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Abstract. In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic
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1 Introduction

Recently, how to clarify transportation effects on the spreading pattern of global pandemic of diseases such as influenza,
is one of the important problems on the multi-group epidemic models. In particular, for the geographical spread of
mild infectious disease, individuals do not have so severe symptoms that they retain from traveling abroad during their
infectious period.

In 1956, Bartlett [I] firstly used a patch approach to the following model (see Arino [2):

S = —(B1l1 + B212)S1 + b+ mgs(S2 — S1),

Il = (8151 + B212)S1 — (d+ p)udy + mi(I2 — Ih), (1.1)
Sy = —(B111 + P212)S2 + b+ mg(S1 — S2), '
I3 = (Bl + B2l2)S2 — (d+ p)la +mi(I1 — I2).

Note that in this group model, there is an exchange of individuals between two patches through migration but there is
also cross patch infection. For patch models, there are several works (see for example, Arino [2], Wang and Zhao [B] and
the references therein).

By making use of the theory of non-negative matrices, Lyapunov functions and a subtle grouping technique in
estimating the derivatives of Lyapunov functions guided by graph theory, Guo et al. [ have firstly succeeded in the
proof, and after this paper published, almost all researchers commonly used this research approach by citing the result
of estimation by graph theory in H] to analyze the global stability of various multi-group epidemic models, (see for
example, [5-12]). However, all of such multi-group models cited above, did not take into account the phenomenon of
population movement between different groups.

On the other hand, for the case of two patches, Liu and Takeuchi [[3] and Nakata [[4] studied the effect of transport-
related infection and entry screening, and Liu and Zhou [[3] proposed an SIRS epidemic model and investigated the
global dynamics of an SIRS epidemic model with transport-related infection, and for the endemic equilibrium, they
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established a sufficient condition for the global asymptotic stability which implies that the effect of exchange-related
infection makes the disease endemic even if both the isolated regions are disease-free, but their sufficient conditions are
applicable too restrictive cases.

Recently, there are some interesting papers on construction of Lyapunov functions to prove the global stability of
models, for example, Li et al. [I6], Kajiwara et al. [[7] and Vargas-De-Leén [I]] (see also Muroya et al. [I9]). Moreover,
Guo et al. RART] consider the stage-progression models for HIV/AIDS with amelioration, and Li et al. [I6] proposed
very interesting approach on the proof techniques for the global stability of a class of epidemic models.

Motivated by the above results, in this paper, we consider the global stability of the following group model which has
not only an exchange of individuals between patches through migration but also cross patch infection between different

groups:
= =bi- (ukl - Z(l - 5jk)zjk>sk — Sk <Z /3kj1j) + Zu — 01k S,
j=1 j=1 j=1
dI, n n n (1.2)
ar =Sk (Z Bkjjj> — (ﬂkQ + Ve + Z(l — 5jk)mjk.>lk + Z(l — 5kj)mkjlj7
Jj=1 Jj=1 j=1
k= 1a27"' y 1y
and
de n n
o Yelk — <,uk3 + jzz:l(l - 5jk)njk) Ry + ;(1 — O Ry, k=1,2,---n, (1.3)
where ;
[ i k=,

Onj = { 0, if k#j, (1.4)
and in each city k, we refer three groups Sk(t), Ix(t) and Ry(t), (k = 1,2,...,n) denoting the numbers of susceptible,
infected and recovered individuals in city k at time ¢, respectively. by (k = 1,2,...,n) is the recruitment rate of the
population, px; (kK =1,2,...,n, j = 1,2,3) is the natural death rates of each population of susceptible, infected and
recovered individuals in city k, and 5 (k = 1,2,...,n) denotes the natural recovery rate of the infected individuals in

city k. Functions describing the dynamics within city &k of each population of individuals, might involve all populations
of individuals that are present in the city, and we suppose that there are no between-city interactions, though. We
assume that two cities are connected by the direct transport such as airplanes or trains, etc.. Furthermore, we assume
that susceptible, infected and recovered individuals in every city k leave toward other city j # k at a per capita rate [,
mji and njj (j # k), respectively. Once an individual from patch j arrives patch k, then the individual homogeneously
mixes with individuals in patch k and is counted as an individual in patch k as there is no track for each individual.

