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Abstract. We analyze stability of equilibria for a delayed SIR epidemic model, in which population growth is subject
to logistic growth in absence of disease, with a nonlinear incidence rate satisfying suitable monotonicity conditions.
The model admits a unique endemic equilibrium if and only if the basic reproduction number R0 exceeds one, while
the trivial equilibrium and the disease-free equilibrium always exist. First we show that the disease-free equilibrium
is globally asymptotically stable if and only if R0 ≤ 1. Second we show that the model is permanent if and only if
R0 > 1. Moreover, using a threshold parameter R0 characterized by the nonlinear incidence function, we establish that
the endemic equilibrium is locally asymptotically stable for 1 < R0 ≤ R0 and it loses stability as the length of the delay
increases past a critical value for 1 < R0 < R0. Our result is an extension of the stability results in [J-J. Wang, J-Z.
Zhang, Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonl. Anal. RWA. 11 (2009) 2390-2402].
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1 Introduction

From an epidemiological viewpoint, it is important to investigate global dynamics of the disease transmission. In the
literature, many authors have formulated various epidemic models, in which the stability analysis have been carried out
extensively (see [1–15] and references therein). Recently, based on an SIR (Susceptible-Infected-Recovered) epidemic
model, in order to investigate the spread of an infectious disease transmitted by a vector (e.g. mosquitoes, rats, etc.),
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Takeuchi [11] formulated a delayed SIR epidemic model with a bilinear incidence rate. The global dynamics for the
system has now been completely analyzed in McCluskey [8]. Later, Wang et al. [12] considered the asymptotic behavior
of the following delayed SIR epidemic model:

dS(t)

dt
= r

(
1− S(t)

K

)
S(t)− βS(t)I(t− τ),

dI(t)

dt
= βS(t)I(t− τ)− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered host individuals at time t, respectively.
In system (1.1), it is assumed that the population growth in susceptible host individuals is governed by the logistic growth
with a carrying capacity K > 0 as well as intrinsic birth rate constant r > 0. β > 0 is the average number of constants
per infective per unit time and τ ≥ 0 is the incubation time, µ1 > 0 and µ2 > 0 represent the death rates of infective
and recovered individuals, respectively. γ > 0 represents the recovery rate of infective individuals.

Wang et al. [12] obtained stability results of equilibria of (1.1) in terms of the basic reproduction number R0: the
disease-free equilibrium is globally asymptotically stable if R0 < 1 while a unique endemic equilibrium can be unstable
if R0 > 1. More precisely, if 1 < R0 ≤ 3, then the endemic equilibrium is asymptotically stable for any delay τ and if
R0 > 3, then there exists a critical length of delay such that the endemic equilibrium is asymptotically stable for delay
which is less than the value while it is unstable for delay which is greater than the value. It is also shown that Hopf
bifurcation at the endemic equilibrium occurs when the delay crosses a sequence of critical values.

Since nonlinearity in the incidence rates has been observed in disease transmission dynamics, it has been suggested
that the standard bilinear incidence rate shall be modified into a nonlinear incidence rate by many authors (see, e.g., [2,7]).
In this paper we replace the incidence rate in (1.1) by a nonlinear incidence rate of the form βS(t)G(I(t − τ)). We
assume that the function G is continuous on [0,+∞) and continuously differentiable on (0,+∞) satisfying the following
hypotheses.

(H1) G(I) is strictly monotone increasing on [0,+∞) with G(0) = 0,

(H2) I/G(I) is monotone increasing on (0,+∞) with limI→+0 I/G(I) = 1.

Then we obtain the following system:

dS(t)

dt
= r

(
1− S(t)

K

)
S(t)− βS(t)G(I(t− τ)),

dI(t)

dt
= βS(t)G(I(t− τ))− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.2)

The incidence function G includes some special incidence rates. For instance, if G(I) = I, then the incidence rate
with a distributed delay is used in [8,11] and if G(I) = I

1+αI , then the incidence rate, describing saturated effects of the
prevalence of infectious diseases, is used in [9, 13,15].

