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Abstract. In this paper, we establish sufficient conditions under which Lotka-Volterra cooperative systems are
permanent for the n-dimensional case. We improve the result of [G. Lu and Z. Lu, Permanence for two species Lotka-
Volterra systems with delays, Math. Biosci. Engi. 5 (2008), 477-484] for the 2-dimensional case in that no restrictions
of the size of time delays are needed. When the interval of time delays is constant, we further show that the restriction
of the size of time delays is not required for the case n = 2, but it is required for the case n ≥ 3 to obtain lower bounds
of solutions. An example is offered to illustrate the feasibility of our results.
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1 Introduction

In this paper, we consider the following n-dimensional Lotka-Volterra system with multiple delays:

dx1(t)

dt
= x1(t)

[
r1(t)−

n∑
j=1
j ̸=2

m∑
l=0

al1j(t)xj(t− lτ) + a112(t)x2(t− τ)

]
,

dxi(t)

dt
= xi(t)

[
ri(t)−

n∑
j=1

j ̸=i+1

m∑
l=0

alij(t)xj(t− lτ) +

m∑
l=0

ali i+1(t)xi+1(t− lτ)

]
, i = 2, . . . , n− 1,

dxn(t)

dt
= xn(t)

[
rn(t)−

n∑
j=2

m∑
l=0

alnj(t)xj(t− lτ) +
m∑
l=0

aln1(t)x1(t− lτ)

]
, t ≥ 0,

(1.1)

where τ ≥ 0, each ri(t) and alij(t) are bounded continuous functions on [0,+∞) and

inf
0≤t<+∞

ri(t) > 0,
m∑
l=0

(
inf

0≤t<+∞
alii(t)

)
> 0, alij(t) ≥ 0, 1 ≤ i, j ≤ n and 0 ≤ l ≤ m,

with initial conditions xi(θ) = ϕi(θ) ≥ 0, θ ∈ [−mτ, 0), ϕi(0) > 0 (1 ≤ i ≤ n). Our method of analysis is motivated
by the idea developed by Nakata and Muroya [8] and they consider the specific case that the interval of time delays is
constant. We will discuss the harmlessness of the length of time delays.

Many authors have since studied the permanence of population systems governed by Lotka-Volterra differential
systems (see [1-15] and references therein). Ahmad and Lazer [1] have established the average conditions for persistence
on the nonautonomous Lotka-Volterra competitive systems with no delays and Xu and Chen [10] have studied the delayed
nonautonomous 3-species Lotka-Volterra predator-prey systems without dominating instantaneous negative feedback.
On the other hand, there are few papers concerning permanence for multi-species Lotka-Volterra cooperative systems
with delays compared to competitive and prey-predator systems, while it is well known that size of time delays may
harm permanence for the cooperative systems (see [4, 6, 7]). For example, Lin and Lu [4] consider the following 2-
dimensional Lotka-Volterra cooperative systems with delays and obtain sufficient conditions which ensure the system to
be permanent. 

dx1(t)

dt
= x1(t)(r1 − a1x1(t)− a11x1(t− τ11) + a12x2(t− τ12)),

dx2(t)

dt
= x2(t)(r2 − a2x2(t) + a21x1(t− τ21)− a22x2(t− τ22)),

(1.2)
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where ri, ai, aij and τij are constants with ri > 0, ai > 0 and τij ≥ 0 (i, j = 1, 2). We assume that system (1.2) is
cooperative, that is, a12 > 0 and a21 > 0.
　
Theorem A (See [4, Theorem 1.1].) System (1.2) is permanent if

a1 − a11 > 0, a2 − a22 > 0, and (a1 − a11) (a2 − a22) > a12a21. (1.3)

Muroya [7] proved that system (1.2) is persistent if the conditions (1.3) hold. Later, Lin and Lu [4] show that system
(1.2) may have unbounded solutions if the conditions (1.3) fail and is permanent if the condition holds. However, in real
ecosystems, it is rarely seen that the effects of both intraspecific and interspecific competition occur instantaneously.
(See [2, 10].)