Then, the term »-7_, (1 — dx;)lx;S; describes the inflow of individuals of susceptible from all other cities j # k into
city k. The term Z?zl(l — 9,1)lkSk is the outflow of individuals of susceptible from city k towards all other cities
j # k, and it is the same for infected individuals.

Therefore, for the model (L2), the total outflow population > ;) 37 (1 — &;x)l;%Sk is in balance with the total
inflow population Y7, 3" (1 — dy;)lx;S;, since the only input is the recruitment and >3 37 (1 — &;x) kS =
Sory Z;L:l(l — 0;)lk;S; holds true. Moreover, we assume that there are many communications by travel during
groups in different patches each other, and hence we consider not only for infective individuals I} in city k, disease is
transmitted to the susceptible individuals Sy by the incidence rate B Skl with a transmission rate Sy, but also cross
patch infection between groups of different patches such that for each I;, j # k who travel shortly from other city j into
city k, disease is transmitted by the incidence rate 8j;S;I; with a transmission rate 3;; and return to the original city
j-

Observe that the variable Ry, k = 1,2,...,n does not appear in ([2Z). This allows us hereafter to consider the
reduced system ([2) for Sy and Iy, k=1,2,...,n.

The initial conditions of system (2 take the form

{ SL(0) =k, I.(0)=¢k k=1,2,...,n, (1.5)
(01, 03, 07,93, . .., o1, o) € RT%,
where R? = {(z1,y1,22,Y2, - - -, Zn, Yn) € R* 12y, yp >0, k=1,2,...,n}.
Put
B = (ﬁkj)nxn- (16)

Hereafter, for the reader’s convenience, we put

b = (1= 6)ger i = (1= Sg)mgn, e = Y (1= 850 )ng, (1.7)

j=1 j=1 j=1



and for an n x n matrix H and a positive n column vector b defined by

pi1 + —li2 e —lin by
—l21 po1 +lag - —lan ba
*lnl *ln2 e Hn1 + lnn bn
we consider the positive n column vector S° = (9,59, ...,5%)7T such that
S’ =H 'b. (1.9)

We here note that H is an M-matrix by () (see for example, Berman and Plemmons 2] or Varga [23]), and S°
depends on Iy, k,j =1,2,...,n.
Let S = (51,52, -+ ,8,)T, and S = (59,89,---, ST be defined by (L), and

M2 + 71+ ma 0 0
- 0 fo2 + Y2 + Mo - 0 - -
V= ) . . . = diag(V1, Va, ..., Va), (1.10)
and F(S) be an n X n matrix such that
S1611 S1fi2+miz -+ S1Bin +Mmin 5111(51) 1?12(51) }?ln(Sl)
- Saf21 + may S22 <o Safon + may, F51(S2)  F(S2) -+ Fon(S2)
F(S) = . . . . = . . , . . (1.11)
Sn/Bnl + mnp1 SanQ + Mnp2 e Sn/Bnn Fnl(Sn) an(Sn) . an(sn)
We define

Y o1 - y SkBrj + (1 — dgj)muy .
M(S) = V'F(S) = (Myi)nxn, My = 1 I ki=1,2,...,n. 1.12
( ) ( ) ( k]) X kj TSI J ( )

Consider the following threshold parameter

Ro = p(VI(S)). (1.13)
In this paper, under the condition that
B is irreducible, (1.14)

we establish the global stability for n > 2 and not only for the special case ly; = my; =0, k,j =1,2,--- ,n of (L2) but
also for a class of more complicated multi-group epidemic model [L2), applying extended Lyapunov function techniques
than those in Guo et al. [l] and McCluskey 4], and no longer need such a grouping technique by graph theory in Guo
et al. [ and also Li et al. [I0].

To extend our techniques to a class of the case Ix; > 0, k,5 =1,2,--- ,n compared to Guo et al. f] and Li et al. [§],
we need some special techniques (see Lemma [ T] and its proof before this lemma), and obtain sufficient conditions (see
([CID)). In particular, for a special case l; = 0, k # j, we establish the complete global stability for (L2)).