For simplicity, we nondimensionalize system (1.2) by defining

S̃(t̃) =
S(t)

K
, Ĩ(t̃) =

I(t)

K
, R̃(t̃) =

R(t)

K

and

t̃ = βKt, r̃ =
r

βK
, h̃ = βKh, τ̃ = βKτ, G̃(Ĩ(t̃)) =

G(I(t))

K
, µ̃1 =

µ1

βK
, µ̃2 =

µ2

βK
, γ̃ =

γ

βK
.

We note that G̃ also satisfies the hypotheses (H1) and (H2). Dropping the ”˜” for convenience of readers, system (1.2)
can be rewritten into the following form:

dS(t)

dt
= r(1− S(t))S(t)− S(t)G(I(t− τ)),

dI(t)

dt
= S(t)G(I(t− τ))− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.3)
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We hereafter restrict our attention to system (1.3). The initial conditions for system (1.3) take the following form{
S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
ϕi(θ) ≥ 0, θ ∈ [−h, 0], ϕi(0) > 0, ϕi ∈ C([−h, 0],R+0), i = 1, 2, 3,

(1.4)

where R+0 = {x ∈ R : x ≥ 0}. By the fundamental theory of functional differential equations, system (1.3) has a unique
positive solution (S(t), I(t), R(t)) satisfying the initial conditions (1.4). We define the basic reproduction number by

R0 =
1

µ1 + γ
. (1.5)

In this paper we analyze the stability of equilibria by investigating location of the roots of associated characteristic
equation and constructing a Lyapunov functional. System (1.3) always has a trivial equilibrium E0 = (0, 0, 0) and a
disease-free equilibrium E1 = (1, 0, 0). If R0 > 1, then system (1.3) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗),
S∗ > 0, I∗ > 0, R∗ > 0 (see Lemma 3.1).

The organization of this paper is as follows. In Section 2, we investigate the stability of the trivial equilibrium and
the disease-free equilibrium. In Section 3, for R0 > 1, we show the unique existence of the endemic equilibrium and
the permanence of system (1.3). Moreover, we investigate the delay effect concerning the local asymptotic stability
of endemic equilibrium. In Section 4, we introduce an example and visualize stability conditions for the disease-free
equilibrium and the endemic equilibrium in a two-parameter plane. Finally, we offer concluding remarks in Section 5.

2 Stability of the trivial equilibrium and the disease-free equilibrium

In this section, we analyze the stability of the trivial equilibrium E0. By constructing a Lyapunov functional, we further
establish the global asymptotic stability of the disease-free equilibrium E1 for R0 ≤ 1. At an arbitrary equilibrium
(Ŝ, Î, R̂) of (1.3), the characteristic equation is given by

(λ+ µ2)[{λ+G(Î)− r(1− 2Ŝ)}{λ+ µ1 + γ − ŜG′(Î)e−λτ}+ ŜG′(Î)e−λτG(Î)] = 0. (2.1)

Theorem 2.1. The trivial equilibrium E0 of system (1.3) is always unstable.

Proof. For (Ŝ, Î, R̂) = (0, 0, 0) the characteristic equation (2.1) becomes as follows.

(λ+ µ2)(λ− r)(λ+ µ1 + γ) = 0. (2.2)

Since (2.2) has a positive root λ = r, E0 is unstable. □
Constructing a Lyapunov functional, we prove that the global asymptotic stability of the disease-free equilibrium E1

is determined by the basic reproduction number R0.

Theorem 2.2. The disease-free equilibrium E1 of system (1.3) is globally asymptotically stable if and only if R0 ≤ 1
and it is unstable if and only if R0 > 1.

