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1 Introduction

Recently, how to clarify transportation effects on the spreading pattern of global pandemic of diseases such as influenza,
is one of the important problems on the multi-group epidemic models. In particular, for the geographical spread of
mild infectious disease, individuals do not have so severe symptoms that they retain from traveling abroad during their
infectious period.

In 1956, Bartlett [1] firstly used a patch approach to the following model (see Arino [2]):
S′
1 = −(β1I1 + β2I2)S1 + b+mS(S2 − S1),

I ′1 = (β1I1 + β2I2)S1 − (d+ ρ)µI1 +mI(I2 − I1),
S′
2 = −(β1I1 + β2I2)S2 + b+mS(S1 − S2),

I ′2 = (β1I1 + β2I2)S2 − (d+ ρ)I2 +mI(I1 − I2).

(1.1)

Note that in this group model, there is an exchange of individuals between two patches through migration but there is
also cross patch infection. For patch models, there are several works (see for example, Arino [2], Wang and Zhao [3] and
the references therein).

By making use of the theory of non-negative matrices, Lyapunov functions and a subtle grouping technique in
estimating the derivatives of Lyapunov functions guided by graph theory, Guo et al. [4] have firstly succeeded in the
proof, and after this paper published, almost all researchers commonly used this research approach by citing the result
of estimation by graph theory in [4] to analyze the global stability of various multi-group epidemic models, (see for
example, [5-12]). However, all of such multi-group models cited above, did not take into account the phenomenon of
population movement between different groups.

On the other hand, for the case of two patches, Liu and Takeuchi [13] and Nakata [14] studied the effect of transport-
related infection and entry screening, and Liu and Zhou [15] proposed an SIRS epidemic model and investigated the
global dynamics of an SIRS epidemic model with transport-related infection, and for the endemic equilibrium, they
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established a sufficient condition for the global asymptotic stability which implies that the effect of exchange-related
infection makes the disease endemic even if both the isolated regions are disease-free, but their sufficient conditions are
applicable too restrictive cases.

Recently, there are some interesting papers on construction of Lyapunov functions to prove the global stability of
models, for example, Li et al. [16], Kajiwara et al. [17] and Vargas-De-León [18] (see also Muroya et al. [19]). Moreover,
Guo et al. [20, 21] consider the stage-progression models for HIV/AIDS with amelioration, and Li et al. [16] proposed
very interesting approach on the proof techniques for the global stability of a class of epidemic models.

Motivated by the above results, in this paper, we consider the global stability of the following group model which has
not only an exchange of individuals between patches through migration but also cross patch infection between different
groups: 

dSk

dt
= bk −

(
µk1 +

n∑
j=1

(1− δjk)ljk

)
Sk − Sk

( n∑
j=1

βkjIj

)
+

n∑
j=1

(1− δkj)lkjSj ,

dIk
dt

= Sk

( n∑
j=1

βkjIj

)
−
(
µk2 + γk +

n∑
j=1

(1− δjk)mjk

)
Ik +

n∑
j=1

(1− δkj)mkjIj ,

k = 1, 2, · · · , n,

(1.2)

and
dRk

dt
= γkIk −

(
µk3 +

n∑
j=1

(1− δjk)njk

)
Rk +

n∑
j=1

(1− δkj)nkjRj , k = 1, 2, · · · , n, (1.3)

where

δkj =

{
1, if k = j,
0, if k ̸= j,

(1.4)

and in each city k, we refer three groups Sk(t), Ik(t) and Rk(t), (k = 1, 2, . . . , n) denoting the numbers of susceptible,
infected and recovered individuals in city k at time t, respectively. bk (k = 1, 2, . . . , n) is the recruitment rate of the
population, µkj (k = 1, 2, . . . , n, j = 1, 2, 3) is the natural death rates of each population of susceptible, infected and
recovered individuals in city k, and γk (k = 1, 2, . . . , n) denotes the natural recovery rate of the infected individuals in
city k. Functions describing the dynamics within city k of each population of individuals, might involve all populations
of individuals that are present in the city, and we suppose that there are no between-city interactions, though. We
assume that two cities are connected by the direct transport such as airplanes or trains, etc.. Furthermore, we assume
that susceptible, infected and recovered individuals in every city k leave toward other city j ̸= k at a per capita rate ljk,
mjk and njk (j ̸= k), respectively. Once an individual from patch j arrives patch k, then the individual homogeneously
mixes with individuals in patch k and is counted as an individual in patch k as there is no track for each individual.

Then, the term
∑n

j=1(1− δkj)lkjSj describes the inflow of individuals of susceptible from all other cities j ̸= k into

city k. The term
∑n

j=1(1 − δjk)ljkSk is the outflow of individuals of susceptible from city k towards all other cities
j ̸= k, and it is the same for infected individuals.

Therefore, for the model (1.2), the total outflow population
∑n

k=1

∑n
j=1(1 − δjk)ljkSk is in balance with the total

inflow population
∑n

k=1

∑n
j=1(1 − δkj)lkjSj , since the only input is the recruitment and

∑n
k=1

∑n
j=1(1 − δjk)ljkSk =∑n

k=1

∑n
j=1(1 − δkj)lkjSj holds true. Moreover, we assume that there are many communications by travel during

groups in different patches each other, and hence we consider not only for infective individuals Ik in city k, disease is
transmitted to the susceptible individuals Sk by the incidence rate βkkSkIk with a transmission rate βkk, but also cross
patch infection between groups of different patches such that for each Ij , j ̸= k who travel shortly from other city j into
city k, disease is transmitted by the incidence rate βkjSkIj with a transmission rate βkj and return to the original city
j.

Observe that the variable Rk, k = 1, 2, . . . , n does not appear in (1.2). This allows us hereafter to consider the
reduced system (1.2) for Sk and Ik, k = 1, 2, . . . , n.

The initial conditions of system (1.2) take the form{
Sk(0) = ϕk

1 , Ik(0) = ϕk
2 , k = 1, 2, . . . , n,

(ϕ1
1, ϕ

1
2, ϕ

2
1, ϕ

2
2, . . . , ϕ

n
1 , ϕ

n
2 ) ∈ R2n

+0,
(1.5)

where R2n
+0 = {(x1, y1, x2, y2, . . . , xn, yn) ∈ R2n : xk, yk ≥ 0, k = 1, 2, . . . , n}.

Put
B = (βkj)n×n. (1.6)

Hereafter, for the reader’s convenience, we put

lkk =
n∑

j=1

(1− δjk)ljk, mkk =
n∑

j=1

(1− δjk)mjk, nkk =
n∑

j=1

(1− δjk)njk, (1.7)
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and for an n× n matrix H and a positive n column vector b defined by

H =


µ11 + l11 −l12 · · · −l1n
−l21 µ21 + l22 · · · −l2n
...

...
. . .

