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Abstract. In this paper we consider the asymptotic expansion of the energy
Iβα(γ, µ, s) associated with a nonlinear Schrödinger system with three wave in-
teraction as β → ∞ with α = βκ for a given κ ∈ R. In particular, we classify
the asymptotic expansion formula into five cases for the parameter κ.
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§1. Introduction

Recently, there are many studies on the existence of standing waves and their
stability for the nonlinear Schrödinger system with three wave interaction (see
Colin-Colin-Ohta [6, 7], Pomponio [14], Ardila [2], Kurata-Osada [10] and the
references therein) and related systems (see e.g. Gou-Jeanjean [9], Bhattarai
[3], Zhao-Zhao-Shi [15] and the references therein).

In particular, the L2-constrained variational problems associated with the
systems and the orbital stability of ground states have been studied by many
works (e.g. Bhattarai [3], Gou-Jeanjean [9], Ardila [2], Kurata-Osada [10]).
In this paper, we focus on the following L2-constrained variational problem:

Iβα(γ, µ, s) := inf{Eβ
α(u⃗) | u⃗ ∈ H1(RN ;C3),

∥u1∥22 = γ, ∥u2∥22 = µ, ∥u3∥22 = s},

Eβ
α(u⃗) :=

1

2

3∑
j=1

∫
RN

|∇uj |2 dx+
1

2

3∑
j=1

∫
RN

Vj(x)|uj |2 dx
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− β

p+ 1

3∑
j=1

∫
RN

|uj |p+1 dx− αRe

∫
RN

u1u2u3 dx,

where u⃗ := (u1, u2, u3), u3 is the complex conjugate of u3, α, β > 0, N = 1, 2, 3,
1 < p < 1 + 4/N , γ, µ, s > 0 and each potential Vj (j = 1, 2, 3) satisfies
some suitable conditions. In this paper, we assume only one of the following
conditions for the potentials Vj (j = 1, 2, 3).

(V1) V ∈ L∞(RN ;R).

(V2) V ∈ C(RN ;R) and V (x) ≤ lim|y|→∞ V (y) = 0, for all x ∈ RN .

In the previous paper ([10]), for the case β = 1, we studied the energy
asymptotic expansion of I1α(γ, µ, s) as α → ∞. In this paper, we consider the

asymptotic expansion of the energy Iβα(γ, µ, s) as β → ∞ with α = βκ for a
given κ ∈ R.

To state the main result in this paper in details, we define the following
variational problems:

Σ0(γ, µ, s) := inf{E0(u⃗) | u⃗ ∈ H1(RN ;C3),

∥u1∥22 = γ, ∥u2∥22 = µ, ∥u3∥22 = s},
Σ1(γ, µ, s) := sup{E1(u⃗) | u⃗ is a minimizer for Σ0(γ, µ, s)},
I∞(γ, µ, s) := inf{E∞(u⃗) | u⃗ ∈ H1(RN ;C3),

∥u1∥22 = γ, ∥u2∥22 = µ, ∥u3∥22 = s},
S∞(γ) := inf{J∞(u) | u ∈ H1(RN ), ∥u∥22 = γ},

S1(γ, µ, s) := sup{J1(u⃗) | u1, u2, u3 are minimizers for

S∞(γ), S∞(µ), S∞(s) respectively},

where

E0(u⃗) :=
1

2

3∑
j=1

∫
RN

|∇uj |2 dx− Re

∫
RN

u1u2u3 dx,

E1(u⃗) :=
1

p+ 1

3∑
j=1

∫
RN

|uj |p+1 dx,

E∞(u⃗) :=
1

2

3∑
j=1

∫
RN

|∇uj |2 dx− 1

p+ 1

3∑
j=1

∫
RN

|uj |p+1 dx− Re

∫
RN

u1u2u3 dx,

J∞(u) :=
1

2

∫
RN

|∇u|2 dx− 1

p+ 1

∫
RN

|u|p+1 dx,

J1(u⃗) := Re

∫
RN

u1u2u3 dx.
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Remark 1.1. Let N ≤ 3, 1 < p < 1+4/N , α, β > 0. Under the following three
assumptions on Vj (j = 1, 2, 3):

• V ∈ L∞(RN ;R),

• V (x) ≤ lim|y|→∞ V (y) = 0 (a.e. x ∈ RN ),

• V (−x1, x
′) = V (x1, x

′) (a.e. x1 ∈ R, x′ ∈ RN−1),
V (s, x′) ≤ V (t, x′) (a.e. s, t ∈ R with 0 ≤ s < t, a.e. x′ ∈ RN−1),

the existence of a minimizer for Iβα(γ, µ, s) is known (see [10]).

See also [10] about the existence of minimizer for Σ0(γ, µ, s) under the
additional condition N ≤ 2. Moreover, since it is easy to check that the set of
minimizers for Σ0(γ, µ, s) is uniformly bounded in H1(RN ;C3), it follows that
Σ1(γ, µ, s) < ∞.

Remark 1.2. When N ∈ N, 1 < p < 1 + 4/N , for all γ > 0, it is well-known
that there exists a unique positive, radially symmetric and strictly decreasing
minimizer Ψγ ∈ H1(RN ) for S∞(γ) such that for all minimizer u for S∞(γ),
there exist y ∈ RN and θ ∈ R such that

u(x) = eiθΨγ(x+ y)

(see [5, 8, 11]).

Unless otherwise noted, Ψγ means the one in Remark 1.2. Also, we set

Ψ⃗ := (Ψγ ,Ψµ,Ψs). Note that Ψ⃗ is a maximizer for S1(γ, µ, s). See Lemma 2.3
for the proof.

For a given κ ∈ R, as α = βκ we define for simplicity

Eβ(u⃗) := Eβ
βκ(u⃗),

Iβ(γ, µ, s) := Iββκ(γ, µ, s).