Proof. First we assume R0 ≤ 1. We define a Lyapunov functional by

V (t) = g(S(t)) + I(t) +

∫ t

t−τ

G(I(s))ds, (2.3)

where g(x) = x− 1− lnx ≥ g(1) = 0 for x > 0. Then the time derivative of V (t) along the solution of (1.3) becomes as
follows.

dV (t)

dt
=

(
1− 1

S(t)

)
{r(1− S(t))S(t)− S(t)G(I(t− τ))}+ S(t)G(I(t− τ))− (µ1 + γ)I(t) +G(I(t))−G(I(t− τ))

= −r(S(t)− 1)2 +G(I(t))− (µ1 + γ)I(t).

= −r(S(t)− 1)2 +

{
G(I(t))

I(t)
− (µ1 + γ)

}
I(t).

From the hypothesis (H2), noting that 0 < G(I)
I ≤ 1 for I > 0, we have

dV (t)

dt
≤ −r(S(t)− 1)2 +

(
1− 1

R0

)
I(t) ≤ 0. (2.4)
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By Lyapunov-LaSalle asymptotic stability theorem, we have that limt→+∞ S(t) = 1 if R0 ≤ 1. By the first and third
equations of (1.3), limt→+∞ S(t) = 1 implies limt→+∞ I(t) = 0 and limt→+∞ R(t) = 0. Since it follows that E1 is
uniformly stable from the relation V (t) ≥ g(S(t)) + I(t), we obtain that E1 is globally asymptotically stable.

Second we assume R0 > 1. For (Ŝ, Î, R̂) = (1, 0, 0) the characteristic equation (2.1) becomes as follows.

(λ+ µ2)(λ+ r)
(
λ+ µ1 + γ − e−λτ

)
= 0. (2.5)

One can see that λ = −r and λ = −µ2 are negative real roots of (2.5). Moreover, (2.5) has roots of

p(λ) := λ+ µ1 + γ − e−λτ = 0.

From p(0) < 0 and limλ→+∞ p(λ) = +∞, p(λ) = 0 has at least one positive root. Hence E1 is unstable. The proof is
complete. □

3 Permanence of the system and local asymptotic stability of the endemic
equilibrium for R0 > 1

In this section, for R0 > 1, we obtain the permanence of system (1.3). In addition, we establish local asymptotic stability
of the endemic equilibrium E∗ by investigating location of the roots of the characteristic equation.

3.1 Existence and uniqueness of the endemic equilibrium E∗ for R0 > 1

In this subsection, we give the result on the unique existence of the endemic equilibrium for R0 > 1.

Lemma 3.1. System (1.3) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗) if and only if R0 > 1.

Proof. We assume R0 > 1. In order to find the endemic equilibrium of system (1.3), for S > 0, I > 0 and R > 0, we
consider the following equations:  r(1− S)S − SG(I) = 0,

SG(I)− (µ1 + γ)I = 0,
γI − µ2R = 0.

(3.1)

Substituting the second equation of (3.1) into the first equation of (3.1), we have

F (I) := r

{
1− (µ1 + γ)I

G(I)

}
−G(I) = 0.

By the hypothesis (H2), we obtain

lim
I→+0

F (I) = r {1− (µ1 + γ)} = r

(
1− 1

R0

)
> 0.

Since F (I) is a strictly monotone decreasing function on (0,+∞), it sufficies to show that F (I) < 0 holds for I
sufficiently large. From (H1), G(I) is either unbounded above or bounded above on [0,+∞). First we suppose that
G(I) is unbounded above. Then there exists an I1 > 0 such that G(I1) = r, from which we have F (I) < 0 for I > I1.
Second we suppose that G(I) is bounded above. Then, from (H2), I

G(I) is unbounded above on [0,+∞), that is, there

exists an I2 > 0 such that such that I2
G(I2)

= 1
µ1+γ . This yields F (I) < 0 for I > I2. Therefore, for the both cases,

there exists a unique I∗ > 0 such that F (I∗) = 0. By the second and third equations of (3.1), there exists a unique
endemic equilibrium E∗ of system (1.3) if R0 > 1. Second we assume R0 ≤ 1. Then it is obvious that system (1.3) has
no endemic equilibria. Hence the proof is complete. □

3.2 Permanence of the system for R0 > 1

In this subsection, we obtain the permanence of the system (1.3). We introduce the following lemma without proof.