...
−ln1 −ln2 · · · µn1 + lnn

 , b =


b1
b2
...
bn

 , (1.8)

we consider the positive n column vector S0 = (S0
1 , S

0
2 , . . . , S

0
n)

T such that

S0 = H−1b. (1.9)

We here note that H is an M -matrix by (1.7) (see for example, Berman and Plemmons [22] or Varga [23]), and S0

depends on lkj , k, j = 1, 2, . . . , n.
Let S = (S1, S2, · · · , Sn)

T , and S0 = (S0
1 , S

0
2 , · · · , S0

n)
T be defined by (1.9), and

Ṽ =


µ12 + γ1 +m11 0 · · · 0

0 µ22 + γ2 +m22 · · · 0
...

...
. . .

...
0 0 · · · µn2 + γn +mnn

 = diag(Ṽ1, Ṽ2, . . . , Ṽn), (1.10)

and F̃(S) be an n× n matrix such that

F̃(S) =


S1β11 S1β12 +m12 · · · S1β1n +m1n

S2β21 +m21 S2β22 · · · S2β2n +m2n

...
...

. . .
...

Snβn1 +mn1 Snβn2 +mn2 · · · Snβnn

 =


F̃11(S1) F̃12(S1) · · · F̃1n(S1)

F̃21(S2) F̃22(S2) · · · F̃2n(S2)
...

...
. . .

...

F̃n1(Sn) F̃n2(Sn) · · · F̃nn(Sn)

 . (1.11)

We define

M̃(S) = Ṽ−1F̃(S) = (M̃kj)n×n, M̃kj =
Skβkj + (1− δkj)mkj

µk2 + γk +mkk
, k, j = 1, 2, . . . , n. (1.12)

Consider the following threshold parameter
R̃0 = ρ(M̃(S0)). (1.13)

In this paper, under the condition that
B is irreducible, (1.14)

we establish the global stability for n ≥ 2 and not only for the special case lkj = mkj = 0, k, j = 1, 2, · · · , n of (1.2) but
also for a class of more complicated multi-group epidemic model (1.2), applying extended Lyapunov function techniques
than those in Guo et al. [4] and McCluskey [24], and no longer need such a grouping technique by graph theory in Guo
et al. [4] and also Li et al. [16].

To extend our techniques to a class of the case lkj ≥ 0, k, j = 1, 2, · · · , n compared to Guo et al. [4] and Li et al. [8],
we need some special techniques (see Lemma 4.1 and its proof before this lemma), and obtain sufficient conditions (see
(1.17)). In particular, for a special case lkj = 0, k ̸= j, we establish the complete global stability for (1.2).

The main theorem in this paper is as follows.

Theorem 1.1. For R̃0 ≤ 1, the disease-free equilibrium E0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0) of (1.2) is globally asymptotically

stable in Γ, where

Γ =

{
(S1, I1, S2, I2, . . . , Sn, In) ∈ R2n

+ | Sk ≤ S0
k,

n∑
k=1

(Sk + Ik) ≤
b̄

µ
, k = 1, 2, . . . , n

}
, (1.15)

and

b̄ =
n∑

k=1

bk, µ = min
1≤k≤n

(µk1, µk2 + γk). (1.16)

For R̃0 > 1, system (1.2) is uniformly persistent in Γ0 and there exists at least one endemic equilibrium E∗ =
(S∗

1 , I
∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n) in Γ0 (see Diekmann and Heesterbeek [25]), where Γ0 is the interior of the feasible region

Γ. Moreover, if there exists a positive n column vectors v = (v1, v2, . . . , vn)
T such that

vk(βkkI
∗
k + (µk1 + lkk))−

n∑
j=1

vj(1− δjk)ljk ≥ 0,

n∑
j=1

vj{βjkS
∗
j + (1− δjk)mjk} ≤ vk(µk2 + γk +mkk), for any k = 1, 2, . . . , n,

(1.17)
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then E∗ is globally asymptotically stable in Γ0.

Corollary 1.1. Assume (1.14). Then, for R̃0 > 1, there exists a positive n column vector v = (v1, v2, . . . , vn)
T such

that
n∑

j=1

vj{βjkS
∗
j + (1− δjk)mjk} = vk(µk2 + γk +mkk), k = 1, 2, . . . , n. (1.18)

Moreover, for this v = (v1, v2, . . . , vn)
T , if

vk(βkkI
∗
k + (µk1 + lkk))−

n∑
j=1

vj(1− δjk)ljk ≥ 0, for any k = 1, 2, . . . , n, (1.19)

then E∗ of (1.2) is globally asymptotically stable in Γ0. In particular, if

ljk = 0, for any j, k = 1, 2, . . . , n and j ̸= k, (1.20)

then (1.19) holds.

The organization of this paper is as follows. To prove Theorem 1.1, we only consider the reduced system (1.2). In
Section 2, we offer the positiveness and eventual boundedness of solutions for system (1.2). In Section 3, following the
proof techniques in Guo et al. [4], we similarly prove the global asymptotic stability of the disease-free equilibrium for
R̃0 ≤ 1 and the uniform persistence of system (1.2) and the existence of the endemic equilibrium E∗ of system (1.2)
for R̃0 > 1 (see Proposition 3.1 and Corollary 3.1). In Section 4, for R̃0 > 1, using Lyapunov function techniques
to the system (1.2), under the condition (1.17), we derive an important lemma (see Lemma 4.1) and prove the global
asymptotic stability for the endemic equilibrium of (1.2). Moreover, in Section 5, we investigate more wider conditions
for n = 2 and give Theorem 5.1. Finally, in Section 6, we provide three examples of (1.2) for applications.

2 Positiveness and eventual boundedness of solutions of (1.2)

We have the following lemma on the positiveness and eventual boundedness of Sk, Ik, k = 1, 2, . . . , n of (1.2).

Lemma 2.1. For system (1.2), it holds that

Sk(t) > 0, Ik(t) > 0, for any k = 1, 2, . . . , n and t > 0, (2.1)

and 
lim sup
t→+∞

n∑
k=1

{Sk(t) + Ik(t)} ≤ b̄

µ
,

lim sup
t→+∞

Sk(t) ≤ S0
k, k = 1, 2, . . . , n.

(2.2)

Proof. By (1.2), we have that d
dtSk(+0) ≥ bk > 0 and Sk(0) ≥ 0 for any k = 1, 2, . . . , n, which implies that there

exist positive constants tk0, k = 1, 2, . . . , n such that Sk(t) > 0 for any 0 < t < tk0, k = 1, 2, . . . , n. First, we prove
that Sk(t) > 0 for any 0 < t < +∞ and k = 1, 2, . . . , n. On the contrary, suppose that there exist a positive t1 and a
positive integer k1 ∈ {1, 2, . . . , n} such that Sk1(t1) = 0 and Sk1(t) > 0 for any 0 < t < t1. But by (1.2), we have that
d
dtSk1(t1) ≥ bk1 > 0 which is a contradiction to the fact that Sk1(t) > 0 = Sk1(t1) for any 0 < t < t1. Hence, we obtain
that Sk(t) > 0 for any 0 < t < +∞ and k = 1, 2, . . . , n.