The main theorem in this paper is as follows.

Theorem 1.1. For Ry < 1, the disease-free equilibrium E° = (59,0, 59,0,..., S9.0) of (C2) is globally asymptotically
stable in T', where

- b
T = {(51711,52,12,...,Sn,1n) eRY | S, < Sy, § (Sp+Ip) <=, k= 12n} (1.15)
o
k=1 —
and
B n
b= 1;1: b, p= 12}3&(%17#1«2 + Vi) (1.16)

For Ry > 1, system T3 is uniformly persistent in T° and there exists at least one endemic equilibrium E* =
(S5, 17,85, 13,...,85, 1) in TV (see Diekmann and Heesterbeek [23]), where T is the interior of the feasible region
T. Moreover, if there exists a positive n column vectors v = (vi,va,...,v,)T such that

vk (Bre Ly + (tr1 + lkk)) — Zvj(l —0j) ik >0,
=1 (1.17)

n
Zvj{ﬁij; + (1 = 6j1)mjn} < vp(pre + v +mek),  for any k=1,2,...,n,
j=1



then E* is globally asymptotically stable in T°.

Corollary 1.1. Assume [(LId). Then, for Ry > 1, there exists a positive n column vector v = (v1,v9,...,0,)T such
that .
Zvj{ﬂij;-‘—k(l—djk)mjk} :’Uk(,u,kg —l—'yk—i—mkk), k=1,2,...,n. (118)
j=1
Moreover, for this v = (v1,va,...,v,)7, if
ok (Berdy + (r1 + k) — Zvj(l —81)ljk >0, forany k=1,2,...,n, (1.19)
j=1
then E* of [L2) is globally asymptotically stable in TO. In particular, if
lir =0, foranyjk=12,...,n andj #k, (1.20)

then (LI9) holds.

The organization of this paper is as follows. To prove Theorem [[I] we only consider the reduced system ([2). In
Section [ we offer the positiveness and eventual boundedness of solutions for system ([[2)). In Section B following the
proof techniques in Guo et al. @], we similarly prove the global asymptotic stability of the disease-free equilibrium for
Ro < 1 and the uniform persistence of system () and the existence of the endemic equilibrium E* of system (I2))
for Ry > 1 (see Proposition Bl and Corollary B). In Section B for Ry > 1, using Lyapunov function techniques
to the system ([2)), under the condition ([[LIT), we derive an important lemma (see Lemma [L]]) and prove the global
asymptotic stability for the endemic equilibrium of ([[2)). Moreover, in Section [ we investigate more wider conditions
for n = 2 and give Theorem Bl Finally, in Section [@ we provide three examples of (I2)) for applications.

2 Positiveness and eventual boundedness of solutions of ([2)

We have the following lemma on the positiveness and eventual boundedness of Sy, I, k= 1,2,...,n of (L2).
Lemma 2.1. For system [L2), it holds that
Si(t) >0, I(t) >0, forany k=1,2,...,n andt >0, (2.1)

and

lim sup Z{Sk(t) + Ix(t)} <
k=1

t——+o0

= | <

— (2.2)
limsup Si(t) <82, k=1,2,...,n.
t——+o0
Proof. By (), we have that %Sy (+0) > by > 0 and S,(0) > 0 for any k = 1,2,...,n, which implies that there
exist positive constants txo, k = 1,2,...,n such that Si(¢t) > 0 for any 0 < t < tgo, k = 1,2,...,n. First, we prove
that Si(t) > 0 for any 0 < t < 400 and k = 1,2,...,n. On the contrary, suppose that there exist a positive ¢; and a
positive integer k1 € {1,2,...,n} such that Sy, (¢;) = 0 and Sk, (t) > 0 for any 0 < t < ¢;. But by ([[2)), we have that
%Skl (t1) > bk, > 0 which is a contradiction to the fact that S, (t) > 0 = Sk, (t1) for any 0 < t < ¢;. Hence, we obtain
that Sk(t) > 0 for any 0 <t < +oo and k=1,2,...,n.
Moreover, by ([L2) and [7), we have that

t n n
Ip(t) = e~ (ratvitmyy)t |:Ik(0) + / e(#k2+’vk+mkk)u{sk(u) (Z Brjil; (u)) + Z(l — O )Ml (u)}du]
0 =

j=1

for k =1,2,...,n and t > 0, from which we obtain that I(t) > 0 for any k = 1,2,...,n and ¢ > 0. Thus, we obtain
eD.