Lemma 3.2. For system (1.3) with initial conditions (1.4),

lim sup
t→+∞

(S(t) + I(t) +R(t)) ≤ 1

µ
,

where µ = min(µ1, µ2, 1).
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Similar as in the proof of Wang et al. [12, Theorem 3.2], we obtain the following theorem. We omit the proof.

Theorem 3.1. There exist positive constants vi (i = 1, 2, 3) such that for any initial conditions of system (1.3),

lim inf
t→+∞

S(t) ≥ v1, lim inf
t→+∞

I(t) ≥ v2, lim inf
t→+∞

R(t) ≥ v3,

if and only if R0 > 1.

Combining Lemma 3.2 and Theorem 3.1, we obtain the permanence of system (1.3) for R0 > 1.

3.3 Local asymptotic stability of E∗ for R0 > 1

In this subsection, we study local asymptotic stability of the endemic equilibrium E∗ = (S∗, I∗, R∗) for system (1.3).
Let us assume that R0 > 1 holds. For (Ŝ, Î, R̂) = (S∗, I∗, R∗) the characteristic roots of (2.1) are the root λ = −µ2 and
the roots of

λ2 + aλ+ b− e−λτ (cλ+ d) = 0, (3.2)

where

a = S∗
(
G(I∗)

I∗
+ r

)
, b =

r(S∗)2G(I∗)

I∗
, c = S∗G′(I∗), d = S∗G′(I∗)(rS∗ −G(I∗)).

First we analyze the characterstic equation (3.2) with τ = 0. We prove that all the roots of (3.2) have negative real
part.

Proposition 3.1. Assume R0 > 1. Then all the roots of (3.2) have negative real part for τ = 0.

Proof. When τ = 0, (3.2) yields
λ2 + (a− c)λ+ (b− d) = 0. (3.3)

Noting from the hypotheses (H1) and (H2) that G(I∗)− I∗G′(I∗) ≥ 0, we have

a− c = S∗
(
G(I∗)

I∗
−G′(I∗) + r

)
> 0

and

b− d = r(S∗)2
(
G(I∗)

I∗
−G′(I∗)

)
+ S∗G′(I∗)G(I∗) > 0,

which implies that all the roots of equation (3.3) have negative real part. The proof is complete. □

Next we analyze the characteristic equation (3.2) with τ > 0. Let us define

R0 = 2
I∗

G(I∗)
+

1

G′(I∗)
. (3.4)

Then we prove that R0 = R0 is a threshold condition which determines the existence of purely imaginary roots of (3.2).

Proposition 3.2. Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then all the roots of (3.2) have negative real part for any τ > 0.

(ii) If R0 < R0, then there exists a monotone increasing sequence {τn}∞n=0 with τ0 > 0 such that (3.2) has a pair of
imaginary roots for τ = τn (n = 0, 1, . . .).

Proof. From Proposition 3.1, all the roots of equation (3.2) have negative real part for sufficiently small τ . Suppose
that λ = iω, ω > 0 is a root of (3.2). Substituting λ = iω into the characteristic equation (3.2) yields equations, which
split into its real and imaginary parts as follows:{

−ω2 + b = d cosωτ + cω sinωτ,
aω = cω cosωτ − d sinωτ.