Moreover, by (1.2) and (1.7), we have that

Ik(t) = e−(µk2+γk+mkk)t

[
Ik(0) +

∫ t

0

e(µk2+γk+mkk)u

{
Sk(u)

( n∑
j=1

βkjIj(u)

)
+

n∑
j=1

(1− δkj)mkjIj(u)

}
du

]
for k = 1, 2, . . . , n and t > 0, from which we obtain that Ik(t) > 0 for any k = 1, 2, . . . , n and t > 0. Thus, we obtain
(2.1).

Next, we prove that Ik(t) ≥ 0 for any 0 < t < +∞ and k = 1, 2, . . . , n. On the contrary, suppose that there exist a
positive t2 and a positive integer k2 ∈ {1, 2, . . . , n} such that Ik2(t2) < 0. Set tk2 = inf{0 < t < t2 : Ik2(t) < 0}. Then,
0 ≤ tk2 < t2 and Ik2(tk2) = 0. But by (1.2), we have that d

dtIk2(+tk2) ≥ 0 which is a contradiction to the fact that
Ik2(t) < 0 = Ik2(tk2) for any tk2 < t < t2. Thus, we obtain (2.1).

Since by (1.7), we have

n∑
k=1

n∑
j=1

(1− δkj)lkjSj(t)−
n∑

k=1

lkkSk(t) =
n∑

j=1

( n∑
k=1

(1− δkj)lkj − ljj

)
Sj(t) = 0,
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and similarly,
n∑

k=1

n∑
j=1

(1− δkj)mkjIj(t)−
n∑

k=1

mkkIk(t) = 0,

therefore, by (1.2), we have that

d

dt

[ n∑
k=1

{Sk(t) + Ik(t)}
]
=

n∑
k=1

[
bk − (µk1 + lkk)Sk(t)− (µk2 + γk +mkk)Ik(t) +

n∑
j=1

(1− δkj){lkjSj(t) +mkjIj(t)}
]

=
n∑

k=1

{bk − µk1Sk(t)− (µk2 + γk)Ik(t)}

≤
n∑

k=1

bk − min
1≤k≤n

(µk1, µk2 + γk)
n∑

k=1

{Sk(t) + Ik(t)},

from which we obtain the first equation of (2.2). On the other hand, we have

dSk

dt
≤ bk − (µk1 + lkk)Sk +

n∑
j=1

(1− δkj)lkjSj , k = 1, 2, . . . , n.

Then, by (1.9) and theory of linear differential equations and the comparison theorem, we have that for S = (S1, S2, . . . , n)
T ,

dS

dt
≤ (S(0)− S0) exp(−Ht) + S0.

By the fact that H defined by (1.8) is an M -matrix, all the eigenvalue of H have negative real part. Hence, we have
lim supt→+∞ exp(−Ht) = Ø. Thus, we obtain

lim sup
t→+∞

Sk(t) ≤ S0
k, k = 1, 2, . . . , n,

from which we obtain the remaining equations of (2.2). □

3 Global stability of the disease-free equilibrium E0 for R̃0 ≤ 1

Since we assume (1.14) and H and V defined by (1.8) and (1.10), respectively, are M -matrices (see for example, [22]
or [23]), we can obtain the following Proposition, whose proof is similar to that of Guo et al. [4, Proposition 3.1] but for
the reader’s convenience, we give a proof of the following proposition:

Proposition 3.1. (1) If R̃0 ≤ 1, then the disease-free equilibrium E0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0) is the unique equilibrium

of (1.2) and it is globally asymptotically stable in Γ.
(2) If R̃0 > 1, then E0 is unstable and system (1.2) is uniformly persistent in Γ0.

Proof. Let S = (S1, S2, · · · , Sn)
T and S0 = (S0

1 , S
0
2 , · · · , S0

n)
T . Since in Γ, it holds that 0 ≤ Sk ≤ S0

k for 1 ≤ k ≤ n

and Ø ≤ M̃(S) ≤ M̃(S0). Since M is irreducible, we know M̃(S) and M̃(S0) are irreducible. Therefore, ρ(M̃(S)) <
ρ(M̃(S0)), provided S ̸= S0 (see, for example, [23, Lemma 2.3]).

If R̃0 = ρ(M̃(S0)) ≤ 1, then for S ̸= S0, by the above, ρ(M̃(S)) < 1, and

M̃(S)I = I

has only the trivial solution I = 0. Thus, E0 is the only equilibrium of system (1.2) in Γ.
Let (ω1, ω2, . . . , ωn) be a left eigenvector of M̃(S0) corresponding to ρ(M̃(S0)), i.e.,

(ω1, ω2, . . . , ωn)ρ(M̃(S0)) = (ω1, ω2, . . . , ωn)M̃(S0).

Since M̃(S0) is irreducible, we know ωk > 0 for k = 1, 2, . . . , n. Set

L = (ω1, ω2, . . . , ωn)


µ12 + γ +m11 0 · · · 0

0 µ22 + γ2 +m22 · · · 0
...

...
. . .

...
0 0 · · · µn2 + γn +mnn


−1 

I1
I2
...
In

 .
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Differentiations gives
L′ = (ω1, ω2, . . . , ωn)[M̃(S)I− I] ≤ (ω1, ω2, . . . , ωn)[M̃(S0)I− I]

= {ρ(M̃(S0))− 1}(ω1, ω2, . . . , ωn)I ≤ 0, if R̃0 ≤ 1.

If R̃0 = ρ(M̃(S0)) < 1, then L′ = 0 ⇐⇒ I = 0. If R̃0 = 1, then L′ = 0 implies

(ω1, ω2, . . . , ωn)M̃(S)I = (ω1, ω2, . . . , ωn)I. (3.1)

If S ̸= S0, then
(ω1, ω2, . . . , ωn)M̃(S) < (ω1, ω2, . . . , ωn)M̃(S0) = (ω1, ω2, . . . , ωn).

Thus, (3.1) has only the trivial solution I = 0. Therefore, L′ = 0 ⇐⇒ I = 0 or S = S0 provided R̃0 ≤ 1. It can be
verified that the only compact invariant subset of the set, where L′ = 0 is the singleton {E0}. By LaSalle’s Invariance
Principle (see [26]), E0 is globally asymptotically stable in Γ if R̃0 ≤ 1.

