Multiplicative Quiver Varieties and Riemann-Hilbert Correspondence

Daisuke Yamakawa

Kyoto University

August 23, 2008

Additive / Multiplicative Quiver Varieties

Fix a finite quiver (directed graph)

I: vertex set, Ω : arrow set Main objects in this talk

Additive quiver variety (Nakajima 1994)

$$\mathfrak{M}_{\zeta, heta}(v), \quad v \in \mathbb{Z}_{\geq 0}^{I}, \; \zeta \in \mathbb{C}^{I}, \; heta \in \mathbb{Q}^{I}$$

► Multiplicative quiver variety (Crawley-Boevey and Shaw 2004, Y 2007)

$$\mathcal{M}_{q,\theta}(v), \quad v \in \mathbb{Z}_{\geq 0}^{I}, \ q \in (\mathbb{C}^{*})^{I}, \ \theta \in \mathbb{Q}^{I}$$

Additive Quiver Variety

Take $V=(V_i)_{i\in I}$: family of $\mathbb C$ -vec sps with $\dim V_i=v_i$ Set

$$\mathrm{M}_V := \bigoplus_{h \in \Omega} \mathrm{Hom}(V_{\mathrm{s}(h)}, V_{\mathrm{t}(h)}) \oplus \bigoplus_{h \in \Omega} \mathrm{Hom}(V_{\mathrm{t}(h)}, V_{\mathrm{s}(h)})$$

It has a natural action of $G_V := \prod_{i \in I} \operatorname{GL}(V_i)$

Define $\mu_i \colon \mathrm{M}_{\mathrm{V}} o \mathfrak{gl}(V_i) \, (i \in I)$ by

$$\mu_i(x,y) = \sum_{\substack{h \in \Omega \\ \operatorname{t}(h) = i}} x_h y_h - \sum_{\substack{h \in \Omega \\ \operatorname{s}(h) = i}} y_h x_h$$

$$\mathfrak{M}^{\mathrm{reg}}_{\zeta, heta}(v) := \left\{ \left. (x,y) \in \mathrm{M}_V \; \middle| egin{align*} \mu_i(x,y) = \zeta_i 1_{V_i} \ (x,y) : heta ext{-stable} \end{array}
ight.
ight. / G_V$$

Symplectic Structure

 $\mathfrak{M}^{\mathrm{reg}}_{\zeta, heta}(v)$ has a (holomorphic) symplectic structure Why?

- $ightharpoonup \mathbf{M}_{oldsymbol{V}}$ is a (complex) symplectic vector space
- $lackbox{ }G_V \curvearrowright \mathrm{M}_V$ is Hamiltonian with moment map μ
- lacksquare $\mathfrak{M}^{\mathrm{reg}}_{\zeta, heta}(v)$ is a level set of μ modulo G_V -action
- $\Longrightarrow \mathfrak{M}^{\mathrm{reg}}_{\zeta, heta}(v)$ is a symplectic quotient

Remark

- lacksquare $\mathfrak{M}^{\mathrm{reg}}_{\zeta, heta}(v)$ has in fact a hyper-Kähler structure
- $m{\mathfrak{M}}^{\mathrm{reg}}_{\zeta, heta}(v)$ does not depend (up to isom) on the orientation of (I,Ω)

Multiplicative Quiver Variety

Set

$$\mathcal{M}_V^\circ := \{\, (x,y) \in \mathcal{M}_V \mid \det(1+y_h x_h) \neq 0 \,\}$$

Fix a total ordering on Ω and define $\Phi_i \colon \mathrm{M}_V^{\circ} o \mathrm{GL}(V_i)$ by

$$\Phi_{i}(x_{h}, y_{h}) := \prod_{h \in \Omega \atop \operatorname{t}(h) = i} (1_{V_{i}} + x_{h} y_{h}) \prod_{h \in \Omega \atop \operatorname{s}(h) = i} (1_{V_{i}} + y_{h} x_{h})^{-1}$$

$$\mathcal{M}_{q, heta}^{\mathrm{reg}}(v) := \left\{ \left. (x,y) \in \mathrm{M}_V^\circ \, \left| egin{array}{c} \Phi_i(x,y) = q_i \mathbb{1}_{V_i} \ (x,y) : heta ext{-stable} \end{array}
ight.
ight.
ight.
ight.$$

Symplectic Structure

 $\mathcal{M}^{\mathrm{reg}}_{q, heta}(v)$ has a holomorphic symplectic structure Why?

- ► [Alekseev-Malkin-Meinrenken 1998] Theory of quasi-Hamiltonian action and group-valued moment map
- $lackbox{V}$ [Van den Bergh 2007] $G_V \curvearrowright \mathbf{M}_V^{\circ}$ is quasi-Hamiltonian with group-valued moment map Φ
- $lackbox{}{\sim} \mathcal{M}_{a, heta}^{
 m reg}(v)$ is a level set of Φ modulo by G_V -action
- $\Longrightarrow \mathcal{M}_{q, heta}^{\mathrm{reg}}(v)$ is a group-valued symplectic quotient