(3.5)

Squaring and adding both equations in (3.5), we have

ω4 + (a2 − 2b− c2)ω2 + (b+ d)(b− d) = 0. (3.6)
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By the relations r(1− S∗) = G(I∗) and

2S∗G′(I∗) +
1

R0
=

2I∗G′(I∗)

R0G(I∗)
+

1

R0
=

G′(I∗)

R0

(
2

I∗

G(I∗)
+

1

G′(I∗)

)
=

R0G
′(I∗)

R0
,

we obtain

a2 − 2b− c2 =

(
G(I∗)

I∗
+ r

)2

(S∗)2 − 2r
G(I∗)

I∗
(S∗)2 − (S∗)2G′(I∗)2 = (S∗)2

{(
G(I∗)

I∗

)2

−G′(I∗)2 + r2
}

and

b+ d = rS∗
(
2S∗G′(I∗) +

1

R0
−G′(I∗)

)
=

rS∗G′(I∗)

R0
(R0 −R0).

First we assume R0 ≤ R0. Then we have a2 − 2b− c2 > 0 and b+ d ≥ 0, that is, there is no positive real ω satisfying
(3.6). This leads to a contradiction and all the roots of (3.2) have negative real part for any τ ≥ 0. Hence we obtain
the first part of this proposition.

Second we assume R0 < R0. Then it follows from the relations a2 − 2b− c2 > 0 and b+ d < 0 that there is a unique
positive real ω0 satisfying (3.6), where

ω0 =

{
−(a2 − 2b− c2) +

√
(a2 − 2b− c2)2 − 4(b+ d)(b− d)

2

} 1
2

. (3.7)

Noting from (3.5) that λ = −iω0 is also a root of (3.2), this implies that (3.6) has a single pair of purely imaginary roots
±iω0. By the relation

(ac− d)ω2
0 + bd = (c2ω2

0 + d2) cosω0τ,

τn corresponding to ω0 can be obtained as follows:

τn =
1

ω0
arccos

(ac− d)ω2
0 + bd

c2ω2
0 + d2

+
2nπ

ω0
, n = 0, 1, 2, . . . . (3.8)

Hence we obtain the second part of this proposition. The proof is complete. □
The following proposition indicates that a conjugate pair of the characteristic roots λ = ±iω0 of (2.1) cross the

imaginary axis from the left half complex plane to the right half complex plane when τ crosses τn (n = 0, 1, . . .) if
1 < R0 < R0.

Proposition 3.3. Assume R0 > 1. If R0 < R0, then the transversality condition

dRe(λ(τ))

dτ

∣∣∣
τ=τn

> 0

holds for n = 0, 1, . . ..

Proof. Differentiating (3.2) with respect to τ , we obtain

(2λ+ a)
dλ

dτ
= {e−λτ c− τe−λτ (cλ+ d)}dλ

dτ
− λe−λτ (cλ+ d),

that is, (
dλ

dτ

)−1

=
(2λ+ a)− e−λτ c+ τe−λτ (cλ+ d)

−λe−λτ (cλ+ d)

=
2λ+ a

−λe−λτ (cλ+ d)
+

c

λ(cλ+ d)
− τ

λ

= − λ(2λ+ a)

λ2(λ2 + aλ+ b)
+

cλ

λ2(cλ+ d)
− τ

λ

= − (λ2 + aλ+ b) + λ2 − b

λ2(λ2 + aλ+ b)
+

(cλ+ d)− d

λ2(cλ+ d)
− τ

λ

= − λ2 − b

λ2(λ2 + aλ+ b)
+

−d

λ2(cλ+ d)
− τ

λ
.
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By the relation

dλ

dτ
=

dRe(λ)

dτ
+ i

dIm(λ)

dτ
=

{(
dRe(λ)

dτ

)2

+

(
dIm(λ)

dτ

)2}(
dRe(λ)

dτ
− i

dIm(λ)

dτ

)−1

,

we have
dRe(λ)

dτ
= Re

(
dλ

dτ

)−1{(
dRe(λ)

dτ

)2

+

(
dIm(λ)

dτ

)2}
and

Re

(
dλ

dτ

)−1∣∣∣
τ=τn

=
(−ω2

0 − b)(b− ω2
0)

ω2
0{(b− ω2

0)
2 + a2ω2

0}
+

d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − b2 + d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − (b− d)(b+ d)

ω2
0(c

2ω2
0 + d2)

> 0.