We show that there exist two critical numbers

κ1 := (4−N)/(4−N(p− 1)), κ2 := −N/(4−N(p− 1))

such that the asymptotic expansion of Iβ(γ, µ, s) as β → ∞ are different in
the following five cases:
(i) κ > κ1, (ii) κ = κ1, (iii) κ2 < κ < κ1, (iv) κ = κ2, (v) κ < κ2.
We say {u⃗n}∞n=1 is a minimizing sequence for Iβn(γ, µ, s) with βn → ∞ if

∥u1,n∥22 = γ, ∥u2,n∥22 = µ, ∥u3,n∥22 = s,

Eβn(u⃗n) = Iβn(γ, µ, s) + o(1), as n → ∞.



54 Y. OSADA

We also study the asymptotic behavior of minimizing sequences {u⃗n} by using
the rescaled functions of two types:

w⃗n(x) := β−κN/(4−N)
n u⃗n(β

−2κ/(4−N)
n x)(1.1)

for the case (i) and

v⃗n(x) := β−N/(4−N(p−1))
n u⃗n(β

−2/(4−N(p−1))
n x)(1.2)

for the cases (ii)–(v), respectively.
Now we state the main result in this paper.

Theorem 1.3. Let N = 1, 2, 3, 1 < p < 1 + 4/N and let {u⃗n}∞n=1 be a min-
imizing sequence for Iβn(γ, µ, s) with βn → ∞. Then we have the asymptotic

expansion of Iβ(γ, µ, s) = Iββκ(γ, µ, s) as β → ∞ in the five cases as follows:

(i) For the case κ > κ1, assume N ≤ 2 and the condition (V1) for each
potential Vj (j = 1, 2, 3). Then

Iβ(γ, µ, s) = β4κ/(4−N)Σ0(γ, µ, s)− βκN(p−1)/(4−N)+1Σ1(γ, µ, s)

+ o(βκN(p−1)/(4−N)+1), as β → ∞.

Moreover, for the rescaled function w⃗n defined by (1.1), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN and a maximizer w⃗ for Σ1(γ, µ, s)
such that

∥w⃗n(·+ yn)− w⃗∥H1 → 0, as n → ∞.

(ii) For the case κ = κ1, assume the condition (V2) for each potential Vj (j =
1, 2, 3) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds that

Iβ(γ, µ, s) = β4/(4−N(p−1))I∞(γ, µ, s)

+
1

2
min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s}+ o(1), as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , a minimizer v⃗ for I∞(γ, µ, s) and
z0 ∈ RN such that

∥v⃗n(·+ yn)− v⃗∥H1 → 0, yn/β
2/(4−N(p−1))
n → z0 in RN , as n → ∞,

min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s} = V1(z0)γ + V2(z0)µ+ V3(z0)s.

(iii) For the case κ2 < κ < κ1, assume the condition (V1) for each potential
Vj (j = 1, 2, 3). Then

Iβ(γ, µ, s) = β4/(4−N(p−1))(S∞(γ) + S∞(µ) + S∞(s))
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− βN/(4−N(p−1))+κS1(γ, µ, s) + o(βN/(4−N(p−1))+κ), as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨj∥H1 → 0, as n → ∞,

θ1 + θ2 = θ3,

where Ψ1 = Ψγ, Ψ2 = Ψµ, Ψ3 = Ψs.

(iv) For the case κ = κ2, assume that the condition (V2) for each potential
Vj (j = 1, 2, 3), (V1, V2, V3) ̸≡ (0, 0, 0). We also assume that Vj has a
unique minimum point zj,0 and z1,0 = z2,0 = z3,0 =: z0. Then

Iβ(γ, µ, s) = β4/(4−N(p−1))(S∞(γ) + S∞(µ) + S∞(s))

− S1(γ, µ, s) +
1

2
min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s}+ o(1),

as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨj∥H1 → 0, as n → ∞,

θ1 + θ2 = θ3,

yn/β
2/(4−N(p−1))
n → z0 in RN ,

where Ψ1 = Ψγ, Ψ2 = Ψµ, Ψ3 = Ψs.

(v) For the case κ < κ2, assume that the condition (V2) for each potential
Vj (j = 1, 2, 3) and (V1, V2, V3) ̸≡ (0, 0, 0). Then

Iβ(γ, µ, s) = β4/(4−N(p−1))(S∞(γ) + S∞(µ) + S∞(s))

+
1

2

(
min
x∈RN

V1(x)γ + min
x∈RN

V2(x)µ+ min
x∈RN

V3(x)s

)
+ o(1),

as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subse-

quence, there exist {y(j)n }∞n=1 ⊂ RN (j = 1, 2, 3), and θj ∈ R (j = 1, 2, 3)
and zj,0 ∈ RN (j = 1, 2, 3) such that

∥vj,n(·+ y(j)n )− eiθjΨj∥H1 → 0, as n → ∞,

y(j)n /β2/(4−N(p−1))
n → zj,0 in RN ,

min
x∈RN

Vj(x) = Vj(zj,0),

where Ψ1 = Ψγ, Ψ2 = Ψµ, Ψ3 = Ψs.
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Remark 1.4. By Theorem 1.3, we can say that the effect of the three wave
interaction appears in the first order term in the case κ ≥ κ1 and in the
second order term in the case κ2 ≤ κ < κ1, but disappears in the case κ < κ2.
We also emphasize that we use the different rescaled functions in the case
(ii)–(v) and in the case (i), respectively, to obtain the asymptotic behavior of
minimizing sequences precisely.