Recently, Lu and Lu [6] study the permanence with the following 2-species cooperative system with delays.
dx1(t)

dt
= x1(t)(r1 − a111x1(t− τ)− a211x1(t− 2τ) + a112x2(t− τ)),

dx2(t)

dt
= x2(t)(r2 + a021x1(t) + a121x1(t− τ)− a022x2(t)− a122x2(t− τ)),

(1.4)

where ri > 0, alij > 0 and τ ≥ 0 are constants for i, j = 1, 2 and l = 0, 1, 2. Note that there is no undelayed intraspecific
competition on the first equation of system (1.4). They obtain the following result:

Theorem B (See [6, Theorem 1.3].) Assume that a021 = 0 and that there exist constants Ci > 0, Di ≥ 0 such that
dxi(t)
dt ≤ Cixi(t) +Di (i = 1, 2). Then system (1.4) is permanent if{

a211 (1− 2r1τ) + a111 (1− r1τ)
}
a022 − a112a

1
21 > 0. (1.5)

It is obvious that both the size of time delays τ ≥ 0 and growth rate r1 > 0 must be sufficiently small to satisfy the
condition (1.5).

Nakata and Muroya [8] establish new sufficient conditions for system (1.4) to be permanent. Remarkably, their
conditions no longer depend on the size of time delays. They obtain the following result:

Theorem C (See [8, Corollary 1.2].) System (1.4) is permanent if

a111 > a021, a211 > a121, a022 > a112. (1.6)

2 Main result

In this paper, motivated by the result of Nakata and Muroya [8] for the case n = 2, we generalize to a class of n-
dimensional Lotka-Volterra systems.

For a continuous bounded function f(t) defined on [0,+∞), we first set

fL = inf
0≤t<+∞

f(t), fM = sup
0≤t<+∞

f(t),

and

P =



(
rM1 + rM2

2
m∑
l=0

√
b
l+L
1 blL2

)2

exp
(
(rM1 + rM2 )mτ

)
, if n ≥ 3,

(
rM1 + rM2

2
m∑
l=0

√
b
l−L
1 blL2

)2

exp
(
(rM1 + rM2 )mτ

)
, if n = 2,

where 
b01(t) = a011(t), b

l±
1 (t) = al11(t)± al−1

21 (t− τ), l = 1, . . . ,m,

bl2(t) = al22(t− τ)− al+1
12 (t), l = 0, . . . ,m− 1, bm2 (t) = am22(t− τ),

b03(t) = a013(t), bl3(t) = al13(t)− al−1
23 (t− τ), l = 1, . . . ,m.

(2.1)
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Next, we put mi and Mi (i = 1, . . . , n) as follows.

AL
i =

m∑
l=0

alLii , AM
i =

m∑
l=0

alMii , 1 ≤ i ≤ n,

M1 = −a1M12 P

rM1
+
{a1M12 P

rM1
+
(
1/AL

1

)(
rM1 +

a1M12 P

x∗
1

)}
exp

(
rM1 mτ

)
,

Mn =
{(

rMn +

m∑
l=0

alMn1 M1

)
/AL

n

}
exp
((

rMn +

m∑
l=0

alMn1 M1

)
mτ
)
,

Mn−i =
{(

rMn−i +

m∑
l=0

alMn−i n−(i−1)Mn−(i−1)

)
/AL

n−i

}
× exp

((
rMn−i +

m∑
l=0

alMn−i n−(i−1)Mn−(i−1)

)
mτ
)
, i = 1, . . . , n− 2,

mi =
{(

rLi −
n∑

j=1
j ̸=i,i+1

m∑
l=0

alMij Mj

)
/AM

i

}
exp
((

rLi −
n∑

j=1
j ̸=i+1

m∑
l=0

alMij Mj

)
mτ
)
, i = 1, . . . , n,

where x = x∗
1 is a unique positive solution of the equation:

x(rM1 −AL
1 x) + a1M12 P = 0.

Our main theorem is as follows.