If R̃0 = ρ(M̃(S0)) > 1 and I ̸= 0, we know that

(ω1, ω2, . . . , ωn)M̃(S0)− (ω1, ω2, . . . , ωn) = {ρ(M̃(S0))− 1}(ω1, ω2, . . . , ωn) > 0.

and thus L′ = (ω1, ω2, . . . , ωn)[M̃(S)I−I] > 0 in a neighborhood of E0 in Γ0, by continuity. This implies E0 is unstable.
Using a uniform persistence result from Freedman et al. [27] and a similar argument as in the proof of Li et al. [28,

Proposition 3.3], we can show that, when R̃0 > 1, the instability of E0 implies the uniform persistence of (1.2). This
completes the proof of Proposition 3.1. □

Uniform persistence of system (1.2), together with uniform boundedness of solutions in Γ0 (follows from the positive
invariance of the bounded region Γ), implies the existence of an equilibrium of (1.2) in Γ0 (see Smith and Waltman [29,
Theorem D.3] or Bhatia et al. [30, Theorem 2.8.6]).

Corollary 3.1. Assume (1.14). If R̃0 > 1, then (1.2) has at least one endemic equilibrium E∗ = (S∗
1 , I

∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n)

such that
F̃(S∗)− Ṽ = 0, S∗ = (S∗

1 , S
∗
2 , . . . , S

∗
n)

T . (3.2)

Now, we investigate the relation between the reproduction number R0 and R̃0 in (1.13).
Let

V =


µ12 + γ1 +m11 −m12 · · · −m1n

−m21 µ22 + γ2 +m22 · · · −m2n

...
...

. . .
...

−mn1 −mn2 · · · µn2 + γn +mnn

 . (3.3)

Then, V is an M -matrix. For S = (S1, S2, . . . , Sn)
T , we put

F(S) =


S1β11 S1β12 · · · S1β1n

S2β21 S2β22 · · · S2β2n

...
...

. . .
...

Snβn1 Snβn2 · · · Snβnn

 , (3.4)

and M(S) = F(S)V−1. Then the basic reproduction number R0 of system (1.2) is defined (see, for example, van den
Driessche and Watmough [?]) as follows.

R0 = ρ(M(S0)), S0 = (S0
1 , S

0
2 , . . . , S

0
n)

T . (3.5)

Then, by
F(S∗)−V = F̃(S∗)− Ṽ = 0, (3.6)

we have that for the n× n unit matrix E,

F(S∗)V−1 = Ṽ−1F̃(S∗) = E = diag(1, 1, . . . , 1), ρ(F(S∗)V−1) = ρ(Ṽ−1F̃(S∗)) = 1.

Then,
ρ(M(S∗)) = ρ(M̃(S∗)) = 1, (3.7)

and by (1.13), (3.5), Lemma 2.1 and the above discussions on irreducible non-negative matrices theory (see for example,
Varga [23, Chapter 2]), we can easily obtain that

R0 < 1, if and only if, R̃0 < 1,

R0 = 1, if and only if, R̃0 = 1,

R0 > 1, if and only if, R̃0 > 1.

(3.8)

Therefore, for convenience, we may use R̃0 defined by (1.13) as a threshold parameter (see Guo et al. [4]) in place of the
reproduction number R0 defined by (3.5).
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4 Global stability of the endemic equilibrium E∗ for R̃0 > 1

In this section, we restrict our attention to the special case that B defined in (1.6) is irreducible and R̃0 > 1. Then,
M̃(S) in (1.12) is irreducible and by Corrollary 3.1, there exists an endemic equilibrium E∗ = (S∗

1 , I
∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n)

of (1.2) in Γ0 such that
bk = (µk1 + lkk)S

∗
k +

n∑
j=1

{βkjS
∗
kI

∗
j − (1− δkj)lkjS

∗
j },

(µk2 + γk +mkk)I
∗
k =

n∑
j=1

{βkjS
∗
kI

∗
j + (1− δkj)mkjI

∗
j }, k = 1, 2, . . . , n.

(4.1)

We rewrite (1.2) as
dSk

dt
= bk − (µk1 + lkk)Sk −

n∑
j=1

{βkjSkIj − (1− δkj)lkjSj},

dIk
dt

=

n∑
j=1

{βkjSkIj + (1− δkj)mkjIj} − (µk2 + γk +mkk)Ik, k = 1, 2 . . . , n.

(4.2)

Set

U =
n∑

k=1

vk

{
S∗
kg

(
Sk

S∗
k

)
+ I∗kg

(
Ik
I∗k

)}
, (4.3)

where v1, v2, · · · , vn will be appropriately chosen later (see (1.17)) and

g(x) = x− 1− lnx ≥ g(1) = 0, for any x > 0. (4.4)

Differentiating U , we have

dU

dt
=

n∑
k=1

vk

{(
1− S∗

k

Sk

)
dSk

dt
+

(
1− I∗k

Ik

)
dIk
dt

}
.

Put

xk =
Sk

S∗
k

, yk =
Ik
I∗k

, k = 1, 2, . . . , n. (4.5)

By (4.1) and (4.2), we have that

dSk

dt
= bk − (µk1 + lkk)Sk −

n∑
j=1

{βkjSkIj − (1− δkj)lkjSj}

= −(µk1 + lkk)(Sk − S∗
k)−

n∑
j=1

{βkj(SkIj − S∗
kI

∗
j )− (1− δkj)lkj(Sj − S∗

j )}

= −(µk1 + lkk)S
∗
k(xk − 1)−

n∑
j=1

{βkjS
∗
kI

∗
j (xkyj − 1)− (1− δkj)lkjS

∗
j (xj − 1)},

and

dIk
dt

=
n∑

j=1

{βkjSkIj + (1− δkj)mkjIj} − (µk2 + γk +mkk)Ik

=
n∑

j=1

{βkjS
∗
kI

∗
j xkyj + (1− δkj)mkjI

∗
j yj} − (µk2 + γk +mkk)I

∗
kyk

=
n∑

j=1

{βkjS
∗
kI

∗
j (xkyj − yk) + (1− δkj)mkjI

∗
j (yj − yk)}.
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Then,

dU

dt
=

n∑
k=1

vk

[(
1− 1

xk

){
−(µk1 + lkk)S

∗
k(xk − 1)−

n∑
j=1

{βkjS
∗
kI

∗
j (xkyj − 1)− (1− δkj)lkjS

∗
j (xj − 1)}

}

+

(
1− 1

yk

){ n∑
j=1

{βkjS
∗
kI

∗
j (xkyj − yk) + (1− δkj)mkjI

∗
j (yj − yk)}

}]

=
n∑

k=1

vk

[
−(µk1 + lkk)S

∗
k

(
1− 1

xk

)
(xk − 1)

n∑
j=1

(1− δkj)lkjS
∗
j

(
1− 1

xk

)
(xj − 1)

+
n∑

j=1

βkjS
∗
kI

∗
j

{(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

}
+

n∑
j=1

(1− δkj)mkjI
∗
j

(
1− 1

yk

)
(yj − yk)

]
. (4.6)