This paper is organized as follows: In Section 2, we prepare the characteri-
zation of S1(γ, µ, s) to prove Theorem 1.3 in the cases (iii) and (iv). In Section
3, we prove Theorem 1.3 concerning the asymptotic expansion of Iβ(γ, µ, s)
and the asymptotic behavior of a minimizing sequence for the cases (i)–(v).
In appendix, we note that the asymptotic expansion of Iα

τ

α as α → ∞ for a

given τ ≤ 0 and the asymptotic behavior of a minimizing sequence for I
ατ
n

αn

where αn → ∞.

§2. Preliminaries

For simplicity, we prove Theorem 1.3 as γ = µ = s = 1. So for simplicity,
we write Iβ(γ, µ, s), S∞(γ), S1(γ, µ, s), I∞(γ, µ, s), Σ0(γ, µ, s) and Σ1(γ, µ, s)
as Iβ, S∞, S1, I∞, Σ0 and Σ1. Moreover, when γ = 1, Ψγ in Remark 1.2 is
abbreviated as Ψ.

As stated in Remark 1.2, the following compactness of the minimizing se-
quence for S∞ is known (see Lions [12, 13]).

Lemma 2.1. Let {un}∞n=1 be a minimizing sequence for S∞. Then up to a
subsequence, there exist {yn}∞n=1 ⊂ RN and θ ∈ R such that

∥un(·+ yn)− eiθΨ∥H1 → 0, as n → ∞.

Here, we note that the fact on rearrangements (see [4]).

Lemma 2.2. We assume that N ∈ N and let f, g, h ∈ C(RN ) be functions
such that positive, radialy symmetric and strictly decreasing and

lim
|x|→∞

f(x) = lim
|x|→∞

g(x) = lim
|x|→∞

h(x) = 0,∫
RN

f(x)g(x)h(x) dx < ∞.

For y0, y1 ∈ RN , if y0 ̸= 0 or y1 ̸= 0, then∫
RN

f(x)g(x− y0)h(x− y1) dx <

∫
RN

f(x)g(x)h(x) dx

holds.
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Lemma 2.3 (characterization of maximizer for S1). Let u⃗ be a maximizer for
S1. Then there exist y ∈ RN and θ1, θ2, θ3 ∈ R with θ1 + θ2 = θ3 such that

u⃗ = (eiθ1Ψ(·+ y), eiθ2Ψ(·+ y), eiθ3Ψ(·+ y)),

S1 =

∫
RN

Ψ3 dx (> 0).

Proof. By the definition of S1,

S1 = sup
θ1,θ2,θ3∈R

Re(ei(θ1+θ2−θ3)) sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx

= sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx

with θ1 + θ2 = θ3 + 2kπ (k ∈ Z). From Lemma 2.2, we have

sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx =

∫
RN

Ψ(x)Ψ(x)Ψ(x) dx

and the supremum is attained only for the case z1 = z2 = 0. Thus

S1 =

∫
RN

Ψ(x)3 dx (> 0).

We note the following compactness of minimizing sequence for I∞.

Lemma 2.4 ([10]). Let N ≤ 3, 1 < p < 1+4/N . Let {u⃗n}∞n=1 be a minimizing
sequence for I∞. Then up to a subsequence, there exist {yn}∞n=1 ⊂ RN and a
minimizer u⃗ for I∞ such that

∥uj,n(·+ yn)− uj∥H1 → 0, as n → ∞.

§3. Proof of Theorem 1.3

Throughout this section, we assume that N ≤ 3, 1 < p < 1 + 4/N , β > 0,
α = βκ with κ ∈ R and γ = µ = s = 1. First, we give the proof of the cases
(ii)–(v) of Theorem 1.3. Finally, we give the proof of the case (i) of Theorem
1.3.

To show the results in the cases (ii)–(v), we rescale the function u⃗ as (1.2),
the functional Eβ and its energy Iβ as follows:

Let u⃗ be a function such that

∥u1∥22 = ∥u2∥22 = ∥u3∥22 = 1.
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We rescale the function u⃗ as follows:

v⃗(x) := β−N/(4−N(p−1))u⃗(β−2/(4−N(p−1))x).

Then it follows that

∥v1∥22 = ∥v2∥22 = ∥v3∥22 = 1

and

Eβ(u⃗) = β4/(4−N(p−1))Ẽβ(v⃗),

Iβ = β4/(4−N(p−1))Ĩβ,

where

Ẽβ(v⃗) :=
1

2

3∑
j=1

∫
RN

|∇vj |2 dx− 1

p+ 1

3∑
j=1

∫
RN

|vj |p+1 dx

− β(N−4)/(4−N(p−1))+κRe

∫
RN

v1v2v3 dx

+
1

β4/(4−N(p−1))

1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj |2 dx,

Ĩβ := inf{Ẽβ(v⃗) | v⃗ ∈ H1(RN ;C3), ∥vj∥22 = 1 (j = 1, 2, 3)}.

So it is sufficient to prove the energy expansion of Ĩβ and the asymptotic
behavior of v⃗n to prove the cases (ii)–(v) in Theorem 1.3.

3.1. Proof of Theorem 1.3 (ii)

For the case κ = κ1, we have

Ẽβ(v⃗) = E∞(v⃗) + β−4/(4−N(p−1)) 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj |2 dx.

3.1.1. Upper bound

Lemma 3.1 (upper bound for Ĩβ). Under the assumptions in the case (ii), it
follows that

Ĩβ ≤ I∞ + β−4/(4−N(p−1)) 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.
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Proof. From Lemma 2.4, there exists a minimizer v⃗ for I∞. Let x0 ∈ RN be a
point which attains

min
x∈RN

{V1(x) + V2(x) + V3(x)}.

For β > 0, we set
φ⃗β(x) := v⃗(x− β2/(4−N(p−1))x0).

Then it holds that∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|φj,β(x)|2 dx =

∫
RN

Vj

(
x

β2/(4−N(p−1))
+ x0

)
|vj(x)|2 dx.