Theorem 2.1. For system (1.1), consider the case n ≥ 3. Assume that

am23(t) ≡ 0, blL2 ≥ 0, blL3 ≥ 0, l = 0, 1, . . . ,m,
m∑
l=0

√
b
l+L
1 blL2 > 0, (2.2)

and

rLi −
n∑

j=1
j ̸=i,i+1

m∑
l=0

alMij Mj > 0, i = 1, . . . , n− 1, rLn −
n−1∑
j=2

m∑
l=0

alMnj Mj > 0. (2.3)

Then system (1.1) is permanent, that is,

0 < mi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ Mi < +∞, i = 1, . . . , n.

Remark 2.1. For the case n ≥ 3, if the size of time delay τ ≥ 0 is large enough, condition (2.3) is not satisfied, that is,
the permanence of system (1.1) is not guaranteed (cf. [6, Example 3.2]).

Here, let us introduce the following result for the specific case n = 2 for system (1.1).

Corollary 2.1. For system (1.1), consider the case n = 2. Assume that

am21(t) ≡ 0, b
l−L
1 ≥ 0, blL2 ≥ 0, l = 0, 1, . . . ,m,

m∑
l=0

√
b
l−L
1 blL2 > 0. (2.4)

Then system (1.1) is permanent, that is, there exist positive constants m′
i and M ′

i (i = 1, 2) such that

0 < m′
i ≤ lim inf

t→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤ M ′

i < +∞, i = 1, 2,

where 

M ′
1 = −a1M12 P

rM1
+
{a1M12 P

rM1
+
(
1/AL

1

)(
rM1 +

a1M12 P

x∗
1

)}
exp

(
rM1 mτ

)
,

M ′
2 =

{(
rM2 +

m∑
l=0

alM21 M ′
1

)
/AL

2

}
exp
((

rM2 +
m∑
l=0

alM21 M ′
1

)
mτ
)
,

m′
i =

(
rLi /A

M
i

)
exp
((

rLi −
m∑
l=0

alMii M ′
i

)
mτ
)
, i = 1, 2.
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Remark 2.2. For the case n = 2, system (1.1) becomes cooperative and is permanent for any finite size of time delays
under the conditions of Corollary 2.1.

We note that we need some restrictions for τ ≥ 0 to be small enough such that condition (2.3) holds for the case n ≥ 3
since Mi (i = 1, . . . , n) are monotonically increasing functions with respect to τ ≥ 0.

We now obtain the generalized result of Nakata and Muroya [8] for system (1.1) with delays. We improve the known
results in Theorem B [6, Theorem 1.3] and Theorem C [8, Corollary 1.2] by using Corollary 2.1. Our result for system
(1.4) becomes as follows.

Corollary 2.2. For system (1.4), Assume that

a111 > a021, a211 ≥ a121, a022 ≥ a112. (2.5)

Then system (1.4) is permanent.

It is clear that condition (2.5) improves conditions (1.5) and (1.6) in the meaning that the permanence of system (1.4)
is guaranteed for any finite size of time delays and either a211 = a121 or a022 = a112 is allowed, respectively.

3 Basic lemmas

Let us introduce the following basic lemmas. These lemmas play a really important role in this paper because one can
show that xi(t) (i = 1, . . . , n) are also bounded above if x1(t)x2(t− τ) is bounded above.

Lemma 3.1. (See [8, Lemma 2.2].) Assume that

µ =
m∑
l=0

µl > 0, λ > 0, µl ≥ 0, (3.1)

for 0 ≤ l ≤ m. For every positive solution y(t) satisfying the following inequality:

dy(t)

dt
≤ y(t)

(
λ−

m∑
l=0

µly(t− lτ)
)
+D, (3.2)

with initial conditions y(t) = ϕ(t) ≥ 0 for t ∈ [−mτ, 0) and ϕ(0) > 0, it holds that

lim sup
t→+∞

y(t) ≤ M ≡ −D

λ
+
{D
λ

+
1

µ

(
λ+

D

y∗

)}
exp

(
λmτ

)
< +∞,

where y = y∗ is a unique positive solution of the equation;

y(λ− µy) +D = 0. (3.3)

Lemma 3.2. (See [8, Lemma 2.3].) Assume that

µ =
m∑
l=0

µl > 0, λ > 0, µl ≥ 0, (3.4)

for 0 ≤ l ≤ m and all the hypotheses of Lemma 3.1 hold. Then for every positive solution y(t) satisfying the following
inequality:

dy(t)

dt
≥ y(t)

(
λ−

m∑
l=0

µly(t− lτ)
)
, (3.5)

with initial conditions, y(t) = ϕ(t) ≥ 0 for t ∈ [−mτ, 0) and ϕ(0) > 0, it holds that

lim inf
t→+∞

y(t) ≥ λ

µ
exp
([

λ− µM
]
mτ
)
> 0.

