr) 50 3 o0

(Step 4) From (3.11), it follows that

(3.12)
Re(e!01+02=03)) 1im U ()0 (x + 3y — Yz 4y — By dz = ST

n—oo RN n n

We prove {ygl) — yﬁf) o0, and {ygl) - yﬁ)}j’le are bounded in RY. If not, for

example, if {yr(zl) - .%(12) ne1

that

is not bounded, up to a subsequence, then it holds

) — 2| = 00, asn — 0.

From Remark 1.2, ¥ € L?(RY) is radially symmetric and decreasing, it holds
that
lim ¥(z)=0.

|x|—o00

Thus for all € > 0, there exists R > 0 such that

|z] > R = V¥(x) < e.

In addition, since |y7(11) - yg)] — oo (as n — o0), for n sufficiently large, we

have
Uz +y) —y?)<e, forall 2] <R.

n

Thus for n sufficiently large, it follows that

(TN = 17— i) =y, 0= y))l

n n

< [ H@Va )~y o) o) do
= g/ V(@) U(x+y) =y de
|z|<R

+ 8/ V(e +yt) -y D) W(a+y) — ) do
a2 R
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< el T3 + el W|f3 = 2.

Thus we have
lim J'(¥,) = 0.

n—oo

Although
lim J'(0,) = S,

n—o0

this is a contradiction to S* > 0 from Lemma 2.3. Therefore {yT(ll) — y7(12) 1

is bounded. We can prove that {y,(f) — yq(q,?’)}j’f:l is bounded in the same way.

Hence up to a subsequence, there exist y(2),y(3) € RY such that

u =y =y, asn - oo,

(1) 3)

gy — @) 0B asn — .

Therefore we have

/ V(@) Uz + g — @)+ — ) da
RN

— U(2)U(x+yN(z+y®)de, asn— .
RN

From (3.12), it holds that
Re(e!(01+02=63)) / U(2)¥(z 4+ y N0 (z +y3))de = 5t
RN

Therefore (10, 20 (- 4 y()), 30 (. +43))) is a maximizer for S*. From
Lemma 2.3, y® = y(® = 0 and we may assume that 6; + 0 = 6.
Moreover we have

[vjn(- + y’Szl)) — i1 -0, asn— oo, j =23

Indeed, setting zgj) = yq(ll) — y,(Lj) (j = 2,3), we have
[0+ D) = €W g1 = g +yP) = 90 ( = 2|
< wjn(- +y) = €0 g + [P T — (- = 20| 1
— 0, asn — oo.
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3.3. Proof of Theorem 1.3 (iv)

For the case k = ko, we have

3
EP (%) = Z Joo(vj) — B7HE=NE=1) 5
=1

(015 o3 ko).

For the proof of the upper bound, we use the following test function:

455(36) — \f/(x _ 52/(4—N(p—1))Z0)7

.

where zp is unique minimum point of V;. By using the arguments used in
Theorem 1.3 (ii), we can prove the upper bound:

1% < BP(35) = 355 — B4/ U-NE-1)
I .
X <Sl -3 xrg&%{vl(x) + Va(x) + Vg(a:)})
+ o(fHA=NE=1)) " a5 8 — 0.

For the proof of the lower bound, note that the rescaled function 4, defined
by (1.2) satisfies

o103 = ozl = 1,3 =
B2 (5) = P + o5 /N0 1>>>,

where 5, — oo. By the similar argument as in the proof of Theorem 1.3
(iii), it holds that {@,}%; is bounded in H'(RY;C?) and each {v;,}5° is
a mlmmlzmg sequence for So,. Therefore up to a subsequence, there exist
(Y © CRY¥ and ¢; €R such that

[vjn(- + 45)) — € 0|11 — 0.
From the upper bound for I, we have
35, — 554/(4—1\[(1)—1)))(
1
(81 5 i (Vi(e) + Va(o) + Vaa)} ) + o5 0
2 zeRN
> 38, — B4/ (A=NP=1)
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3
1/ 1 x 2
X<J@W‘2§:RNW TGy ) Vinl de
Jj=1 ﬁn
+ o(g; /(=N E=1)),

Since

T () = TN (- = yi), W (- =y ), B U(- — yD)) + o(1)
< St 4 0(1),

by the same argument as in Theorem 1.3 (ii) and (iii), we have

X
ANW<@wHWHm>WW

Thus we have

2dx — Vj(z50) = Vj(20).