Next, we prove that Ij(t) > 0 for any 0 < ¢ < 400 and k = 1,2,...,n. On the contrary, suppose that there exist a
positive to and a positive integer ks € {1,2,...,n} such that I, (t2) < 0. Set t, = inf{0 < ¢ < t2 : I}, (t) < 0}. Then,
0 < tg, < t2 and Ip,(ty,) = 0. But by (), we have that I, (+tr,) > 0 which is a contradiction to the fact that
Iy, (t) < 0 = I, (t,) for any ti, <t < ta. Thus, we obtain ZIJ).

Since by [[1), we have

DD (1= kp)ls S (8) = Y e Sk(t) = Z(Z(l = Ok )l — ljj>5j(t) =0,

k=1j=1 k=1 j=1

S



and similarly,
n n

Z Z(l — (Sk] mkj kaklk

k=1j=1
therefore, by (L2, we have that

n n

% {Z{Sk(t) + Ik(t)}] =) {bk — (i1 + k) Sk(t) = (k2 + e+ muee) Te(8) + > (1= 01 {1 S5 (1) + mug I;(t)}
k=1

j=1

Il
Eol
M: Il
-

{br — pr1Se(t) — (a2 +ve) Ik ()}

~
Il

1
n

b — min (pe1, k2 + ) > {Sk(t) + I(t)},

1<k<
- k=1

-

=~
Il
_

from which we obtain the first equation of (Z2). On the other hand, we have

dSy, -
o S < br — (pr1 + lkk) Sk Jrj;(l — 0k Sj, k=1,2,...,n
Then, by (CA) and theory of linear differential equations and the comparison theorem, we have that for S = (S;,Ss,...,n)%,
ds
S < (S(0) — 8% exp(—Ht) + S°.

By the fact that H defined by ([J)) is an M-matrix, all the eigenvalue of H have negative real part. Hence, we have
limsup;_, | ., exp(—Ht) = @. Thus, we obtain

limsup Si(t) <82, k=1,2,...,n,

t—+oo

from which we obtain the remaining equations of ([22)). O

3 Global stability of the disease-free equilibrium E° for R, < 1

Since we assume ([LI4) and H and V defined by (L)) and (I, respectively, are M-matrices (see for example, [22]
or [Z3]), we can obtain the following Proposition, whose proof is similar to that of Guo et al. [l Proposition 3.1] but for
the reader’s convenience, we give a proof of the following proposition:

Proposition 3.1. (1) If Ry < 1, then the disease-free equilibrium E° = (S9,0,59,0,...,59,0) is the unique equilibrium
of (LA) and it is globally asymptotically stable in T
(2) If Ry > 1, then E° is unstable and system (I2) is uniformly persistent in T°.

Proof. Let S = (51,92, --,5,)7 and S° = (S9,59,---,89)7. Since in T, it holds that 0 < S < S¥ for 1 <k <n
and O < M(S) < M(S°). Since M is irreducible, we know M(S) and M(S°) are irreducible. Therefore, p(M(S)) <
p(M(S?)), provided S # S° (see, for example, 23] Lemma 2.3]).
If Ry = p(M(S%)) < 1, then for S # S°, by the above, p(M(S)) < 1, and

M(S)I =1

has only the trivial solution I = 0. Thus, E° is the only equilibrium of system (L2]) in T
Let (wy,ws,...,wy) be a left eigenvector of M(SY) corresponding to p(IM(S?)), i.e

(w1, wa,s -« wn)p(M(S?) = (w1, wa, . .., wn)M(S).

Since M(SO) is irreducible, we know wy, > 0 for K =1,2,...,n. Set

M2 + 7+ mi 0 0 I
0 Ho2 + Y2 +mag - 0 I
L = (wy,wa,...,wn,) . ) . ) .