From (V2), it follows that∫
RN

Vj

(
x

β2/(4−N(p−1))
+ x0

)
|vj(x)|2 dx →

∫
RN

Vj(x0)|vj(x)|2 dx, as β → ∞.

Then we have

Ĩβ ≤ Ẽβ(φ⃗β)

= I∞ + β−4/(4−N(p−1)) 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|φj,β(x)|2 dx

= I∞ + β−4/(4−N(p−1)) 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.

3.1.2. Lower bound and the completion of the proof of Theorem
1.3 (ii)

Theorem 1.3 (ii) with γ = µ = s = 1 is reduced to the following lemma.

Lemma 3.2. Under the assumptions in the case (ii), it follows that

Ĩβ = I∞ + β−4/(4−N(p−1)) 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subsequence,
there exist {yn}∞n=1 ⊂ RN , a minimizer v⃗ for I∞ and z0 ∈ RN such that

∥v⃗n(·+ yn)− v⃗∥H1 → 0, yn/β
2/(4−N(p−1))
n → z0 in RN , as n → ∞,

min
x∈RN

{V1(x) + V2(x) + V3(x)} = V1(z0) + V2(z0) + V3(z0).
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Proof. Note that v⃗n satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,

Ẽβn(v⃗n) = Ĩβn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. From Lemma 3.1, it follows that

(3.1)

I∞ + o(1)

≥ Ĩβn + o(β−4/(4−N(p−1))
n ) = Ẽβn(v⃗n)

= E∞(v⃗n) + β−4/(4−N(p−1))
n

1

2

3∑
j=1

∫
RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx

≥ I∞ + o(1).

Therefore {v⃗n}∞n=1 is a minimizing sequence for I∞. From Lemma 2.4, up to
a subsequence, there exist {yn}∞n=1 ⊂ RN and v⃗ ∈ H1(RN ;C3) such that

∥v⃗n(·+ yn)− v⃗∥H1 → 0, as n → ∞
v⃗ is a minimizer for I∞.

Since ∥vj,n(·+ yn)− vj∥2 → 0 (as n → ∞), up to a subsequence, there exists
gj ∈ L2(RN ) such that

vj,n(x+ yn) → vj(x), as n → ∞, a.e. x ∈ RN ,

|vj,n(x+ yn)| ≤ gj(x), for all n ∈ N, a.e. x ∈ RN .

Claim. {yn/β2/(4−N(p−1))
n }∞n=1 is bounded.

If not, up to a subsequence, |yn|/β2/(4−N(p−1))
n → ∞ (as n → ∞). From

(V2), ∫
RN

Vj

(
x+ yn

β
2/(4−N(p−1))
n

)
|vj,n(x+ yn)|2 dx → 0, as n → ∞.

From Lemma 3.1, we have

I∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n )

≥ Ĩβn = Ẽβn(v⃗n) + o(β−4/(4−N(p−1))
n )

≥ I∞ + o(β−4/(4−N(p−1))
n ), as n → ∞.

Then we have
min
x∈RN

{V1(x) + V2(x) + V3(x)} ≥ 0.
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On the other hand, since Vj(x) ≤ 0 (for all x ∈ RN ) and V1 ̸≡ 0 or V2 ̸≡ 0 or
V3 ̸≡ 0, it follows that

min
x∈RN

{V1(x) + V2(x) + V3(x)} < 0.

This is a contradiction. Thus the claim holds. Therefore, up to a subsequence,
there exists z0 ∈ RN such that

yn/β
2/(4−N(p−1))
n → z0, as n → ∞.

From (V2), we have

(3.2)

∫
RN

Vj

(
x+ yn

β
2/(4−N(p−1))
n

)
|vj,n(x+ yn)|2 dx

→
∫
RN

Vj(z0)|vj(x)|2 dx, as n → ∞.

From (3.1)–(3.2), we have

I∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n )

≥ Ĩβn = Ẽβn(v⃗n) + o(β−4/(4−N(p−1))
n )

≥ I∞ + β−4/(4−N(p−1))
n

1

2
(V1(z0) + V2(z0) + V3(z0)) + o(β−4/(4−N(p−1))

n )

≥ I∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n ),

as n → ∞.

Therefore, we have

min
x∈RN

{V1(x) + V2(x) + V3(x)} = V1(z0) + V2(z0) + V3(z0),

lim
n→∞

β4/(4−N(p−1))
n (Ĩβn − I∞) =

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}.

Since {βn}∞n=1 is arbitrary sequence satisfying βn → ∞ (as n → ∞), we have

Ĩβ = I∞ + β−4/(4−N(p−1)) 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+ o(β−4/(4−N(p−1))), as β → ∞.
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Remark 3.3. The result of Theorem 1.3 (ii) indicates that u⃗n concentrates at
z0. Indeed, u⃗n behaves like

u⃗n(x) = βN/(4−N(p−1))
n v⃗n(β

2/(4−N(p−1))
n x)

∼ βN/(4−N(p−1))
n v⃗(β2/(4−N(p−1))

n x− yn)

∼ βN/(4−N(p−1))
n v⃗(β2/(4−N(p−1))

n (x− z0)), as βn → ∞.

3.2. Proof of Theorem 1.3 (iii)

Note that for the case (iii)

−4/(4−N(p− 1)) < (N − 4)/(4−N(p− 1)) + κ < 0

and

Ẽβ(v⃗) =

3∑
j=1

J∞(vj)− β(N−4)/(4−N(p−1))+κJ1(v⃗)

+ β−4/(4−N(p−1)) 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj |2 dx.