Remark

 $\mathcal{M}_{q, heta}^{\mathrm{reg}}(v)$ does not depend (up to isom) both on

- **ightharpoonup** the orientation of (I,Ω)
- ightharpoonup the ordering on Ω

Surprising Similarity: Additive Reflection Functor

Let $i \in I$ be a loopfree vertex

Let $(\ ,\)$ be a symmetric bilinear form on \mathbb{Z}^I associated to (I,Ω) ;

$$(\alpha,\beta) := 2\sum_{i \in I} \alpha_i \beta_i - \sum_{h \in \Omega} (\alpha_{\operatorname{t}(h)} \beta_{\operatorname{s}(h)} + \alpha_{\operatorname{s}(h)} \beta_{\operatorname{t}(h)})$$

Define $s_i \colon \mathbb{Z}^I o \mathbb{Z}^I$ by $s_i(lpha) = lpha - (lpha, e_i)e_i$

Set $r_i := {}^t s_i$

Theorem (Lusztig, Maffei, Nakajima)

If $v \neq e_i$, there is an isomorphism of algebraic varieties

$$\mathfrak{M}^{\mathrm{reg}}_{\zeta,\theta}(v) \simeq \mathfrak{M}^{\mathrm{reg}}_{r_i(\zeta),r_i(\theta)}(s_i(v))$$

Surprising Similarity: Multiplicative Reflection Functor

There is
$$u_i\colon (\mathbb{C}^*)^I o (\mathbb{C}^*)^I$$
 s.t. $u_i(\exp\zeta) = \exp r_i(\zeta)$
Theorem (Crawley-Boevey-Shaw, Y)

If $v
eq e_i$, there is an isomorphism of algebraic varieties

$$\mathcal{M}_{q,\theta}^{\mathrm{reg}}(v) \simeq \mathcal{M}_{u_i(q),r_i(\theta)}^{\mathrm{reg}}(s_i(v))$$

λ -parabolic Connections

Take distinct pts
$$p_1, p_2, \ldots, p_n \in \mathbb{P}^1$$
 $(D := \sum p_i)$
Let $\lambda = (\lambda_i^j \mid i = 1, \ldots, n, \ j = 1, \ldots, r), \ \lambda_i^j \in \mathbb{C}$
A λ -parabolic connection on (\mathbb{P}^1, D) consists of —

- ightharpoonup E: holomorphic vector bundle on \mathbb{P}^1
- $lackbox{f ∇}$: holomorphic connection on $E|_{\mathbb{P}^1\setminus D}$ s.t. near each p_i ,

$$abla = d + rac{A(z)}{z - p_i} dz, \quad A(z)$$
: holomorphic

lacksquare full filtration $E_{p_i}=E_i^0\supset E_i^1\supset\cdots\supset E_i^r=0$ s.t.

$$(A(0) - \lambda_i^j 1)(E_i^{j-1}) \subset E_i^j$$

Moduli of λ -parabolic Connections

$$lpha=(lpha_i^j)_{1\leq i\leq n, 1\leq j\leq r}$$
 with $0\leq lpha_i^j defines the $lpha$ -stability condition for λ -parabolic connections$

Theorem (Inaba-Iwasaki-Saito)

The moduli space $\mathcal{M}_{\lambda,\alpha}(r)$ of α -stable λ -parabolic connections on (\mathbb{P}^1,D) of rank r has naturally a holomorphic symplectic structure

Star-shaped Multiplicative Quiver Variety

Theorem

Assume α is generic and $\alpha_i^j - \operatorname{Re} \lambda_i^j \in \mathbb{Q}$

Then there is a symplectic biholomorphic map between

- $\blacktriangleright \mathcal{M}_{\lambda,\alpha}(r)$; and
- $ightharpoonup \mathcal{M}_{q,\theta}(v)$ associated to the full star-shaped quiver with n legs

and some q, θ

Monodromy Map

$$egin{align*} \mathcal{M}_{q, heta}(v) & \xrightarrow{\qquad \text{symp biholo} \qquad} \mathcal{M}_{\lambda,lpha}(r) \ & \downarrow^{\pi} & \circlearrowleft & \bigvee^{monodromy\ map} \ \mathcal{M}_{q,0}(v) & \xrightarrow{\iota} & \operatorname{Hom}(\pi_1(\mathbb{P}^1\setminus D),\operatorname{GL}_r(\mathbb{C}))/\!\!/\operatorname{GL}_r(\mathbb{C}) \end{aligned}$$

- $\triangleright \iota$ is a closed immersion of algebraic varieties
- $ightharpoonup \pi$ is a natural projective map

Direct Relation between Additive and Multiplicative

Theorem

There exist

- $lackbox{ }U$: open neighborhood of $[0]\in \mathcal{M}_{1,0}(v)$
- $lackbox{f U}'$: open neighborhood of $[0]\in \mathfrak{M}_{0,0}(v)$

and

$$\pi^{-1}(U) \stackrel{\tilde{f}}{\longrightarrow} \pi^{-1}(U')$$
 $\downarrow^{\pi} \quad \circlearrowright \quad \downarrow^{\pi}$
 $(U, [0]) \stackrel{f}{\longrightarrow} (U', [0])$

such that

- $f,\ ilde{f}$: complex analytic isomorphism
- $ilde{f}\colon \pi^{-1}(U)^{\mathrm{reg}} o \pi^{-1}(U')^{\mathrm{reg}}$ symplectomorphic