1
38, — ﬁg4/(4fN(P*1))(Sl B 5 mﬂlg}v{vl(x) + VQ(CE) + Vg(l:)})
S
+ o(B; /(=N E=1))
> [Pn

> 38, — B E=NE=1) 5

n

« <J1(ei91\11(, _ yv(zl))? CiBQ\I’(' . y7(12))7 €i93‘1/(' . y(g)))
1 —_— _— —
- §{V1(Z0) + Va(z0) + V3(zo)}> + o(B; ¥/ (=N@=1)

1
> 355 — B, /0N (S~ 2 min {Vi(e) + Va(e) + Va(o)})
e
+ o( g7 /(=N E=1)),

By the same argument as in Theorem 1.3 (iii), we have

1% =38, — p~4/U=N=1) (gl _ L min {(Vi(z) + Va(x) + Va(x)})

2 zeRN
+o(f7HENE-D)) a5 B — o0,
01+ 02 =03+ 2kmw, kelZ,
SO~ o2 50, )y o,
[ (- + yn) — €50 g1 — 0,
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3.4. Proof of Theorem 1.3 (v)

For the case (v) kK < K2, note that
(N—=4)/(4=N{p-1)+r<-4/(4=N(p-1))

and

l\Nv—\

3
z 2
V52 / Vi (52/(4—N<p—1>>> o de

Jj=1

23: +B 4/(4—N

_5(1\’ 4)/(4 N(pfl))JrﬂJl(g).

First we prove the upper bound for I?. Let zj0 € R such that
min, gy Vj(x) =Vj (mj 0) for all j =1,2,3.
Set v;(z) = ¥(z 52/ NPz, 4), ¥ = (v1,v2,v3). Then we have

7 < B9(0)
3
1
= 35 + - HUNET S - V(B ANy 4o 0) |02 da

+ 0(5—4/(4—1\7(17—1)))

4/(4-N - -
=38+ 8" {I@ﬁ% Vi(x) + min Vo(x) + min Vs(x)}
+o(f~HENE-D) a5 B — o0

Next, we prove the lower bound for I8. Recall that the rescaled function
U, defined by (1.2) satisfies

01,013 = [lv2,nll3 = [lvs.nll3 = 1,
EPn (@) = P 4 o(8; 4/ (4= N=1))

where 3, — oco. Since {v;,}°°, is bounded in H(R"), by the same argument
as in the proof of Theorem 1.3 (iii) and (iv), {v;,}52 is a minimizing sequence
for Soo. Thus up to a subsequence, there exist {yg ) . C RY and g; € R
such that

lojn(- + 97) = ¥ 1 — 0.

By the same argument as in the proof of Theorem 1.3 (ii), since

{y]g ) / Bg/ —Ne=D) )} >, is bounded, up to a subsequence, there exists z;o €
R* such that

Y B2 AN 4
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Moreover we have
[ VAN D)o, P s > Vo)
RN
From the upper bound for I?, it follows that

3S + B 4/(4-N {xrg;&n Vi(z )—|—xré1]11§1]{] Va(x) —l-xfélulgj{[ Vs(z)}
+ 0(5;4/(4*]\7(17*1)))

> [Pn
> 35, + g7/ -NE- nl {V1(z10)+V2(220)+V3(Z30)}+0( A )
> 38 + B /AN - ml {mln Vi(x) + min Va(z) + min V(x)}

zeRN zeRN zeRN
+ o(g; /=Ny,

This implies that

[? =38, + g~/ N- 1”%{ min Vi(z) + min Va(z) + min Vi()}
Fo(B~HW=NE=1)) " as f — oo
and min Vj(z) = Vj(20).

zCRN

3.5. Proof of Theorem 1.3 (i)

Let 4 be a function such that
lurll3 = lluzl3 = |lus|l3 = 1.
We consider the rescaled function @ as (1.1) such that
,u—)»(x) = B—HN/(4—N)QZ(6—25/(4—N):U)'

Then it follows that
w3 = lwall5 = [Jws|lz =1

and

EP(ii) = g*/U=N) A (i),
18 = AR/(4=N) g5
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FA(@) = E(@) — grVp-D-9/U-N+1 gl ()

4 /8= Z/ BNy
K7 = inf{F?(@) | @ € H'(RY;C), |yl =1 (j =1,2,3)}.
For the case (i) k > k1, note that
—4k/(4—N)<k(N(p—-1)—4)/(4—N)+1<0.

We first prove the upper bound for K?. Let Wi, be a maximizing sequence
for 31, that is, W,, satisfies

W, is a minimizer for X,

E'Y(W,) = %, asn — oo.
Then we have

KP < FA(W,) = E°(Wy,) — grN=D=0/U=N)+1 gLy y

3
1
—4k/(4—N —2r/(4=N)
L gl )2;/RNVJ' NN 2) | Wi da
5 — BN G4/ (=N L.