Now, consider the first part of the last equation in (4.6). Since(
1− 1

xk

)
(xk − 1) = xk +

1

xk
− 2 = g(xk) + g

(
1

xk

)
,(

1− 1

xk

)
(xj − 1) = xj −

xj

xk
+

1

xj
− 1 = g(xj)− g

(
xj

xk

)
+ g

(
1

xk

)
,

it follows from the definition of lkk (k = 1, 2, . . . , n) in (1.7) that

(µk1 + lkk)S
∗
k

(
1− 1

xk

)
(xk − 1) =

(
µk1 +

n∑
j=1

(1− δjk)ljk

)
S∗
k

{
g(xk) + g

(
1

xk

)}
(4.7)

and

n∑
j=1

(1− δkj)lkjS
∗
j

(
1− 1

xk

)
(xj − 1) =

n∑
j=1

(1− δkj)lkjS
∗
j

{
g(xj)− g

(
xj

xk

)
+ g

(
1

xk

)}
(4.8)

hold for k = 1, 2, . . . , n. Next, we consider the remaining parts of the last equation in (4.6):(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk) =

(
1− 1

xk
− xkyj + yj

)
+

(
xkyj −

xkyj
yk

− yk + 1

)
=2− 1

xk
+ yj −

xkyj
yk

− yk

=− g

(
1

xk

)
− g

(
xkyj
yk

)
+ {g(yj)− g(yk)},

and (
1− 1

yk

)
(yj − yk) = yj −

yj
yk

− yk + 1 = −g

(
yj
yk

)
+ {g(yj)− g(yk)}.

Thus,

n∑
k=1

vk

[ n∑
j=1

βkjS
∗
kI

∗
j

{(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

}
+

(
1− 1

yk

) n∑
j=1

(1− δkj)mkjI
∗
j (yj − yk)

]

= −
n∑

k=1

vk

n∑
j=1

[
βkjS

∗
kI

∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}
+ (1− δkj)mkjI

∗
j g

(
yj
yk

)]

+

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)mkj)I

∗
j {g(yj)− g(yk)}, (4.9)
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and by (4.1), we have that

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)mkj)I

∗
j {g(yj)− g(yk)}

=
n∑

k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)mkj)I

∗
j g(yj)−

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)mkj)I

∗
j g(yk)

=

n∑
j=1

vj

n∑
k=1

(βjkS
∗
j + (1− δjk)mjk)I

∗
kg(yk)−

n∑
k=1

vk(µk2 + γk +mkk)I
∗
kg(yk)

=
n∑

k=1

{ n∑
j=1

vj(βjkS
∗
j + (1− δjk)mjk)− vk(µk2 + γk +mkk)

}
I∗kg(yk). (4.10)

Therefore, from (4.3)-(4.10), we have that

dU

dt
=−

n∑
k=1

vk(µk1 + lkk)S
∗
k

{
g(xk) + g

(
1

xk

)}
+

n∑
k=1

vk

n∑
j=1

(1− δkj)lkjS
∗
j

{
g(xj)− g

(
xj

xk

)
+ g

(
1

xk

)}

−
n∑

k=1

vk

n∑
j=1

[
βkjS

∗
kI

∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}
+ (1− δkj)mkjI

∗
j g

(
yj
yk

)]

+
n∑

k=1

{ n∑
j=1

vj(βjkS
∗
j + (1− δjk)mjk)− vk(µk2 + γk +mkk)

}
I∗kg(yk)

=−
n∑

k=1

{
vk(βkkI

∗
k + (µk1 + lkk))−

n∑
j=1

vj(1− δjk)ljk

}
S∗
kg(xk)

−
n∑

k=1

vk

{( n∑
j=1

βkjI
∗
j + (µk1 + lkk)

)
S∗
k −

n∑
j=1

(1− δkj)lkjS
∗
j

}
g

(
1

xk

)
−

n∑
k=1

vk

n∑
j=1

(1− δkj)lkjS
∗
j g

(
xj

xk

)

−
n∑

k=1

vk

n∑
j=1

{
(1− δkj)βkjS

∗
kI

∗
j g

(
xkyj
yk

)
+ (1− δkj)mkjI

∗
j g

(
yj
yk

)}

+

n∑
k=1

{ n∑
j=1

vj(βjkS
∗
j + (1− δjk)mjk)− vk(µk2 + γk +mkk)

}
I∗kg(yk), (4.11)

where we used the following relations:

n∑
k=1

vk

n∑
j=1

(1− δkj)lkjS
∗
j g(xj) =

n∑
j=1

vj

n∑
k=1

(1− δjk)ljkS
∗
kg(xk) =

n∑
k=1

n∑
j=1

vj(1− δjk)ljkS
∗
kg(xk),

n∑
j=1

βkjS
∗
kI

∗
j g

(
xkyj
yk

)
= βkkS

∗
kI

∗
kg(xk) +

n∑
j=1

(1− δkj)βkjS
∗
kI

∗
j g

(
xkyj
yk

)
, k = 1, 2, . . . , n.

Moreover, by (4.1), we have

n∑
j=1

{βkjI
∗
j + (µk1 + lkk)}S∗

k −
n∑

j=1

(1− δkj)lkjS
∗
j = bk,

n∑
j=1

vj(βjkS
∗
j + (1− δjk)mjk)− vk(µk2 + γk +mkk) = 0, k = 1, 2, . . . , n.

(4.12)

Hence, we obtain the following lemma.

Lemma 4.1. Assume R̃0 > 1. Then,

dU

dt
=−

n∑
k=1

{
vk(βkkI

∗
k + (µk1 + lkk))−

n∑
j=1

vj(1− δjk)ljk

}
S∗
kg(xk)−

n∑
k=1

vkbkg

(
1

xk

)
−

n∑
k=1

vk

n∑
j=1

(1− δkj)lkjS
∗
j g

(
xj

xk

)

−
n∑

k=1

vk

n∑
j=1

{
(1− δkj)g

(
xkyj
yk

)
+ (1− δkj)mkjI

∗
j g

(
yj
yk

)}

+
n∑

k=1

{ n∑
j=1

vj(βjkS
∗
j + (1− δjk)mjk)− vk(µk2 + γk +mkk)

}
I∗kg(yk). (4.13)
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Moreover, if there exists a positive n column vectors v = (v1, v2, . . . , vn)
T such that (1.17) holds, then dU

dt ≤ 0.

Proof of Theorem 1.1. If R̃0 ≤ 1, then by Proposition 3.1, we can obtain the first part R̃0 ≤ 1 of Theorem 1.1.

We now consider the case R̃0 > 1. Then, by Proposition 3.1, system (1.2) is uniformly persistent in Γ0, and by
Corollary 3.1, there exists at least one endemic equilibrium E∗ = (S∗

1 , I
∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n). Moreover, suppose that

there exists a positive n column vector v such that (1.17) holds. By Lemma 4.1, we have (4.13) for (4.3) and dU(t)
dt = 0

if and only if
xk = 1, and yk = yj , for any t > 0, j = 1, 2, . . . , n, k = 1, 2, . . . , n. (4.14)

Then, there exists a positive constant c such that

Ik(t)

I∗k
= c, for any t > 0, j = 1, 2, . . . , n, k = 1, 2, . . . , n.