First, we prove the upper bound for Ĩβ. Taking Ψ⃗ = (Ψ,Ψ,Ψ), where Ψ is the
function Ψγ defined in Remark 1.2 with γ = 1, under the assumption in the
case (iii), from Lemma 2.3, it is easy to obtain

Ĩβ ≤ Ẽβ(Ψ⃗) ≤ 3S∞ − β(N−4)/(4−N(p−1))+κS1, as β → ∞.

Theorem 1.3 (iii) with γ = µ = s = 1 is reduced to the following lemma.

Lemma 3.4. Under the assumption in the case (iii), it holds that

Ĩβ = 3S∞ − β(N−4)/(4−N(p−1))+κS1 + o(β(N−4)/(4−N(p−1))+κ), as β → ∞.

Moreover, for the rescaled function v⃗n defined by (1.2), up to a subsequence,
there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨ∥H1 → 0, as n → ∞, j = 1, 2, 3,

θ1 + θ2 = θ3.

Proof. (Step 1) Note that v⃗n satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,(3.3)

Ẽβn(v⃗n) = Ĩβn + o(β−4/(4−N(p−1))
n ).(3.4)
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From the upper bound for Ĩβ, it holds that

(3.5)

3S∞ + o(β−4/(4−N(p−1))
n )

≥ Ĩβn + o(β−4/(4−N(p−1))
n ) = Ẽβn(v⃗n)

≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n)

+O(1/β4/(4−N(p−1))
n )− β(N−4)/(4−N(p−1))+κ

n Re

∫
RN

v1,nv2,nv3,n dx

≥ 1

2

3∑
j=1

∫
RN

|∇vj,n|2 dx− 1

p+ 1

3∑
j=1

∫
RN

|vj,n|p+1 dx

+O(1/β4/(4−N(p−1))
n )− β

(N−4)/(4−N(p−1))+κ
n

3

3∑
j=1

∫
RN

|vj,n|3 dx.

Here we note that N ≤ 3, 1 < p < 1+4/N and (N−4)/(4−N(p−1))+κ < 0.

Then for sufficiently large n, it follows that β
(N−4)/(4−N(p−1))+κ
n ≤ 1. From

Gagliardo-Nirenberg’s inequality (see Adams [1]) and (3.3), for q = p+ 1 and
q = 3, we have

(3.6)
∥vj,n∥qq ≤ C(N, q)∥∇vj,n∥N(q−2)/2

2 ∥vj,n∥q−N(q−2)/2
2

≤ ε∥∇vj,n∥22 + C(ε,N, q), for all ε > 0.

Here C(N, q), C(ε,N, q) > 0 is a constant. From (3.5),(3.6), we have

3S∞ +O(1) ≥
(
1

2
− 1

p+ 1
ε− 1

3
ε

) 3∑
j=1

∥∇vj,n∥22.

Fix ε > 0 such that 1/2− ε/(p+ 1)− ε/3 > 0. Combining with (3.3), we find
that there exists a positive constant C > 0 such that for all n ∈ N,

(3.7)
3∑

j=1

∥vj,n∥2H1 ≤ C.

(Step 2) From the upper bound for Ĩβ, we have

(3.8)

3S∞ ≥ Ĩβn = Ẽβn(v⃗n) + o(β−4/(4−N(p−1))
n )

≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n)

+O(1/β4/(4−N(p−1))
n )

− β(N−4)/(4−N(p−1))+κ
n Re

∫
RN

v1,nv2,nv3,n dx.
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From (3.7) and N ≤ 3, 1 < p < 1 + 4/N and (N − 4)/(4−N(p− 1)) + κ < 0,
we deduce that

β(N−4)/(4−N(p−1))+κ
n Re

∫
RN

v1,nv2,nv3,n dx = o(1), as n → ∞.

From (3.3),(3.8) and the definition of S∞, we have

3S∞ ≥ Ĩβn ≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n) + o(1)

≥ 3S∞ + o(1), as n → ∞.

Thus we have
lim
n→∞

J∞(vj,n) = S∞, j = 1, 2, 3.

Thus {v1,n}∞n=1,{v2,n}∞n=1,{v3,n}∞n=1 are minimizing sequences for S∞. From

Lemma 2.1, up to a subsequence, there exist {y(j)n }∞n=1 ⊂ RN and θj ∈ R such
that

(3.9) ∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0, as n → ∞, j = 1, 2, 3

(Step 3) Set

Ψj,n := eiθjΨ(· − y(j)n ), j = 1, 2, 3

Ψ⃗n := (Ψ1,n,Ψ2,n,Ψ3,n).

From (3.9) and {v⃗n}∞n=1 and {Ψ⃗n}∞n=1 are bounded in H1(RN ;C3), we have

(3.10)

|J1(v⃗n)− J1(Ψ⃗n)|

≤
∫
RN

|v1,n||v2,n||v3,n −Ψ3,n| dx+

∫
RN

|v1,n||v2,n −Ψ2,n||Ψ3,n| dx

+

∫
RN

|v1,n −Ψ1,n||Ψ2,n||Ψ3,n| dx → 0, as n → ∞.

Moreover, since Ψj,n is a minimizer for S∞, it follows that

J1(Ψ⃗n) ≤ S1.

From the upper bound for Ĩβ, it follows that

3S∞ − β(N−4)/(4−N(p−1))+κ
n S1

≥ Ĩβn = Ẽβn(v⃗n) + o(β−4/(4−N(p−1))
n )

= J∞(v1,n) + J∞(v2,n) + J∞(v3,n)− β(N−4)/(4−N(p−1))+κ
n J1(v⃗n)

+ o(β(N−4)/(4−N(p−1))+κ
n )
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≥ 3S∞ − β(N−4)/(4−N(p−1))+κ
n J1(Ψ⃗n) + o(β(N−4)/(4−N(p−1))+κ

n )

≥ 3S∞ − β(N−4)/(4−N(p−1))+κ
n S1 + o(β(N−4)/(4−N(p−1))+κ

n ), as n → ∞.