Then letting n — oo, we have

K8 <5y — griNp-1)-9/@-N)+1y;

Next we prove the lower bound for K”. Note that the rescaled function @,
defined by (1.1) satisfies

lwinll3 = llwanlld = llwsal3 =1,
Fﬁn( ) = KB +o(B; —4K/(4— N)

where 3, — oo as n — co. Since {w;,}>°; is bounded in H'(RY), by the
same argument as in Theorem 1.3 (iii), {w,}72 is a minimizing sequence for
Yo. From the compactness of minimizing sequence for ¥y (see Kurata-Osada
[10]), up to a subsequence, there exist {y,}>%; C RY and a minimizer & for
Yo such that

|0 (- + ypn) — W] g1 — 0, asn — oo.
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From the upper bound for K, we have
Yo — ﬁg(N(p—1)—4)/(4—N)+121

> KPn = F/Bn(wn) +0(6;4H/(4—N))
> — BZ(N(p71)74)/(47N)+1E1 (wn)

3
+ ﬁ;4n/(4—N)1 Z/ ‘G(,B;zn/(4_N)$)|wj,n|2 dr
2j:1 RN

= %o — BrWNE=D=D/U=N)+1 Blg) 4 o(grV p=1)=4)/(=N)+1y
> 5y — fEWNE-)=)/U=N)tlsy 4 o(grNVp=1)=4)/(=N)+1y,
Thus we have

KB = 5y — prN@-D-0/-N+1y 4 ogeNE-D-0/U-N+1) a0 gy oo

and w is a maximizer for .

8A. Appendix: Asymptotic expansion of I, as a — oo

We remark the another asymptotic expansion of the energy 12 (v, 8) as a —
oo with 8 = o for a given 7 € R. For 7 > 0, the result of asymptotic
expansion of Jed (v,p,8) as @ — oo with f = o7 is included in Theorem 1.3.
So we consider the case 7 < 0. For a given 7 <0, as = o define

Eo(@) == E3 (1),
Lo(y; 11 8) = IS (7, 1, ).

Let {a,}22, be a positive number sequence such that o, — oo as n — oc.
We say that {@,}>° is a minimizing sequence for I, (v, i, s) if

lurnl =7, Izl = 5, llusnll3 = s,
E,, (tn) = Lo, (v, 11, 8) +0(1), asn — oc.

We use the rescaled function ), defined by (1.1) to analyse the asymptotic
expansion for I, (v, i, s) as @ — oco. The asymptotic expansion up to the first
term for I, (v, i, s) for the case 7 = 0 is treated in Kurata-Osada [10].

Proposition A.1. (I) -N(p—1)/(4—N)<7<0
Assume that N < 2. Then it holds that

Ia ('Ya 22 5) = a4/(4_N) EO (’Y’ 122 5) - aN(p—l)/(4—N)+721 (73 122 8)

+ o(aNP=D/E=N+7) 5 04— 0o,
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Moreover let i, be a minimizing sequence for I, (v, p, s) where o, — 0.
For the rescaled function w, defined by (1.1), up to a subsequence, there
exist a mazimizer @ for $1(7, u,s) and {yn}°2, C RN such that

[ (- + yn) — @[ g1 — 0.

T=-N(p-1)/(4-N)
Assume that N < 2, (V2) and (Vi,Va,V3) # (0,0,0). Then it holds that

Ia(’}/,,u, 5)
= 054/(4_N)EO(’77 , S) - 21(7a L, 8)

1
+ 3 mﬂi{rjlv{Vl(ac)y + Vo(z)p + Va(x)s} +o(1), as a — oo.
e

Moreover let i, be a minimizing sequence for I, (v, p, s) where o, — 0.
For the rescaled function w, defined by (1.1), up to a subsequence, there
exist a mazimizer @ for Y1(v, 1, 8), {yn}s; C RY and 29 € RN such
that

[wjn (- + yn) = wjl g — 0,
yn/ai/([liN) — 20,

Jnin {Vi(2)y + Va(@)p + Va(w)s} = Vi(z0)y + Valzo)p + Va(20)s.

7T<—-N(p—1)/(4—N)
Assume that (V2) and (V1,Va,V3) # (0,0,0). Then it holds that

1
Loy, 1y 8) = oV (y, 1, 5) + 5 min {Va(w)y + Va(w)pe + Va(w)s}
fAS
+o(1), asa— .

Moreover let i, be a minimizing sequence for I, (7, t, s) where ay, — 0.
For the rescaled function W, defined by (1.1), up to a subsequence, there
exist a minimizer W for Yo(v, i1, 8), {yn}32; C RY and 2 € RY such
that

lwjn(-+yn) = willg — 0,
yn 02/ AN) o
min (Vi (x)y + Va(z)p + Va(z)s} = Vi(z0)y + Va(20)p + Vs (z0)s.

Since we can prove Proposition A.1 in a similar way as in the proof of Theo-
rem 1.3, we omit the details. We note that we assume an additional condition



74 Y. OSADA

for the bottom of the potentials in the case (iv) in Theorem 1.3. But we do
not need the additional condition in Proposition A.l since the compactness
of the minimizing sequence of a minimization problem for appearing in the
first term of the asymptotic expansion of I, aligns the translations for each
component.
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