Using Lemmas 3.1 and 3.2, we give a proof of Theorem 2.1. First, we show that x1(t)x2(t − τ) is bounded above and
second we show that xi(t) (i = 1, . . . , n) are bounded above.
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Proof of Theorem 2.1. Every solution of system (1.1) remains positive for all t ≥ 0. We only need to prove the case
n ≥ 3 because it is similarly proved when n = 2. First, we consider the following inequality. There exists a sufficiently
large T such that

d

dt
(x1(t)x2(t− τ)) ≤ (x1(t)x2(t− τ))

[
r1(t) + r2(t− τ) + am23(t− τ)x3(t− (m+ 1)τ)

− a011(t)x1(t)−
m∑
l=1

(al11(t) + al−1
21 (t− τ))x1(t− lτ)

−
m−1∑
l=0

(al22(t− τ)− al+1
12 (t))x2(t− (l + 1)τ)− am22(t− τ)x2(t− (m+ 1)τ)

− a013(t)x3(t)−
m∑
l=1

(al13(t)− al−1
23 (t− τ))x3(t− lτ)

]

≤ (x1(t)x2(t− τ))

[
rM1 + rM2 − 2

m∑
l=0

√
b
l+L
1 blL2 x1(t− lτ)x2(t− (l + 1)τ)

]
, t > T.

Let u(t) =
√
x1(t)x2(t− τ), then we have

du(t)

dt
≤ u(t)

[
rM1 + rM2

2
−

m∑
l=0

√
b
l+L
1 blL2 u(t− lτ)

]
, t > T.

From Lemma 3.1, it follows that

lim sup
t→+∞

u(t) ≤ rM1 + rM2

2
m∑
l=0

√
b
l+L
1 blL2

exp
(
(rM1 + rM2 )mτ/2

)
< +∞,

which implies that

lim sup
t→+∞

x1(t)x2(t− τ) ≤ P =

(
rM1 + rM2

2

m∑
l=0

√
b
l+L
1 blL2

)2

exp
(
(rM1 + rM2 )mτ

)
< +∞.

Second, we prove the boundedness of x1(t). From (1.1), for any positive ϵ, there exists a sufficiently large T 1 ≥ T
such that

dx1(t)

dt
≤ x1(t)

[
rM1 −

m∑
l=0

alL11x1(t− lτ)

]
+ a1M12 (P + ϵ), t > T 1.

From Lemma 3.1 and arbitrarity of ϵ, we get

lim sup
t→+∞

x1(t) ≤ −a1M12 P

rM1
+
{a1M12 P

rM1
+
(
1/AL

1

)(
rM1 +

a1M12 P

x∗
1

)}
exp

(
rM1 mτ

)
< +∞.

Next, we show that xn(t) is also bounded above. From system (1.1), there exists a sufficiently large Tn ≥ T for any
positive ϵ1 such that

dxn(t)

dt
≤ xn(t)

[
rMn −

m∑
l=0

alLnnxn(t− lτ) +
( m∑
l=0

alMn1 (M1 + ϵ1)
)]

, t > Tn.

Since ϵ1 is arbitrary, from Lemma 2.1, we obtain

lim sup
t→+∞

xn(t) ≤
{(

rMn +
m∑
l=0

alMn1 M1

)
/AL

n

}
exp
((

rMn +
m∑
l=0

alMn1 M1

)
mτ
)
< +∞.