Thus we have

(3.11) lim
n→∞

Ĩβn − 3S∞

β
(N−4)/(4−N(p−1))+κ
n

= −S1, lim
n→∞

J1(Ψ⃗n) = S1.

Since {βn}∞n=1 is arbitrary sequence satisfying βn → ∞, we have

Ĩβ = 3S∞ − β(N−4)/(4−N(p−1))+κS1 + o(β(N−4)/(4−N(p−1))+κ), as β → ∞.

(Step 4) From (3.11), it follows that

Re(ei(θ1+θ2−θ3)) lim
n→∞

∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx = S1.

(3.12)

We prove {y(1)n − y
(2)
n }∞n=1 and {y(1)n − y

(3)
n }∞n=1 are bounded in RN . If not, for

example, if {y(1)n −y
(2)
n }∞n=1 is not bounded, up to a subsequence, then it holds

that
|y(1)n − y(2)n | → ∞, as n → ∞.

From Remark 1.2, Ψ ∈ L2(RN ) is radially symmetric and decreasing, it holds
that

lim
|x|→∞

Ψ(x) = 0.

Thus for all ε > 0, there exists R > 0 such that

|x| ≥ R =⇒ Ψ(x) < ε.

In addition, since |y(1)n − y
(2)
n | → ∞ (as n → ∞), for n sufficiently large, we

have
Ψ(x+ y(1)n − y(2)n ) < ε, for all |x| < R.

Thus for n sufficiently large, it follows that

|J1(Ψ⃗n)| = |J1(Ψ(· − y(1)n ),Ψ(· − y(2)n ),Ψ(· − y(3)n ))|

≤
∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx

≤ ε

∫
|x|<R

Ψ(x)Ψ(x+ y(1)n − y(3)n ) dx

+ ε

∫
|x|≥R

Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx
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≤ ε∥Ψ∥22 + ε∥Ψ∥22 = 2ε.

Thus we have

lim
n→∞

J1(Ψ⃗n) = 0.

Although

lim
n→∞

J1(Ψ⃗n) = S1,

this is a contradiction to S1 > 0 from Lemma 2.3. Therefore {y(1)n − y
(2)
n }∞n=1

is bounded. We can prove that {y(1)n − y
(3)
n }∞n=1 is bounded in the same way.

Hence up to a subsequence, there exist y(2), y(3) ∈ RN such that

y(1)n − y(2)n → y(2), as n → ∞,

y(1)n − y(3)n → y(3), as n → ∞.

Therefore we have∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx

→
∫
RN

Ψ(x)Ψ(x+ y(2))Ψ(x+ y(3)) dx, as n → ∞.

From (3.12), it holds that

Re(ei(θ1+θ2−θ3))

∫
RN

Ψ(x)Ψ(x+ y(2))Ψ(x+ y(3)) dx = S1.

Therefore (eiθ1Ψ, eiθ2Ψ(· + y(2)), eiθ3Ψ(· + y(3))) is a maximizer for S1. From
Lemma 2.3, y(2) = y(3) = 0 and we may assume that θ1 + θ2 = θ3.

Moreover we have

∥vj,n(·+ y(1)n )− eiθjΨ∥H1 → 0, as n → ∞, j = 2, 3.

Indeed, setting z
(j)
n := y

(1)
n − y

(j)
n (j = 2, 3), we have

∥vj,n(·+ y(1)n )− eiθjΨ∥H1 = ∥vj,n(·+ y(j)n )− eiθjΨ(· − z(j)n )∥H1

≤ ∥vj,n(·+ y(j)n )− eiθjΨ∥H1 + ∥eiθjΨ− eiθjΨ(· − z(j)n )∥H1

→ 0, as n → ∞.
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3.3. Proof of Theorem 1.3 (iv)

For the case κ = κ2, we have

Ẽβ(v⃗) =
3∑

j=1

J∞(vj)− β−4/(4−N(p−1))×

×
(
J1(v⃗)− 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj |2 dx

)
.

For the proof of the upper bound, we use the following test function:

φ⃗β(x) := Ψ⃗(x− β2/(4−N(p−1))z0),

where z0 is unique minimum point of Vj . By using the arguments used in
Theorem 1.3 (ii), we can prove the upper bound:

Ĩβ ≤ Ẽβ(φ⃗β) = 3S∞ − β−4/(4−N(p−1))×

×
(
S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}
)

+ o(β−4/(4−N(p−1))), as β → ∞.

For the proof of the lower bound, note that the rescaled function v⃗n defined
by (1.2) satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,

Ẽβn(v⃗n) = Ĩβn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. By the similar argument as in the proof of Theorem 1.3
(iii), it holds that {v⃗n}∞n=1 is bounded in H1(RN ;C3) and each {vj,n}∞n=1 is
a minimizing sequence for S∞. Therefore up to a subsequence, there exist

{y(j)n }∞n=1 ⊂ RN and θj ∈ R such that

∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0.

From the upper bound for Ĩβn , we have

3S∞ − β−4/(4−N(p−1))
n ×

×
(
S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}
)
+ o(β−4/(4−N(p−1))

n )

≥ Ĩβn

≥ 3S∞ − β−4/(4−N(p−1))
n ×
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×
(
J1(v⃗n)−

1

2

3∑
j=1

∫
RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx

)
+ o(β−4/(4−N(p−1))

n ).

Since

J1(v⃗n) = J1(eiθ1Ψ(· − y(1)n ), eiθ2Ψ(· − y(2)n ), eiθ3Ψ(· − y(3)n )) + o(1)

≤ S1 + o(1),

by the same argument as in Theorem 1.3 (ii) and (iii), we have

y(j)n /β2/(4−N(p−1))
n → zj,0 = z0,∫

RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx → Vj(zj,0) = Vj(z0).

