Hamiltonians for isomonodromic deformations

Daisuke Yamakawa

Department of Mathematics, Tokyo University of Science

Hiroshima University March 5, 2018

Non-autonomous Hamiltonian system

Consider a non-autonomous Hamiltonian system

$$\begin{cases} \frac{\partial q_j}{\partial t_i} = \frac{\partial H_i}{\partial p_j}, \\ \frac{\partial p_j}{\partial t_i} = -\frac{\partial H_i}{\partial q_j} \end{cases}$$
 $(i = 1, 2, \dots, m, \ j = 1, 2, \dots, n)$

with Hamiltonians $H_i(p_1,\ldots,p_n,q_1,\ldots,q_n,t_1,\ldots,t_m)$ $(i=1,2,\ldots,m)$. The system corresponds to the distribution $\mathcal{H}\subset TM$ on $M:=\mathbb{C}^{2n}\times\mathbb{C}^m$ spanned by the vector fields

$$X_{i} = \frac{\partial}{\partial t_{i}} + \sum_{i=1}^{n} \left(\frac{\partial H_{i}}{\partial p_{j}} \frac{\partial}{\partial q_{j}} - \frac{\partial H_{i}}{\partial q_{j}} \frac{\partial}{\partial p_{j}} \right) \quad (i = 1, 2, \dots, m).$$

Fundamental two-form

The phase space M is a fiber bundle over the time space $B=\mathbb{C}^m$ with each fiber \mathbb{C}^{2n} equipped with the symplectic form $\sum dp_j\wedge dq_j$.

The fundamental two-form for the system is

$$\Omega := \sum_{j=1}^{n} dp_j \wedge dq_j - \sum_{i=1}^{m} dH_i \wedge dt_i.$$

Properties of the fundamental two-form

- (1) The restriction of Ω to each fiber is the symplectic form.
- (2) \mathcal{H} is Ω -orthogonal to any vector tangent to a fiber.
- (3) $\frac{\partial H_i}{\partial t_j} \frac{\partial H_j}{\partial t_i} = \{H_i, H_j\} \ (1 \le i, j \le m)$ if and only if $\mathcal{H} = \operatorname{Ker} \Omega$, i.e., $\iota(X_i)\Omega = 0 \ (i = 1, 2, \dots, m)$. In this case the distribution is integrable.

Fundamental two-form for IMD

Question

What are the fundamental two-forms for the isomonodromic deformations?

We know the fundamental two-forms for

- ▶ Various "Painlevé type" equations (Okamoto, Noumi-Yamada, Sasano, Fuji-Suzuki-Tsuda, Kawakami-Nakamura-Sakai, e.t.c.)
- Schlesinger equation and its higher genus version
- Jimbo–Miwa–Môri–Sato's equation
- Simply-laced isomonodromy system

Assumption

Consider the isomonodromic deformations of a system of linear ODEs

$$\frac{dy}{dx} = A(x)y, \quad A(x) \in M_n(\mathbb{C}(x))$$

with poles $a_0 = \infty$, $a_1, ..., a_m$. Put $x_0 = 1/x$, $x_i = x - a_i$ (i = 1, 2, ..., m).

Assumption

For each i the system has a formal fundamental solution $\widehat{Y}_i = \widehat{F}_i e^{\Lambda_i} x_i^{L_i}$, where

- $\widehat{F}_i = F_0^{(i)} + F_1^{(i)} x_i + F_2^{(i)} x_i^2 + \dots \in GL_n(\mathbb{C}[x_i]).$
- lacksquare $\Lambda_i = rac{\Lambda_1^{(i)}}{x_i} + \dots + rac{\Lambda_{r_i}^{(i)}}{x_i^{r_i}}$ with each $\Lambda_j^{(i)}$ diagonal (irregular type).
- ▶ $L_i \in \mathfrak{h}_i := \{ X \in M_n(\mathbb{C}) \mid [X, \Lambda_i] = 0 \}$ with $\mathrm{ad}_{L_i} \in \mathrm{End}(\mathfrak{h}_i)$ having no nonzero integral eigenvalues (matrix of exponents of formal monodromy).

We may further assume $F_0^{(0)} = I_n$ by normalizing A.

Local existence of IMD

Deform a_1,\ldots,a_m and $\Lambda_0,\ldots,\Lambda_m$ (with small parameter $t\in\Delta\subset\mathbb{C}^N$) so that

- $a_i(t) \neq a_j(t) \ (0 \le i < j \le m).$
- the pole order of the difference of any two diagonal elements of each $\Lambda_i(t)$ is constant.

Along such a deformation we may deform the system dy/dx = A(x)y so that

$$\frac{\partial A}{\partial t_i} = \frac{\partial B_i}{\partial x} + [B_i, A] \quad (i = 1, 2, \dots, N)$$

for some matrix-valued functions $B_i(x,t)$ (isomonodromic deformation).

Jimbo-Miwa-Ueno's approach

For $t \in \Delta$ let \mathcal{M}_t be the set of tuples $(A(x), g_0 = I_n, g_1, \dots, g_m)$, where

- ▶ the system dy/dx = A(x)y has poles at $a_0(t) = \infty, a_1(t), \dots, a_m(t)$;
- ▶ the system has the formal fundamental solution $\widehat{F}_i e^{\Lambda_i(t)} x_i^{L_i}$ for some L_i and $\widehat{F}_i \in \mathrm{GL}_n(\mathbb{C}[\![x_i]\!])$ with $\widehat{F}_i(0) = g_i$.