Differentiations gives

= (w1, wa, -+, wn) [M(S)T = T] < (wy,wa, . .., wn) [M(SO)T 1]
:{ (M( ))—1}(&)1,&)2,... n)ISO, lfR()S].
If Ry = p(M(S%)) < 1, then L' =0 <= I=0. If Ry = 1, then L’ = 0 implies
(w17w27"'7wn)1\7‘[(s)1: (w17w27"'7wn)1' (3]‘)

If S # S then ~ B

(W1, w2, - wn)M(S) < (wi,wa, ..., wn)M(S?) = (wi,wa, ... w).
Thus, I) has only the trivial solution I = 0. Therefore, L' =0 <= I =0 or S = S° provided Ry < 1. It can be
verified that the only compact invariant subset of the set, where L' = 0 is the singleton {E°}. By LaSalle’s Invariance
Principle (see [28]), E° is globally asymptotically stable in T' if Ry < 1.

If Ry = p(M(S°)) > 1 and I # 0, we know that
(w1, wa,. .. ,wn)M(SO) — (w1,wa, ..., wy) = {p(M (SO)) — 1} (wr,wa, ..., wy) > 0.

and thus L' = (w1, ws, . .. ,w,)[M(S)I—1] > 0 in a neighborhood of E° in T'°, by continuity. This implies E° is unstable.

Using a uniform persistence result from Freedman et al. [27] and a similar argument as in the proof of Li et al. 28
Proposition 3.3], we can show that, when Ry > 1, the instability of E implies the uniform persistence of (L2)). This
completes the proof of Proposition Bl O

Uniform persistence of system ([C2), together with uniform boundedness of solutions in T'° (follows from the positive
invariance of the bounded region I'), implies the existence of an equilibrium of (L2) in T'° (see Smith and Waltman [29]
Theorem D.3] or Bhatia et al. B0l Theorem 2.8.6]).

Corollary 3.1. Assume (LId). If Ry > 1, then (I3) has at least one endemic equilibrium B* = (SF, IF, S5, 15, ..., 8%, IF)
such that

F(S*)-V =0, S"=(S;,8;,...,8)7T. (3.2)
Now, we investigate the relation between the reproduction number Ry and Ry in (CI3).
Let
piz + 71+ ma —mi2 e —Min
—ma1 Mo + 72 M2 - —Ma2n
V= (3.3)
—Mn1 —Mnp2 U Mn2 + Tn + Mpn
Then, V is an M-matrix. For S = (S1,5s,...,5,)T, we put
S1811 Sifiz 0 S1Bin
SaBo1 Safa2 - Safan
F(S) = . . . . ; (3.4)

and M(S) = F(S)V~1. Then the basic reproduction number R of system (L2 is defined (see, for example, van den
Driessche and Watmough [?]) as follows.
Ro = p(M(8%)), S°=(5Y59,...,807T. (3.5)
Then, by
F(8") -V =F(8")-V=0, (3.6)
we have that for the n x n unit matrix E,
F(S*)V~! = V7IF(S*) = E = diag(1,1,...,1), p(F(S*)V™1) =p(VIF(S*)) = 1.
Then, -
p(M(S¥)) = p(M(S8")) = 1, (3.7)
and by (LI3), B3), Lemma[ZTland the above discussions on irreducible non-negative matrices theory (see for example,
Varga [23] Chapter 2]), we can easily obtain that
Ry < 1, if and only if, ]EEO <1,
Ro=1, ifandonlyif, Ro=1, (3.8)
Rp > 1, ifand only if, Ry > 1.

Therefore, for convenience, we may use Ry defined by (ILI3) as a threshold parameter (see Guo et al. [E]) in place of the
reproduction number Ry defined by B3).