Thus we have

3S∞ − β−4/(4−N(p−1))
n (S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))
n )

≥ Ĩβn

≥ 3S∞ − β−4/(4−N(p−1))
n ×

×
(
J1(eiθ1Ψ(· − y(1)n ), eiθ2Ψ(· − y(2)n ), eiθ3Ψ(· − y(3)n ))

− 1

2
{V1(z0) + V2(z0) + V3(z0)}

)
+ o(β−4/(4−N(p−1))

n )

≥ 3S∞ − β−4/(4−N(p−1))
n (S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))
n ).

By the same argument as in Theorem 1.3 (iii), we have

Ĩβ = 3S∞ − β−4/(4−N(p−1))(S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))), as β → ∞,

θ1 + θ2 = θ3 + 2kπ, k ∈ Z,

y(1)n − y(2)n → 0, y(1)n − y(3)n → 0,

∥vj,n(·+ yn)− eiθjΨ∥H1 → 0,

yn/β
2/(4−N(p−1))
n → z0.
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3.4. Proof of Theorem 1.3 (v)

For the case (v) κ < κ2, note that

(N − 4)/(4−N(p− 1)) + κ < −4/(4−N(p− 1))

and

Ẽβ(v⃗) =

3∑
j=1

J∞(vj) + β−4/(4−N(p−1)) 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj |2 dx

− β(N−4)/(4−N(p−1))+κJ1(v⃗).

First we prove the upper bound for Ĩβ. Let xj,0 ∈ RN such that
minx∈RN Vj(x) = Vj(xj,0) for all j = 1, 2, 3.
Set vj(x) = Ψ(x− β2/(4−N(p−1))xj,0), v⃗ = (v1, v2, v3). Then we have

Ĩβ ≤ Ẽβ(v⃗)

= 3S∞ + β−4/(4−N(p−1)) 1

2

3∑
j=1

∫
RN

Vj(β
−2/(4−N(p−1))x+ xj,0)|Ψ|2 dx

+ o(β−4/(4−N(p−1)))

= 3S∞ + β−4/(4−N(p−1)) 1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+ o(β−4/(4−N(p−1))), as β → ∞.

Next, we prove the lower bound for Ĩβ. Recall that the rescaled function
v⃗n defined by (1.2) satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,

Ẽβn(v⃗n) = Ĩβn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. Since {vj,n}∞n=1 is bounded in H1(RN ), by the same argument
as in the proof of Theorem 1.3 (iii) and (iv), {vj,n}∞n=1 is a minimizing sequence

for S∞. Thus up to a subsequence, there exist {y(j)n }∞n=1 ⊂ RN and θj ∈ R
such that

∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0.

By the same argument as in the proof of Theorem 1.3 (ii), since

{y(j)n /β
2/(4−N(p−1))
n }∞n=1 is bounded, up to a subsequence, there exists zj,0 ∈

RN such that

y(j)n /β2/(4−N(p−1))
n → zj,0.
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Moreover we have∫
RN

Vj(β
−2/(4−N(p−1))
n x)|vj,n|2 dx → Vj(zj,0).

From the upper bound for Ĩβ, it follows that

3S∞ + β−4/(4−N(p−1))
n

1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+ o(β−4/(4−N(p−1))
n )

≥ Ĩβn

≥ 3S∞ + β−4/(4−N(p−1))
n

1

2
{V1(z1,0) + V2(z2,0) + V3(z3,0)}+ o(β−4/(4−N(p−1))

n )

≥ 3S∞ + β−4/(4−N(p−1))
n

1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+ o(β−4/(4−N(p−1))
n ).

This implies that

Ĩβ = 3S∞ + β−4/(4−N(p−1)) 1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞
and min

x∈RN
Vj(x) = Vj(zj,0).

3.5. Proof of Theorem 1.3 (i)

Let u⃗ be a function such that

∥u1∥22 = ∥u2∥22 = ∥u3∥22 = 1.

We consider the rescaled function w⃗ as (1.1) such that

w⃗(x) := β−κN/(4−N)u⃗(β−2κ/(4−N)x).

Then it follows that

∥w1∥22 = ∥w2∥22 = ∥w3∥22 = 1

and

Eβ(u⃗) = β4κ/(4−N)F̃ β(w⃗),

Iβ = β4κ/(4−N)K̃β
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where

F̃ β(w⃗) := E0(w⃗)− βκ(N(p−1)−4)/(4−N)+1E1(w⃗)

+ β−4κ/(4−N) 1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)x)|wj |2 dx,

K̃β := inf{F̃ β(w⃗) | w⃗ ∈ H1(RN ;C3), ∥wj∥22 = 1 (j = 1, 2, 3)}.

For the case (i) κ > κ1, note that

−4κ/(4−N) < κ(N(p− 1)− 4)/(4−N) + 1 < 0.

We first prove the upper bound for K̃β. Let W⃗n be a maximizing sequence
for Σ1, that is, W⃗n satisfies

W⃗n is a minimizer for Σ0,

E1(W⃗n) → Σ1, as n → ∞.

Then we have

K̃β ≤ F̃ β(W⃗n) = E0(W⃗n)− βκ(N(p−1)−4)/(4−N)+1E1(W⃗n)

+ β−4κ/(4−N) 1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)x)|Wj,n|2 dx

≤ Σ0 − βκ(N(p−1)−4)/(4−N)+1E1(W⃗n).

Then letting n → ∞, we have

K̃β ≤ Σ0 − βκ(N(p−1)−4)/(4−N)+1Σ1.