Hence we obtain dRe(λ)
dτ |τ=τn > 0 for n = 0, 1, . . .. The proof is complete. □

By Proposition 3.1 and the first part of Proposition 3.2, all the roots of (3.2) have negative real part for any τ ≥ 0
if 1 < R0 ≤ R0. By Proposition 3.1, the second part of Proposition 3.2 and Proposition 3.3, all the roots of (3.2) have
negative real part for 0 ≤ τ < τ0 and there exists at least 2 roots having positive real part for τ > τ0 if 1 < R0 < R0.
We then establish the stability condition for the endemic equilibrium as follows.

Theorem 3.2. Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (1.3) is locally asymptotically stable for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (1.3) is locally asymptotically stable for 0 ≤ τ < τ0 and it
is unstable for τ > τ0.

Remark 3.1. System (1.3) undergoes Hopf bifurcation at the endemic equilibrium E∗ when τ crosses τn (n = 0, 1, . . .)
for 1 < R0 < R0.

4 Example

In this section, we consider the following model as an example.

dS(t)

dt
= r(1− S(t))S(t)− S(t)

I(t− τ)

1 + αI(t− τ)
,

dI(t)

dt
= S(t)

I(t− τ)

1 + αI(t− τ)
− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t),

(4.1)

where α ≥ 0. Since G(I) = I
1+αI satisfies the hypotheses (H1) and (H2), system (4.1) always has the trivial equilibrium

E0 and the disease-free equilibrium E1. Applying Theorems 2.1 and 2.2 we obtain the following results.

Corollary 4.1. The trivial equilibrium E0 of system (4.1) is always unstable.

Corollary 4.2. The disease-free equilibrium E1 of system (4.1) is globally asymptotically stable if and only if R0 ≤ 1
and it is unstable if and only if R0 > 1.

By Lemma 3.1, system (4.1) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗) if and only if R0 > 1. Applying
Theorem 3.2, we obtain the following result.

Corollary 4.3. Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (4.1) is locally asymptotically stable for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (4.1) is locally asymptotically stable for 0 ≤ τ < τ0 and it
is unstable for τ > τ0.
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Figure 1: Delay dependent/independent stability boundary for the endemic equilibrium and the stability boundary for
the disease-free equilibrium in (α,R0) parameter plane. The dashed curve and the dotted line denotes H(α,R0) = 0
with r = 0.1 and R0 = 1, respectively. In the region (I) there exists a τ0 := τ0(α,R0) such that the endemic equilibrium
E∗ is asymptotically stable for 0 ≤ τ < τ0 and it is unstable for τ > τ0. In the region (II) the endemic equilibrium E∗
is asymptotically stable for any τ . In the region (III) the disease-free equilibrium E1 is globally asymptotically stable.

The condition R0 = 1 is a threshold condition which determines stability of the disease-free equilibrium and the
existence of the endemic equilibrium. Moreover, if R0 > 1 then the condition R0 = R0 works as a condition which
determines delay-dependent stability or delay-independent stability for the endemic equilibrium. In the following we
visualize these conditions by plotting them in a two-parameter plane. We choose α and R0 as free parameters and fix
r. Since it is straightforward to plot the condition R0 = 1 in (α,R0) parameter plane, we explain how to visualize the
condition R0 = R0 in the same parameter plane.

Let us assume that R0 > 1 holds. The component of the endemic equilibrium for I can be given as

I∗(α,R0) =
αr(R0 − 2)−R0 +

√
{αr(R0 − 2)−R0}2 + 4α2r2(R0 − 1)

2α2r
(4.2)

for α > 0 and

I∗(0, R0) = r

(
1− 1

R0

)
. (4.3)

We note that limα→+0 I
∗(α,R0) = I∗(0, R0) > 0. Then from the definition (3.4) R0 is computed as

R0(α,R0) = 2(1 + αI∗(α,R0)) + (1 + αI∗(α,R0))
2

= (1 + αI∗(α,R0))(3 + αI∗(α,R0)). (4.4)

We define the following function.