4 Global stability of the endemic equilibrium E* for R, > 1

In this section, we restrict our attention to the special case that B defined in (L) is irreducible and Ry > 1. Then,
M(S) in (T2 is irreducible and by Corrollary Bl there exists an endemic equilibrium E* = (ST, I, 55,5, ..., S}, I,*L)
of (L2) in T'° such that

b = (1 + k) S5+ Y _ABriSily — (1= 0x;)lky S},
=1 (4.1)
(k2 + v + mkk)I;: = Z{ﬂkjSZI; +(1- 5kj)mkjf;}7 k=1,2,...,n.
j=1

We rewrite (L2) as

ds g
7: = by, — (pr1 + lir) Sk — Z{ﬂkjskfj — (1 —8k;)lx; S},
3 =1 (42)
Z{/Bkjskl + (1= bj)mus I}t — (w2 + 6 + mek) e, k=1,2....n
Set
- . [ Sk . Ik
k=1
where v, vq, - -+, v, will be appropriately chosen later (see (LIT)) and
glz)=x—1—Inz >g(1) =0, forany x> 0. (4.4)
Differentiating U, we have
dU & dSk dly,
o 20k 1_ k
- (-5 @ (-1)%)
Put
’ xR = St L k=1,2 n (4.5)
k_S;:7 yk_I];k? — Ly 4y It .

By @J) and ([@2), we have that

dSk i
T br, — (te1 + k) Sk — ;{5@5191]‘ — (1 = 0j) ;S }
—(pokr + L) (Sk = i) = > _ABrs (Sely — SiI;) — (1= 6x5)li (S5 — S5)}
j—l

— (k1 + lek) S (xr — 1) Z{ﬁkﬁk (@ey; — 1) = (1 = 0 )l S (25 — 1)},

and

dI -
=k Z{ﬂk;SkI + (1= 0ng)mugl;} — (pra + v + mux) I

= Z{ﬂkjsmﬂfkyj (L= Oj)muei I3y} — (pwe + e + M) Iy
j—l

= Z{ﬂkﬁk (xry; — y) + (1 = Ong)mue I3 (y; — yi) }-



Then,

n

— =Y [(1 - ){ (tr1 + L) Sp (g — 1) ;{%Sk (zry; — 1) — (1 — 1))y S (a5 — 1)}}

k=1

+(1—1>{Z{%Sk oy =)+ (1= i) 50— )}

Yk =
n

ivk{ (b1 + L) Si (1 - ;) (@ — 1) Y (1= 0j) ks Sy (1 - ;) (z; — 1)

k=1 j=1

j= j=1

Now, consider the first part of the last equation in ([@8]). Since

1 1 1
1-— (xk—l):$k+—2:g(wk)+g<>,
Tk Tk

1 Zj 1
1- — m—l:x———l———l— J)+ (>
o)) =ai - Py g()g<xk 9\ o
it follows from the definition of lg; (kK =1,2,...,n) in () that

(et + Low) S (1 _ xlk) (x), — 1) = (um + g(l - 5jk)ljk) S}:{g(xk) + 9(;)}

k

and
jzj:l(l — Okl S; (1 - xlk) (x; —1)= Jzi:l(l - 5kj)lkjs;{g(xj) - 9(2) " 9(;)}

hold for k =1,2,...,n. Next, we consider the remaining parts of the last equation in (ZQ):

1 1 1 TEYi
(1 - > (1 —zpy;) + (1 - ) (TkYj — Yk) =<1 — — — TRy + yj) + (wkyj Tt 1>
Tk Yk Sﬂk Yk

_2_74_ Yy — LLY; _
T Yk

__ g<$1k> - g(xzfj> +{9(y;) — 9y},

and
(1 - 1) (yj —yr) = y; — 3*2 -yt 1= —y<zi) +{9(y;) — 9(y)}-

Thus,

k=1 ‘j=1
- 1
= —I;Uk;[ﬁkjsl);[;{g( k)+g<x;l?jj)}+(l—5kj)mk]1 (yk):|

_|_
M-
s
-
s
“

+ (1 = 0ng)mus) i {9(y;) — g(yr)},

+ nlﬂk]SkI*{< xlk)(l —xRY;) + (1 - ylk) (xry; — yk)} + Y (1 = Opj )i 17 (1 - 1) (y; — yk)} (4.6)