Next we prove the lower bound for K̃β. Note that the rescaled function w⃗n

defined by (1.1) satisfies

∥w1,n∥22 = ∥w2,n∥22 = ∥w3,n∥22 = 1,

F̃ βn(w⃗n) = K̃βn + o(β−4κ/(4−N)
n ),

where βn → ∞ as n → ∞. Since {wj,n}∞n=1 is bounded in H1(RN ), by the
same argument as in Theorem 1.3 (iii), {w⃗n}∞n=1 is a minimizing sequence for
Σ0. From the compactness of minimizing sequence for Σ0 (see Kurata-Osada
[10]), up to a subsequence, there exist {yn}∞n=1 ⊂ RN and a minimizer w⃗ for
Σ0 such that

∥w⃗n(·+ yn)− w⃗∥H1 → 0, as n → ∞.
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From the upper bound for K̃β, we have

Σ0 − βκ(N(p−1)−4)/(4−N)+1
n Σ1

≥ K̃βn = F̃ βn(w⃗n) + o(β−4κ/(4−N)
n )

≥ Σ0 − βκ(N(p−1)−4)/(4−N)+1
n E1(w⃗n)

+ β−4κ/(4−N)
n

1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)
n x)|wj,n|2 dx

= Σ0 − βκ(N(p−1)−4)/(4−N)+1
n E1(w⃗) + o(βκ(N(p−1)−4)/(4−N)+1

n )

≥ Σ0 − βκ(N(p−1)−4)/(4−N)+1
n Σ1 + o(βκ(N(p−1)−4)/(4−N)+1

n ).

Thus we have

K̃β = Σ0 − βκ(N(p−1)−4)/(4−N)+1Σ1 + o(βκ(N(p−1)−4)/(4−N)+1), as β → ∞

and w⃗ is a maximizer for Σ1.

§A. Appendix: Asymptotic expansion of Iα as α → ∞

We remark the another asymptotic expansion of the energy Iβα(γ, µ, s) as α →
∞ with β = ατ for a given τ ∈ R. For τ > 0, the result of asymptotic
expansion of Iβα(γ, µ, s) as α → ∞ with β = ατ is included in Theorem 1.3.
So we consider the case τ ≤ 0. For a given τ ≤ 0, as β = ατ define

Eα(u⃗) := Eατ

α (u⃗),

Iα(γ, µ, s) := Iα
τ

α (γ, µ, s).

Let {αn}∞n=1 be a positive number sequence such that αn → ∞ as n → ∞.
We say that {u⃗n}∞n=1 is a minimizing sequence for Iαn(γ, µ, s) if

∥u1,n∥22 = γ, ∥u2,n∥22 = µ, ∥u3,n∥22 = s,

Eαn(u⃗n) = Iαn(γ, µ, s) + o(1), as n → ∞.

We use the rescaled function w⃗n defined by (1.1) to analyse the asymptotic
expansion for Iα(γ, µ, s) as α → ∞. The asymptotic expansion up to the first
term for Iα(γ, µ, s) for the case τ = 0 is treated in Kurata-Osada [10].

Proposition A.1. (I) −N(p− 1)/(4−N) < τ ≤ 0
Assume that N ≤ 2. Then it holds that

Iα(γ, µ, s) = α4/(4−N)Σ0(γ, µ, s)− αN(p−1)/(4−N)+τΣ1(γ, µ, s)

+ o(αN(p−1)/(4−N)+τ ), as α → ∞.



ASYMPTOTIC EXPANSION OF NLS ENERGY 73

Moreover let u⃗n be a minimizing sequence for Iαn(γ, µ, s) where αn → ∞.
For the rescaled function w⃗n defined by (1.1), up to a subsequence, there
exist a maximizer w⃗ for Σ1(γ, µ, s) and {yn}∞n=1 ⊂ RN such that

∥w⃗n(·+ yn)− w⃗∥H1 → 0.

(II) τ = −N(p− 1)/(4−N)
Assume that N ≤ 2, (V2) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds that

Iα(γ, µ, s)

= α4/(4−N)Σ0(γ, µ, s)− Σ1(γ, µ, s)

+
1

2
min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s}+ o(1), as α → ∞.

Moreover let u⃗n be a minimizing sequence for Iαn(γ, µ, s) where αn → ∞.
For the rescaled function w⃗n defined by (1.1), up to a subsequence, there
exist a maximizer w⃗ for Σ1(γ, µ, s), {yn}∞n=1 ⊂ RN and z0 ∈ RN such
that

∥wj,n(·+ yn)− wj∥H1 → 0,

yn/α
2/(4−N)
n → z0,

min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s} = V1(z0)γ + V2(z0)µ+ V3(z0)s.

(III) τ < −N(p− 1)/(4−N)
Assume that (V2) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds that

Iα(γ, µ, s) = α4/(4−N)Σ0(γ, µ, s) +
1

2
min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s}

+ o(1), as α → ∞.

Moreover let u⃗n be a minimizing sequence for Iαn(γ, µ, s) where αn → ∞.
For the rescaled function w⃗n defined by (1.1), up to a subsequence, there
exist a minimizer w⃗ for Σ0(γ, µ, s), {yn}∞n=1 ⊂ RN and z0 ∈ RN such
that

∥wj,n(·+ yn)− wj∥H1 → 0,

yn/α
2/(4−N)
n → z0,

min
x∈RN

{V1(x)γ + V2(x)µ+ V3(x)s} = V1(z0)γ + V2(z0)µ+ V3(z0)s.

Since we can prove Proposition A.1 in a similar way as in the proof of Theo-
rem 1.3, we omit the details. We note that we assume an additional condition
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for the bottom of the potentials in the case (iv) in Theorem 1.3. But we do
not need the additional condition in Proposition A.1 since the compactness
of the minimizing sequence of a minimization problem for appearing in the
first term of the asymptotic expansion of Iα aligns the translations for each
component.
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