Thus, substituting
Sk(t) = S∗

k , and Ik(t) = cI∗k , for any t > 0, k = 1, 2, . . . , n,

into the first equation of system (1.2), we obtain that

0 = bk − (µk1 + lkk) + c

n∑
j=1

βkjS
∗
kI

∗
j − (1− δkj)lkjS

∗
j , for any k = 1, 2, . . . , n. (4.15)

Since the right-hand side of (4.15) is strictly decreasing in c, (4.15) holds if and only if c = 1, namely at E∗. Therefore,

the only compact invariant subset where dU(t)
dt = 0 is the singleton {E∗}. By Proposition 3.1 and a similar argument as

in Section 3, E∗ is globally asymptotically stable in Γ0, if R̃0 > 1. Hence, the proof of this theorem is complete. □

Lemma 4.2. The following system

n∑
j=1

vj{βjkS
∗
j + (1− δjk)mjk} = vk(µk2 + γk +mkk), k = 1, 2, . . . , n (4.16)

has a positive solution (v1, v2, . . . , vn) defined by

(v1, v2, · · · , vn) = (C11, C22, . . . , Cnn). (4.17)

Here, Ckk k = 1, 2, . . . , n denote the cofactor of the k-th diagonal entry of B̃, where

B̃ =


∑

j ̸=1 β̃1j −β̃21 · · · −β̃n1

−β̃12

∑
j ̸=2 β̃2j · · · −β̃n2

...
...

. . .
...

−β̃1n −β̃2n · · ·
∑

j ̸=n β̃nj

 , β̃kj = (βkjS
∗
k + (1− δkj)mkj)I

∗
j

for 1 ≤ k, j ≤ n.

Proof. Consider a basis for the solution space of the linear system

B̃v = 0, (4.18)

which can be written as (4.17) (see for example, Berman and Plemmons [22]). By the irreducibility of B, we know that
(β̃kj)n×n is irreducible and vk = Ckk > 0, k = 1, 2, . . . , n. Then, by (4.18), we have that


β̃11 β̃21 · · · β̃n1

β̃12 β̃22 · · · β̃n2

...
...

. . .
...

β̃1n β̃2n · · · β̃nn




v1
v2
...
vn

 =



( n∑
j=1

β̃1j

)
v1( n∑

j=1

β̃2j

)
v2

...( n∑
j=1

β̃nj

)
vn


,
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from which we have that
n∑

j=1

vj β̃jk = vk

n∑
j=1

β̃kj , k = 1, 2, . . . , n.

This yields

n∑
j=1

vj{βjkS
∗
j + (1− δjk)mjk}I∗k = vk

n∑
j=1

{βkjS
∗
k + (1− δkj)mkj}I∗j = vk(µk2 + γk +mkk)I

∗
k

for any k = 1, 2, . . . , n. Since I∗k > 0, we obtain that (4.16) has a positive solution (v1, v2, . . . , vn) defined by (4.17). □
Proof of Corollary 1.1. For system (1.2), by Lemma 4.2, it is evident that there exists a positive n column vectors
v = (v1, v2, . . . , vn)

T such that (1.18) holds. Hence, by Theorem 1.1, we obtain the conclusion of this corollary. □

5 The case that B is reducible for n = 2

In this section, we consider more wider class such that M̃ is irreducible but we may admit the case that B is reducible
in (1.2). For simplicity to illustrate this, we only consider the following case n = 2 that β11 ̸= 0 or β12 ̸= 0, but we may
admit β21 = β22 = 0. Set

U =

{
S∗
1g

(
S1

S∗
1

)
+ I∗1g

(
I1
I∗1

)}
+

{
a2S

∗
2g

(
S2

S∗
2

)
+ a4I

∗
2g

(
I2
I∗1

)}
, (5.1)

where the positive constants a2 and a4 will be appropriately chosen later (see (5.6)). Differentiating U along the solutions
of (1.2) for n = 2, we have

dU(t)

dt
=

(
1− S∗

1

S1

)
dS1

dt
+

(
1− I∗1

I1

)
dI1
dt

+ a2

(
1− S∗

2

S2

)
dS2

dt
+ a4

(
1− I∗2

I2

)
dI2
dt

. (5.2)

Then, similar to the discussion in Section 4, by Lemma 4.1, we have that

dU(t)

dt
=−

[
(µ11 + l11)S

∗
1

(
1− 1

x1

)
(x1 − 1)− l12S

∗
2

(
1− 1

x1

)
(x2 − 1)

]
+

2∑
j=1

β1jS
∗
1I

∗
j

{(
1− 1

x1

)
(1− x1yj) +

(
1− 1

y1

)
(x1yj − y1)

}
+m12I

∗
2

(
1− 1

y1

)
(y2 − y1)

− a2

[
(µ21 + l22)S

∗
2

(
1− 1

x2

)
(x2 − 1)− l21S

∗
1

(
1− 1

x2

)
(x1 − 1)

]
+

2∑
j=1

β2jS
∗
2I

∗
j

{
a2

(
1− 1

x2

)
(1− x2yj) + a4

(
1− 1

y2

)
(x2yj − y2)

}
+ a4m21I

∗
1

(
1− 1

y2

)
(y1 − y2)

=−
[
(µ11 + l11)S

∗
1

{
g(x1) + g

(
1

x1

)}
+ l12S

∗
2

{
g

(
x2

x1

)
− g(x2)− g

(
1

x1

)}]
−

2∑
j=1

β1jS
∗
1I

∗
j

{
g

(
1

x1

)
+ g(x1yj)− g(yj) + g

(
x1yj
y1

)
+ g(y1)− g(x1yj)

}
−m12I

∗
2

{
g

(
y2
y1

)
+ g(y1)− g(y2)

}

− a2

[
(µ21 + l22)S

∗
2

{
g(x2) + g

(
1

x2

)}
+ l21S

∗
1

{
g

(
x1

x2

)
− g(x1)− g

(
1

x2

)}]
−

2∑
j=1

β2jS
∗
2I

∗
j

[
a2

{
g

(
1

x2

)
+ g(x2yj)− g(yj)

}
+ a4

{
g

(
x2yj
y2

)
+ g(y2)− g(x2yj)

}]

− a4m21I
∗
1

{
g

(
y1
y2

)
+ g(y2)− g(y1)

}
.
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Hence, we have

dU(t)

dt
= −{(µ11 + l11) + β11I

∗
1 − a2l21}S∗

1g(x1)− {a2(µ21 + l22) + a4β22I
∗
2 − l12}S∗

2g(x2)