(4.8)



and by ([@I)), we have that

Z k> (Brg S+ (1= 6k)mu ) I {g(ys) — g(uw)}

= Jj=1

= Z Brj Sy + (1 — 0kg)mu;) 17 g(yy) Z Z Brj S+ (1 = Okz)mue ) 15 g (yx)

k=1 j=1 =1
= "0 Y (BiwS; + (1= S)me) Tig(ye) — D vr(ika + e + mae) T g (ur)

j=1 k=1 k=1

Z{Zvj BiwS; + (1 (m)mjk)vkmkzﬂwmkw}mﬁg(yk). (4.10)

k=1 “j=1
Therefore, from [3)-EI0), we have that

Cg:—évk(ﬂkl—Flkk)Sl:{ (l‘k)-i-g( >}+anvki (1 = 0kj)lis ]{g(xj)—g(ii>+g(;k>}

1 j=1

—iwi{%s;f;{g@) ()

+Z{ZUJ BikS; + (1= 65)myk) —vk(uk2+7k+mkk)}fzg(yk)

a
>_.
u
,_.

[
NIER

{Uk(ﬂkkIZ (11 + lkk)) ng ik jk}SkQ(JCk)

'Uk{ (Z Bridy + (w1 + lkk)>5}§ - Zn:(l - ka)lkjsf}g(;c) - Zn:’vk .

el
Il
—

hE

k=1 Jj=1 Jj=1 k=1 Jj=1
_ ka Z{(l — (;kj)ﬂkjSZIj*g( kyj) + (]. — (;kj)mkjf;g(y) }
k=1 =1 Yk Yk
Z{Zw (BjkS; + (1= 5)min) — vi (g2 + +mkk)}1’£g(yk), (4.11)

k=1

where we used the following relations:

n

kaz — 01 )i S5 g () ZU; Sk )i Skg(Tr) ZZ% 81 )ik Sk g (),
j= Jj=1 Ic:l k=1j=1
ZBMS,J* (

Moreover, by (Iﬂ]), we have

n . T .
> BreSiIig(x) + Y (1= 0k;)Br; SiIrg < g’ji’f) k=1,2,...,n.
j=1

n

Z{ﬁkj + (a1 + Lek) }SE = Y (1= 1)y Sy = b,
g=1 (4.12)

ZUJ (BikS; + (1 = 0jk)myk) — v (k2 + 7k + mee) =0, k=1,2,...,n.
j=1

Hence, we obtain the following lemma.

Lemma 4.1. Assume Ry > 1. Then,

U noon .
- {Uk(ﬁkkIZ (11 + ler)) ng ik jk}Skg ) kabkg( ) > ok > (1= b)) (x;i)

dt
k=1 Jj=1

M=

=
Il

1

Lrgleonn(2)--mndd)
|

M:

k

M:

iz
+ Y3 D 0i(BinS; + (1= 8i)mye) — vk + e + mkk)}fzig(yk)- (4.13)

Jj=1

=
Il



Moreover, if there exists a positive n column vectors v = (vi,va,...,v,)T such that (CID) holds, then %] <0.
Proof of Theorem [ILIl If Ry < 1, then by Proposition Bl we can obtain the first part Ry < 1 of Theorem [

We now consider the case Ry > 1. Then, by Proposition Bl system ([2) is uniformly persistent in I'°, and by
Corollary Bl there exists at least one endemic equilibrium E* = (S},15,55,15,...,5%,I*). Moreover, suppose that
: . aU(t)
jcfhered ex1s1ts.? positive n column vector v such that (LI7) holds. By Lemma [ET] we have [EI3) for @3) and =~ =0
if and only i

zp =1, and yp = y;, forany t >0, j=1,2,...,n, k=1,2,...,n. (4.14)

Then, there exists a positive constant ¢ such that

I (t
#zc, foranyt >0, j=1,2,...,n, k=1,2,...,n.
k

Thus, substituting
Sk(t) =Sy, and Ij(t) = eI}, forany t >0, k=1,2,...,n,

into the first equation of system (L2), we obtain that
0=bk — (k1 + ler) + €Y Brg Sl — (1= 6k;)ly Sy, for any k=1,2,...,n. (4.15)
j=1