Following Jimbo–Miwa–Ueno, we can describe the isomonodromic deformations as an Ehresmann connection (isomonodromy connection) on the fiber bundle

$$\mathcal{M} := \bigcup_{t \in \Lambda} \mathcal{M}_t \to \Delta.$$

Each fiber \mathcal{M}_t has a canonical symplectic structure [Boalch].

Fundamental two-form for IMD

It is known that \widehat{F}_i, L_i are unique for given $(A, g_0, \dots, g_m) \in \mathcal{M}$ and so define functions on \mathcal{M} .

Theorem [Y]

For each i define a one-form θ_i on $\mathcal M$ by

$$\theta_i = \underset{x_i=0}{\text{res}} \operatorname{tr} \left[\left(\Lambda'_i + \frac{L_i}{x_i} \right) \widehat{F}_i^{-1} d\widehat{F}_i \right].$$

Then the two-form $\Omega := \sum_{i=0}^m d\theta_i$ satisfies the following conditions:

- ightharpoonup the restriction of Ω to each fiber is the symplectic form.
- $\iota(X)\Omega = 0$ for any horizontal vector X.

Corollary

The isomonodromy connection on $\mathcal M$ is flat and symplectic.

How to find Hamiltonians

Question

What are the Hamiltonians for the IMD?

Approach

Hiroe–Y's quiver description gives a trivialization $\mathcal{M}\simeq\mathcal{M}_*\times\Delta$ of the symplectic fiber bundle $\mathcal{M}\to\Delta$.

Let ω_* be the symplectic form on \mathcal{M}_* and $\operatorname{pr} \colon \mathcal{M} \to \mathcal{M}_*$ be the first projection. If Ω is expressed as

$$\Omega = \operatorname{pr}^* \omega_* - d\omega, \quad \varpi = \sum_{i=1}^N H_i dt_i$$

then H_i are Hamiltonians (ϖ is called the Hamiltonian one-form).

Triangular decomposition

The irregular type $\Lambda_i(t) = \sum_{j=1}^{r_i} \Lambda_j^{(i)} x_i^{-j}$ defines

$$\mathfrak{h}_{j}^{(i)}=\mathfrak{z}(\Lambda_{j+1}^{(i)},\Lambda_{j+2}^{(i)},\ldots,\Lambda_{r_{i}}^{(i)})\subset\mathfrak{gl}_{n}(\mathbb{C})\quad (j=0,1,\ldots,r_{i}-1).$$

Since Λ_i is diagonal we may assume that each $\mathfrak{h}_j^{(i)}$ consists of block diagonal matrices

$$\operatorname{diag}(C_1, C_2, \dots, C_l), \quad C_k \in M_{n_k}(\mathbb{C})$$

for some partition $n = \sum_{k=1}^{l} n_k$ (determined from i, j).

Let

$$\mathfrak{gl}_n(\mathbb{C}) = \mathfrak{n}_{j,-}^{(i)} \oplus \mathfrak{h}_j^{(i)} \oplus \mathfrak{n}_{j,+}^{(i)}$$

be the block triangular decomposition. It does not depend on $t \in \Delta$.

Hamiltonians

We can uniquely decompose $\widehat{F}_i = g_i F_i^- F_i^+ e^{h_i}$, where

$$F_i^{\pm} - I_n \in \mathfrak{n}_{1,\pm}^{(i)} x_i + \mathfrak{n}_{2,\pm}^{(i)} x_i^2 + \dots + \mathfrak{n}_{r_i-1,\pm}^{(i)} x_i^{r_i-1},$$

$$\qquad \qquad h_i = h_1^{(i)} x_i + h_2^{(i)} x_i^2 + \cdots \text{ with } h_j^{(i)} \in \mathfrak{h}_j^{(i)} \text{ for } j < r_i.$$

Theorem [Y]

The one-form

$$\varpi = \sum_{i=0}^{m} \underset{x_i=0}{\operatorname{res}} \operatorname{tr} \left(h_i d_{\operatorname{irr}} \Lambda_i' \right) + \frac{1}{2} \sum_{i=1}^{m} \underset{x_i=0}{\operatorname{res}} \operatorname{tr} (A^2) da_i$$

is the Hamiltonian one-form for the isomonodromy connection w.r.t. Hiroe-Y's trivialization.

Some remarks

▶ In general ϖ is different to the one-form of Jimbo–Miwa–Ueno

$$-\sum_{i=0}^{m} \operatorname*{res}_{x_i=0} \operatorname{tr} \left[(\Lambda_i + L_i d \log x_i) \widehat{F}_i^{-1} \widehat{F}_i' \right].$$

▶ If we write $\varpi = \sum_{i=1}^{N} H_i dt_i$ then

$$\frac{\partial H_i}{\partial t_j} - \frac{\partial H_j}{\partial t_i} = \{H_i, H_j\} \quad (1 \le i, j \le N).$$

 Our construction looks closely related to Fedorov's description of isomonodromic deformations as autonomous Hamiltonian systems.