− (a2 − a4)β21S
∗
2I

∗
1g(x2y1)− (a2 − a4)β22S

∗
2I

∗
2g(x2y2)

− {(β12S
∗
1 +m12)I

∗
2 − (a2β21S

∗
2 + a4m21)I

∗
1}g(y1)

+ [(a2 − a4)S
∗
2 (β21I

∗
1 + β22I

∗
2 ) + (β12S

∗
1 +m12)I

∗
2 − (a2β21S

∗
2 + a4m21)I

∗
1 ]g(y2)

− [{(µ11 + l11) + (β11I
∗
1 + β12I

∗
2 )}S∗

1 − l12S
∗
2 ]g

(
1

x1

)
− a2[{(µ21 + l22) + (β21I

∗
1 + β22I

∗
2 )}S∗

2 − l21S
∗
1 ]g

(
1

x2

)
−

{
l12S

∗
2g

(
x2

x1

)
+ a2l21S

∗
1g

(
x1

x2

)}
−
{
β12S

∗
1I

∗
2g

(
x1y2
y1

)
+m12I

∗
2g

(
y2
y1

)}
− a4

{
β21S

∗
2I

∗
1g

(
x2y1
y2

)
+m21I

∗
1g

(
y1
y2

)}
.

Noting that the endemic equilibrium of (1.2) satisfy the following equations:
{(µ11 + l11) + (β11I

∗
1 + β12I

∗
2 )}S∗

1 − l12S
∗
2 = b1 ≥ 0,

{(µ21 + l22) + (β21I
∗
1 + β22I

∗
2 )}S∗

2 − l21S
∗
1 = b2 ≥ 0,

S∗
1 (β11I

∗
1 + β12I

∗
2 )− (µ12 + γ1 +m21)I

∗
1 +m12I

∗
2 = 0,

S∗
2 (β21I

∗
1 + β22I

∗
2 )− (µ22 + γ2 +m12)I

∗
2 +m21I

∗
1 = 0,

(5.3)

we therefore obtain

− [{(µ11 + l11) + (β11I
∗
1 + β12I

∗
2 )}S∗

1 − l12S
∗
2 ]g

(
1

x1

)
− a2[{(µ21 + l22) + (β21I

∗
1 + β22I

∗
2 )}S∗

2 − l21S
∗
1 ]g

(
1

x2

)
=− b1g

(
1

x1

)
− a2b2g

(
1

x2

)
≤ 0.

Moreover,

−
{
l12S

∗
2g

(
x2

x1

)
+ a2l21S

∗
1g

(
x1

x2

)}
−

{
β12S

∗
1I

∗
2g

(
x1y2
y1

)
+m12I

∗
2g

(
y2
y1

)}
−a4

{
β21S

∗
2I

∗
1g

(
x2y1
y2

)
+m21I

∗
1g

(
y1
y2

)}
≤ 0.

(5.4)

Thus,

dU(t)

dt
≤− {(µ11 + l11) + β11I

∗
1 − a2l21}S∗

1g(x1)− {a2(µ21 + l22) + a4β22I
∗
2 − l12}S∗

2g(x2)

− (a2 − a4)β21S
∗
2I

∗
1g(x2y1)− (a2 − a4)β22S

∗
2I

∗
2g(x2y2)

− {(β12S
∗
1 +m12)I

∗
2 − (a2β21S

∗
2 + a4m21)I

∗
1}g(y1)

+ [(a2 − a4)S
∗
2 (β21I

∗
1 + β22I

∗
2 ) + {(β12S

∗
1 +m12)I

∗
2 − (a2β21S

∗
2 + a4m21)I

∗
1}]g(y2). (5.5)

Lemma 5.1. For system (1.2), assume R̃0 > 1 and consider a Lyapunov function (5.1) such that the positive constants
a2 and a4 satisfy the following condition:

(i) if β21 ̸= 0 or β22 ̸= 0, then
l12

(µ21 + l22) + β22I∗2
≤ a2 = a4 =

(β12S
∗
1 +m12)I

∗
2

(β21S∗
2 +m21)I∗1

≤ (µ11 + l11) + β11I
∗
1

l21
,

(ii) if β21 = β22 = 0, then
l12

(µ21 + l22)
≤ a2 ≤ (µ11 + l11) + β11I

∗
1

l21
, and a4 =

(β12S
∗
1 +m12)I

∗
2

β21S∗
2 +m21I∗1

,

(5.6)

where
(β12S

∗
1 +m12)I

∗
2

(β21S∗
2 +m21)I∗1

=
(µ12 + γ1 +m21)− β11S

∗
1

β21S∗
2 +m21

=
β12S

∗
1 +m12

(µ22 + γ2 +m12)− β22S∗
2

. (5.7)

Then, dU
dt ≤ 0.
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Proof. For system (1.2), assume R̃0 > 1 and consider a Lyapunov function (5.1) such that the positive constants a2
and a4 satisfy the following condition that

(a2 − a4)β21 = 0, (a2 − a4)β22 = 0,
(β12S

∗
1 +m12)I

∗
2 − (a2β21S

∗
2 + a4m21)I

∗
1 = 0,

(µ11 + l11) + β11I
∗
1 − a2l21 ≥ 0, and

a2(µ21 + l22) + a4β22I
∗
2 − l12 ≥ 0,

(5.8)

then by (5.5) and conditions (5.8), we obtain that dU
dt ≤ 0. Moreover, by (5.3), one can see that (5.7) holds and (5.8) is

equivalent to (5.6). Hence, we obtain the conclusion of this lemma. □

Theorem 5.1. For system (1.2) with n = 2 such that β11 ̸= 0 or β12 ̸= 0 (we may admit β21 = β22 = 0), if M̃ is
irreducible, R̃0 > 1 and (5.6) holds, then E∗ is globally asymptotically stable in Γ0.

Proof. By Lemma 5.1, we obtain dU
dt ≤ 0 for the Lyapunov function (5.1) with (5.6). Moreover, dU(t)

dt = 0 holds if and
only if

xk = 1, and yk = yj , for any t > 0, j = 1, 2, k = 1, 2. (5.9)

Then, there exists a positive constant c such that

Ik(t)

I∗k
= c, for any t > 0, j = 1, 2, k = 1, 2.

Thus, substituting
Sk(t) = S∗

k , and Ik(t) = cI∗k , for any t > 0, k = 1, 2,

into the first equation of system (1.2), we obtain that

0 = bk − (µk1 + lkk) + c
n∑

j=1

βkjS
∗
kI

∗
j − (1− δkj)lkjS

∗
j , for any k = 1, 2. (5.10)

Since the right-hand side of (5.10) is strictly decreasing in c, (4.15) holds if and only if c = 1, namely at E∗. Therefore,

the only compact invariant subset where dU(t)
dt = 0 is the singleton {E∗}. By Proposition 3.1 and a similar argument as

in Section 3, E∗ is globally asymptotically stable in Γ0, if R̃0 > 1. Hence, the proof of this theorem is complete. □
For the case that M̃ is irreducible in (1.12) but B in (1.6) is reducible for n ≥ 2, one can similarly investigate by the

above discussions. We leave this to the future work for the readers.