Similarly, for i = 2, . . . , n− 1, it holds that lim supt→+∞ xi(t) ≤ Mi < +∞.
Finally, we show that xi(t) (i = 1, . . . , n) are bounded below for sufficiently large t > 0. From (1.1), for any positive

ϵi, there exists a sufficiently large T i ≥ T i such that

dxi(t)

dt
≥ xi(t)

[(
rLi −

n∑
j=1

j ̸=i,i+1

m∑
l=0

alMij (Mj + ϵi)
)
−

m∑
l=0

alMii xi(t− lτ)

]
, t > T i,
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for i = 1, . . . , n. Since ϵi is arbitrary, from our assumption and Lemma 3.2, we get

lim inf
t→+∞

xi(t) ≥
{(

rLi −
n∑

j=1
j ̸=i,i+1

m∑
l=0

alMij Mj

)
/AM

i

}
exp
((

rLi −
n∑

j=1
j ̸=i+1

m∑
l=0

alMij Mj

)
mτ
)
,

for i = 1, . . . , n. We obtain the conclusion of Theorem 2.1. The proof is completed. □
We now consider a 3-dimensional Lotka-Volterra cooperative system such that there is no undelayed intraspecific

competition on the third equation of the following system:

dx1(t)

dt
= x1(t)[r1 − a11x1(t) + a12x2(t− τ)− a13x3(t− 2τ)],

dx2(t)

dt
= x2(t)[r2 − a21x1(t− τ)− a22x2(t) + a23x3(t− τ)],

dx3(t)

dt
= x3(t)[r3 + a31x1(t− τ)− a32x2(t− τ)− a33x3(t− 2τ)],

(3.6)

where τ ≥ 0, aij > 0 and ri > 0 (i, j = 1, 2, 3) with initial conditions xi(θ) = ϕi(θ) ≥ 0, θ ∈ [−2τ, 0), ϕi(0) > 0
(i = 1, 2, 3). Set

M̂1 = −D

r1
+
{D
r1

+
1

a11

(
r1 +

D

x̂∗
1

)}
exp (2r1τ) , M̂2 =

r2 + a23M̂3

a22
,

M̂3 =
r3 + a31M̂1

a33
exp

(
2(r3 + a31M̂1)τ

)
,

m̂1 =
r1 − a13M̂3

a11
exp

(
2{(r1 − a13M̂3)− a11M̂1}τ

)
,

m̂2 =
r2 − a21M̂1

a22
, m̂3 =

r3 − a32M̂2

a233
exp

(
2{(r3 − a32M̂2)− a33M̂3}τ

)
,

where x = x̂∗
1 is a unique positive solution of the following equation:

x(r1 − a11x) + a12P
′ = 0, P ′ =

(r1 + r2)
2

4a11(a22 − a12)
> 0.

We note that there is no undelayed intraspecific competition on the third equation of system (3.6). By Theorem 2.1, we
have the following corollary.

Corollary 3.1. System (3.6) is permanent if a13 ≥ a23, a22 > a12 and

r1 − a13M̂3 > 0, r2 − a21M̂1 > 0, r3 − a32M̂2 > 0, (3.7)

that is,

0 < m̂i ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ M̂i < +∞, i = 1, 2, 3.

As stated in Remark 1.1, we see that conditions (3.7) implies that the size of time delays restricts on lower bounds
m̂i > 0 (i = 1, 2, 3).

4 Discussion

Throughout the paper, we investigate the harmlessness of time delays for the permanence of the cooperative Lotka-
Voltera-type system. We obtain sufficient conditions which improve the result of Lu and Lu [6] for 2-dimensional
Lotka-Volterra cooperative systems without any restrictions of the size of time delays. Using Lemmas 3.1 and 3.2, we
derive the upper bound of x1(t)x2(t − τ) to prove that xi(t) (i = 1, . . . , n) are bounded in Theorem 2.1 for system
(1.1). For the system with particular discrete time delay, our condition holds even if there is no undelayed intraspecific
competition. The results of this work indicate that the restriction on the size of time delays is not required for the
case n = 2, but it is required for the case n ≥ 3 to obtain lower bounds of solutions. Since Theorem 2.1 indicates the
sufficient conditions of permanence, it is a future work to induce necessary and sufficient conditions.
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