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Plan of the talk

Plan of the talk

1. Crawley-Boevey’s result on residue manifolds and quiver varieties

2. Polar-parts manifolds

3. Boalch’s conjecture

4. Reflection transformations of isomonodromy equations
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Residue manifolds and star-shaped quivers

Residue manifolds

Let O1, O2, . . . , Om ⊂ gln(C) be GLn(C)-adjoint orbits.
Consider the space

Mn(O1, . . . , Om) =
{
(Ai) ∈

∏
Oi

∣∣∣∑Ai = 0
}
/GLn(C).

Take distinct t1, t2, . . . , tm ∈ C.
The space parameterizes the isoclasses of logarithmic connections

d−
m∑
i=1

Ai

x− ti
dx on On

P1

with the residue at each ti lying in Oi and no other poles.
(
∑

Ai = 0 is the holomorphy condition at x = ∞.)
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Residue manifolds and star-shaped quivers

Residue manifolds

Identify gln(C)∗ with gln(C) using the trace.
Then each Oi has the Kirillov–Kostant–Souriau (complex) symplectic
structure and

µ :
∏

Oi → gln(C); (Ai) 7→
∑

Ai

is a GLn(C)-moment map. Therefore

Mn(O1, . . . , Om) = µ−1(0)/GLn(C) = (O1 × · · · ×Om)//GLn(C)

is a complex Hamiltonian reduction.

It may be singular but the open subset Ms
n(O1, . . . , Om) consisting of

[(Ai)] with no common invariant subspace of Cn (except {0},Cn) is a
smooth complex symplectic manifold if it is non-empty.
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Residue manifolds and star-shaped quivers

Residue manifolds and quiver varieties

Theorem [Crawley-Boevey 2003]

Ms
n(O1, . . . , Om) is isomorphic to a Nakajima quiver variety Ms

Q(n, ζ).

The quiver variety Ms
Q(n, ζ) is the complex symplectic manifold

associated to

▶ a quiver Q (a directed graph consisting of vertices Q0 and arrows Q1)

e.g. • •))55 ||

▶ n = (ni) ∈ ZQ0

≥0, ζ = (ζi) ∈ CQ0

defined by
(
Cns(a) Cnt(a)

Xa //

Ya

oo

)
a∈Q1

∣∣∣∣∣∣
∑
t(a)=i

XaYa −
∑

s(a)=i

YaXa = −ζi Ini


irred

/
∏

GLni(C)
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Residue manifolds and star-shaped quivers

Residue manifolds and quiver varieties

Theorem [Crawley-Boevey 2003]

Ms
n(O1, . . . , Om) is isomorphic to a Nakajima quiver variety Ms

Q(n, ζ).

Let di be the degree of the minimal polynomial of elements of Oi.
The quiver Q appearing in Theorem is the “star-shaped” quiver

• ...

· · ·
· · ·

· · ·

•
|| •tt

•

dd

oo

oo

oo

•oo

•oo

•oo

•oo

•oo •oo

with m legs of length di − 1, i = 1, . . . ,m. Roughly speaking,

▶ ζ depends on the eigenvalues of O1, . . . , Om

▶ n depends on the multiplicities of eigenvalues

As an application he solved the additive Deligne–Simpson problem, i.e.,
gave a criterion for the emptiness of Ms

n(O1, . . . , Om).
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Residue manifolds and star-shaped quivers

Reflection transformations of Schlesinger equations

Each loop-free vertex i ∈ Q0 defines a reflection si : ZQ0 → ZQ0 :

si(n) = n′, n′
j =

{
−ni +

∑
j ̸=i nj#{arrows joining i and j} (j = i)

nj (j ̸= i)

Reflection functors [Nakajima, Rump, Lusztig, . . . ]

Ms
Q(n, ζ) ≃ Ms

Q(si(n), s
T
i (ζ)) (ζi ̸= 0)

Through Crawley-Boevey’s isomorphisms,

▶ the reflection at the central vertex relates to the additive analogue of
Katz’s middle convolution in the sense of Dettweiler–Reiter [Boalch]

▶ the other reflections come from scalar shifts of residues.

They induce transformations of Schlesinger equations (isomonodromy
equations for non-resonant logarithmic connections) [Haraoka–Filipuk].
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Boalch’s conjecture

Polar-part orbits

As a generalization of GLn(C)-(co)adjoint orbits, consider orbits of the
GLn(C[[z]])-action on gln(C[z−1])dzz defined by

g ·A = the principal part of gAg−1 ∈ gln(C((z)))dz.