H(α,R0) := R0 −R0(α,R0). (4.5)

If there exists (α,R0) satisfying H(α,R0) = 0, then it expresses the condition R0 = R0(α,R0) in terms of two parameters
(α,R0). We note that H(0, 3) = 0 holds true. The following proposition indicates that H(α,R0) = 0 for α > 0 has
exactly one solution α for each R0 > 3.

Proposition 4.1. There exists a unique continuously differentiable function α̃ : (3,+∞) −→ (0,+∞) such that H(α̃(R0), R0) =
0. In addition, it holds that limR0→3+0 α̃(R0) = 0.
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The proof of Proposition 4.1 is given in A. In Figure 1 we plot the line R0 = 1 and the curve H(α,R0) = 0 in
(α,R0) parameter plane for a fixed r. Figure 1 suggests that the parameter α has a positive effect for the stability of
the endemic equilibrium: if α is large enough then the endemic equilibrium is stable for any delay. On the other hand,
if R0 is large enough then for small α there is a possibility that the stability of the endemic equilibrium depends on the
delay.

5 Concluding remarks

In this paper we consider SIR epidemic model in which population growth is subject to logistic growth in absence of
disease. The force of infection with a discrete delay is given by a general nonlinear incidence rate satisfying monotonicity
conditions (H1) and (H2). We analyze stability of the trivial equilibrium, the disease-free equilibrium and the endemic
equilibrium by investigating roots of the associated characteristic equations and constructing a Lyapunov functional.
We show that the global asymptotic stability of the disease-free equilibrium is determined by the basic reproduction
number as often in SIR epidemic models [4, 6–10]: the disease-free equilibrium is globally asymptotically stable if and
only if the basic reproduction number is less than or equal to one and it is unstable if and only if the basic reproduction
number exceeds one. The system admits a unique endemic equilibrium if and only if the basic reproduction number
exceeds one. In order to investigate the stability of the endemic equilibrium we define R0, which is characterized by the
nonlinear incidence. The condition R0 = R0 is a threshold condition which determines delay-independent stability or
delay-dependent stability of the endemic equilibrium: the endemic equilibrium is locally asymptotically stable for any
delay if R0 ≤ R0 and there exists a critical length of delay such that the endemic equilibrium is locally asymptotically
stable when the delay is less than the value, whereas it is unstable when the delay is greater than the value if R0 > R0.

Recently, [4, 6, 9, 10] has investigated the stability of equilibria for delayed SIR epidemic models with nonlinear
incidence rates, where population growth is governed not by the logistic function but by the linear function under
the condition that the incidence function satisfies the monotone properties in (H1) and (H2). It is proved that the
endemic equilibrium is globally asymptotically stable for any delay if the basic reproduction number exceeds one. This
implies that the logistic growth of population of susceptible individuals is responsible for the instability of the endemic
equilibrium. On the other hand, Wang et al. [12] studied the stability of equilibria for (1.3) when the incidence function
is a linear function G(I) = I and proved that R0 = 3 is the threshold condition for delay-independent stability or
delay-dependent stability of the endemic equilibrium. Since (3.4) implies that R0 is reduced to 3 when G(I) = I, our
results for the stability of endemic equilibrium extends the results in [12, Theorems 3.1 and 4.1].

In Section 4 we consider a special case that the incidence rate has saturation effect to visualize the threshold condition
R0 = R0 in a two-parameter plane. We choose α and R0 as free parameters and fix other parameter. Since the threshold
value R0 is given by an expression with variables α and R0 in (4.4), the condition is expressed as H(α,R0) = 0. We
further obtain the analytical result of the unique existence of α > 0 satisfying H(α,R0) = 0 for any fixed R0 > 3 (see
Proposition 4.1). In Figure 1, the two conditions R0 = 1 and H(α,R0) = 0 are depicted. Figure 1 suggests that the
function α̃ is a monotone increasing function on (3,+∞). This implies that the endemic equilibrium is locally stable for
any delay if 1 < R0 ≤ 3.