6 Applications

In this section, we give three epidemic models with patches through migration and cross patch infection which satisfies
the sufficient conditions in Theorem 1.1 for n ≥ 2 or Theorem 5.1 for n = 2.

Example 6.1 

dS1

dt = b− βS1I1 − (µ+ α)S1 + αS2 − καS1I2,
dI1
dt = βS1I1 − (µ+ γ + α)I1 + αI2 + καS1I2,
dR1

dt = γI1 − (µ+ α)R1 + αR2,
dS2

dt = b− βS2I2 − (µ+ α)S2 + αS1 − καS2I1,
dI2
dt = βS2I2 − (µ+ γ + α)I2 + αI1 + καS2I1,
dR2

dt = γI2 − (µ+ α)R2 + αR1,

(6.1)

with initial conditions: {
Si(0) = ϕi

1, Ii(0) = ϕi
2, Ri(0) = ϕi

3, i = 1, 2,
(ϕ1

1, ϕ
1
2, ϕ

1
3, ϕ

2
1, ϕ

2
2, ϕ

2
3) ∈ R6

+0,
(6.2)

where b is the recruitment rate of the population, µ is the natural death rate of the population, β is the proportionality
constant, γ is the natural recovery rate of the infective individuals. Susceptible, infected and recovered individuals of
every i group leave for j group (i ̸= j, i, j = 1, 2) at a per capita rate α. We assume that two groups are connected each
other by the direct communication, etc. When the infective individuals αIj in j group travel into i group, disease is
transmitted to the susceptible individuals Si in i group with the incidence rate καSiIj with a transmission rate κα.

The basic reproduction number of system (6.1) is

R0 =
b(β + κα)

µ(µ+ γ)
. (6.3)
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System (6.1) has a unique positive solution (S1(t), I1(t), R1(t), S2(t), I2(t), R2(t)) satisfying the initial condition (6.2) and
always has a disease-free equilibrium E0 = (b/µ, 0, 0, b/µ, 0, 0), and an endemic equilibrium E∗ = (S∗, I∗, R∗, S∗, I∗, R∗)
if R0 > 1, where

S∗ =
µ+ γ

β + κα
, I∗ =

b

µ+ γ
− µ

β + κα
, R∗ =

γ

µ

(
b

µ+ γ
− µ

β + κα

)
. (6.4)

Then, condition (i) in (5.6) becomes α
(µ+α)+βI∗ < a2 = a4 = 1 < (µ+α)+βI∗

α which is satisfied. Hence, by Theorem

5.1, we establish that the global dynamics of system (6.1) is fully determined by a threshold parameter R0; the global
stability of the disease-free equilibrium E0 and the endemic equilibrium E∗ of (6.1) is completely determined by R0.

Example 6.2 (See Li et al. [16, Section 4]).
dS
dt = q1µA− (µ+ p)S − βSI + εV,
dV
dt = q2µA+ pS − (µ+ ε)V,
dE
dt = βSI − (µ+ γ)E,
dI
dt = γE − (µ+ α+ δ)I.

(6.5)

(6.5) is equivalent to the following system
dS1

dt = b1 − (µ+ p)S1 − βS1I2 + εS2,
dS2

dt = b2 + pS1 − (µ+ ε)S2,
dI1
dt = βS1I2 − (µ+ γ)I1,
dI2
dt = γI1 − (µ+ γ2)I2,

(6.6)

which is the case that  b1 = q1µA, b2 = q2µA, q2 = 1− q1, β11 = 0, β12 = β, β21 = β22 = 0,
l11 = l21 = p, l22 = l12 = ε, m11 = m21 = γ, m22 = m12 = 0,
γ1 = 0, γ2 = α+ δ,

(6.7)

and the basic reproduction number of system (6.5) is

R0 =
βγA(ε+ q1µ)

(µ+ γ)(µ+ α+ δ)(p+ µ+ ε)
. (6.8)

Assume that R0 > 1. Then, for a2 = 1 and a4 = µ+γ
γ , the condition (ii) in (5.6) is satisfied. Thus, we conclude that E∗

is globally asymptotically stable in Γ0.

Example 6.3 (See Li et al. [16, Section 2]).
dS
dt = Λ− d0S − S(β1I1 + β2I2 + β3I3),
dI1
dt = S(β1I1 + β2I2 + β3I3)− (d1 + δ21)I1 + δ12I2 + δ13I3,
dI2
dt = δ21I1 − (d2 + δ12 + δ32)I2 + δ23I3 + δ23I3,
dI3
dt = δ32I2 − (d3 + δ13 + δ23 + δ43)I3,

(6.9)

and dT
dt = δ43I3 − dTT . Then, (6.9) is equivalent to the following system

dS1

dt = Λ− d0S1 − S1(β11I1 + β12I2 + β13I3),
dS2

dt = Λ− d0S2,
dS3

dt = Λ− d0S3,
dI1
dt = S1(β11I1 + β12I2 + β13I3)− (d1 +m21)I1 +m12I2 +m13I3,
dI2
dt = m21I1 − (d2 +m12 +m32)I2 +m23I3 +m23I3,
dI3
dt = m32I2 − (d3 +m13 +m23 + γ3)I3,

(6.10)

which is the case that {
b1 = b2 = b3 = Λ, β1j = βj , j = 1, 2, 3, βij = 0, i = 2, 3, j = 1, 2, 3,
mij = δij , i ̸= j, j = 1, 2, 3, γ1 = γ2 = 0, γ3 = δ43.

(6.11)

Then, we have that

Ṽ =

 d1 + δ21 0 0
0 d2 + δ12 + δ32 0
0 0 d3 + δ13 + δ23 + δ43

 , (6.12)
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and for S = (S1, S2, . . . , Sn)
T , put

M̃(S) = Ṽ−1F̃(S), F̃(S) =

 S1β1 S1β2 + δ12 S1β3 + δ13
δ21 0 δ23
0 δ32 0

 , (6.13)

and consider the following threshold parameter

R̃0 = ρ(M̃(S0)). (6.14)

Since n = 3 and F̃ is irreducible (which implies that M̃ is irreducible) and (1.20) holds, for R0 > 1, by Lemma 4.2, there
exists a positive 3 column vector v = (v1, v2, v3)

T such that (1.18) holds. Hence, by Corollary 1.1, we conclude that E∗

is globally asymptotically stable in Γ0.

Finally, we conclude this section by noting that we can also apply Theorem 1.1 to the stage-progression models for
HIV/AIDS with amelioration in Guo et al. [20, 21].
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