▶ This action preserves the order ord(A) ∈ Z<0.

▶ If ord(g(z)− In) + ord(A) ≥ 0 then g ·A = A.

Hence every orbit is finite-dimensional, and in fact may be viewed as a
coadjoint orbit of GLn(C[z]/(zk)) ≃ GLn(C[[z]])/{In +O(zk)} for
sufficiently large k via the pairing

gln(C[[z]])× gln(C[z−1])
dz

z
→ C; (X,B) 7→ res

z=0
tr(XB).

Every orbit of order ≥ −1 may be identified with a GLn(C)-(co)adjoint
orbit.
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Boalch’s conjecture

Polar-parts manifolds

Let O1, O2, . . . , Om ⊂ gln(C[z−1])dzz be GLn(C[[z]])-orbits.
Consider the space

Mn(O1, . . . , Om) =
{
(Ai) ∈

∏
Oi

∣∣∣∑ res
z=0

Ai = 0
}
/GLn(C).

Take t1, t2, . . . , tm ∈ C (distinct).
The space parameterizes the isoclasses of meromorphic connections d−A
on On

P1 with poles at t1, . . . , tm (and nowhere else) such that

(the principal part of A at x = ti) ∈ Oi (with z = x− ti).

The open subset Ms
n(O1, . . . , Om) consisting of [(Ai)] with no nonzero

subspace V ⊊ Cn satisfying

Ai(V ) ⊂ V ⊗ C[z−1]
dz

z
(i = 1, 2, . . . ,m)

is a smooth complex symplectic manifold if it is non-empty.
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Boalch’s conjecture

Boalch’s conjecture

Assume

▶ O1 contains an element of the form
λ1(z

−1) In1 + L1

λ2(z
−1) In2 + L2

. . .

λℓ(z
−1) Inℓ

+ Lℓ

 dz

z

with λj(t) ∈ tC[t] and Lj ∈ glnj
(C).

▶ O2, . . . , Om are logarithmic.

Theorem (Boalch’s conjecture) [Boalch (ord(O1) ≥ −3), Hiroe–Y]

Ms
n(O1, . . . , Om) is isomorphic to a quiver variety.

Daisuke Yamakawa (Titech) Meromorphic connections and quivers String-Math 2016 9 / 12



Boalch’s conjecture

Construction of the quiver

The underlying graph of the quiver appearing in Theorem is constructed as
follows (for simplicity assume that O2, . . . , Om are not scalar)

1. Define a finite graph Γ0 by
▶ the vertices = {λ1, . . . , λℓ} ⊂ tC[t]
▶ joining each λj ̸= λk by (deg(λj − λk)− 1) edges

2. Extend Γ0 by
▶ adding (m− 1) vertices 2, 3, . . . ,m
▶ joining each i and λj by one edge

3. Glue a leg (a graph of type A) to each vertex
▶ the length of i-th leg = deg(the minimal poly. of Oi)− 2
▶ the length of λj-th leg = deg(the minimal poly. of Lj)− 1

e.g.

◦

◦ ◦

◦

◦•• ◦ • ⇝

•

• ••• •
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Reflection transformations

Reflection transformations

In this situation it is hard to check that the reflection functors induce
transformations of isomonodromy equations.
Using an irregular singular analogue of the additive middle convolution
(developed by Takemura and Y) instead, Hiroe constructed isomorphisms

Ms
n(O1, . . . , Om)

S′
i //

≃
��

⟳

Ms
n(O

′
1, . . . , O

′
m)

≃
��

Ms
Q(n, ζ) ≃

// Ms
Q(si(n), s

T
i (ζ))

Theorem [Y]

Under some mild assumption S′
i induce transformations of isomonodromy

equations.

In the case ord(O1) ≥ −3 similar transformations were constructed earlier
by Boalch.
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Reflection transformations

Examples: Painlevé equations

When n = 2, dimMs
n(O1, . . . , Om) = 2 one gets Painlevé equations

(m,− ord(O1)) (4, 1) (3, 2) (2, 3) (1, 4)

Isomonodromy eq. PVI PV PIV PII

Underlying graph •
•

•

•

•

•

• •

•

• •

•
• •

In each case one recovers Okamoto’s Weyl group symmetry of the Painlevé
equation (except the action of the lattice part).
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