For R0 > 3, the parameter α which measures crowding effect of infective individuals, seems to have a positive effect
for the stability of the endemic equilibrium. The endemic equilibrium is locally asymptotically stable for any delay if
the crowding effect is large enough. On the other hand the stability of the endemic equilibrium depends on the delay if
the crowding effect is small.
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A Proof of Proposition 4.1

In order to prove Proposition 4.1 by means of the implicit function theorem, we introduce the following lemma concerning
the continuous differentiability of H.

Lemma A.1. ∂H(α,R0)
∂α < 0 holds for all α > 0 and R0 > 1. Moreover, H is continuously differentiable on (0,+∞) ×

(1,+∞).

Proof. We now show that ∂R0(α,R0)
∂α > 0 holds for all α > 0. From (4.2) and the relation −1 < x√

x2+k
< 1 (x ∈ R, k > 0)

we have

∂αI∗(α,R0)

∂α
=

R0

2α2r

1 +
R0 − 2− R0

rα√(
R0 − 2− R0

rα

)2
+ 4(R0 − 1)

 > 0.

Hence it follows from (4.4) that

∂R0(α,R0)

∂α
=

∂

∂α
(1 + αI∗(α,R0))(3 + αI∗(α,R0)) > 0

for all α > 0. This implies that ∂H(α,R0)
∂α = −∂R0(α,R0)

∂α < 0 holds for all α > 0. We note that ∂H(α,R0)
∂α is continuous on

(0,+∞)×(1,+∞). In addition, since ∂H(α,R0)
∂R0

exists for all α > 0 and R0 > 1 and it is continuous on (0,+∞)×(1,+∞),
H is continuously differentiable on (0,+∞)× (1,+∞). The proof is complete. □

Proof of Proposition 4.1. From (4.4) we obtain

H(0, R0) = R0 −R0(0, R0) = R0 − 3 > 0.

for any R0 > 3. Moreover from (4.2) we have

lim
α→+∞

αI∗(α,R0) = lim
α→+∞

R0 − 2 +

√
(R0 − 2)

2
+ 4(R0 − 1)

2
= R0 − 1,
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which yields

lim
α→+∞

H(α,R0) = R0 − lim
α→+∞

R0(α,R0) = R0 − lim
α→+∞

(1 + αI∗(α,R0))(3 + αI∗(α,R0))

= R0 −R0(R0 + 2)

= −R0(R0 + 1) < 0

for a fixed R0 > 3. Therefore, by Lemma A.1 and the implicit function theorem, for any R0 > 3 there exists a unique
α > 0 such that the following statement holds true.

(i) H(α,R0) = 0.

(ii) There exist neighborhood Ω ⊆ (3,+∞) of R0 and a unique C1-function α̃ : Ω −→ (0,+∞) such that α = α̃(R0)
and H(α̃(R0), R0) = 0.

Since the parameter R0 > 3 can be arbitrarily chosen, the function α̃ is continuously differentiable on (3,+∞). Hence
we obtain the conclusion of the first part of this proposition.

Finally we prove limR0→3+0 α̃(R0) = 0. From (4.4) and (4.5) the following equation holds for R0 > 3.

R0 − (1 + α̃(R0)I
∗(α̃(R0), R0))(3 + α̃(R0)I

∗(α̃(R0), R0)) = 0.

Since it follows from (4.2) and (4.3) that

(1 + α̃(R0)I
∗(α̃(R0), R0))(3 + α̃(R0)I

∗(α̃(R0), R0)) ≥ 3

holds with equality if and only if α̃(R0) = 0, α̃ has a right-hand limit 0 as R0 approaches 3. Hence we obtain the
conclusion of the second part of this proposition. The proof is complete. □
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