Since the right-hand side of [@IH]) is strictly decreasing in ¢, (IH) holds if and only if ¢ = 1, namely at E*. Therefore,

the only compact invariant subset where d%—gt) = 0 is the singleton {E*}. By Proposition Bl and a similar argument as
in Section Bl E* is globally asymptotically stable in T', if Ry > 1. Hence, the proof of this theorem is complete. g
Lemma 4.2. The following system
n
Zvj{ﬁ]k5;+(l_5jk)mjk} :Uk(ﬂk2+’7k+mkk)a k= 1a2a"'an (416)
j=1
has a positive solution (vi,va,...,v,) defined by
(v1,v2, -+ ,vn) = (C11,Caz, .. ., Cp). (4.17)

Here, Ciy, k =1,2,...,n denote the cofactor of the k-th diagonal entry of B, where

Zj;@ Blj _321~ T _5:711
| By Synby o i
B = :12 #:2 N . : ’ v Brj = (Brj Sk + (1 — Orz)mue; ) I
_Bln _BQn e Z];én B’ﬂj

for1<k,j<n.

Proof. Consider a basis for the solution space of the linear system

Bv =0, (4.18)

which can be written as (1) (see for example, Berman and Plemmons [2]). By the irreducibility of B, we know that
(Bkj)nxn is irreducible and vy = Ci, > 0, k = 1,2,...,n. Then, by @I8), we have that

(Z Blj)vl
511 321 t Bnl U1 jil ~
512 322 ce an (%] (Z 523‘) V2
. . . . : = J=1 )
(Z an)vn
L =1
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from which we have that . .
Z%‘Bjk :UkZBkj, k=1,2,...,n
j=1 j=1
This yields
> 0iBinSy + (1= S)myn - = v Y _{Brj Sk + (1= dy)mus I = o (o + v + mur) I
— =
for any £k =1,2,...,n. Since I} > 0, we obtain that (.I6]) has a positive solution (v1,vs, ..., v,) defined by @I7). O

Proof of Corollary .1l For system (L2)), by Lemma 2] it is evident that there exists a positive n column vectors
v = (v1,va,...,v,)7 such that (LIR) holds. Hence, by Theorem [Tl we obtain the conclusion of this corollary. O

5 The case that B is reducible for n = 2

In this section, we consider more wider class such that M is irreducible but we may admit the case that B is reducible
in (L2). For simplicity to illustrate this, we only consider the following case n = 2 that 811 # 0 or 12 # 0, but we may

admit /821 = ,822 = 0. Set
« (S I I
= {519(51> +1Iiyg (Ii)} {a2529<5*) +a4129<13>}, (5.1)

where the positive constants as and a4 will be appropriately chosen later (see (E0])). Differentiating U along the solutions
of (L2 for n = 2, we have

du(t) S7\ dS I\ dhL S5\ dS: 12 dls
0 _<1 Sl> o +<1 a el d )t -7 ) (5.2)

Then, similar to the discussion in Section @ by Lemma 1] we have that

%it) =- {(Mn + 1) 57 (1 - ;) (z1 = 1) — 2S5 (1 - xll) (2 — 1)]

2 1 ) X
+;ﬂ1j5flf{ (1 — :m)(l —z1y;) + (1 - y1>($1?/j - yl)} + misly (1 - yl)(y2 — )

~a [(ugl +15)S; <1 - ;)(zg 1) = 11 S (1 - ;) (21 — 1)}

2 2

2
1 1 1
+ ZﬁszSI;{az (1 - 3:) (1 —z2y;) + aa (1 - y2> (z2y; — y2)} + asmor I7 (1 - yz> (y1 —y2)

j=1 2

- {(Mu + lll)ST{g(xl) + 9(331) } + 11255{9 (if) —g(@2) — 9<;) H

- ZﬁljSll*{ ( ) + 9(@1y;) — 9(y;) +g(x;?jj> +9(1) —g(xlyj)} —m121§{9<zi) +9() —g(yz)}

i s ()} v o(2) -s-o(2))
- Zﬂzjsz [ { ( . ) + 9(22y;) — (yj)} +a4{g($;;yj) +9(y2) —g(waj)H
- a4m211f{9<z;) +9(y2) — g(yl)}-

11



Hence, we have

dU(t
7d7§ ) = 7{(u11 —+ lll) —+ 511]ik — aglgl}ng(:cl) — {0&(#21 + 122) + 044522];< - 112}559(1’2)

— (a2 — a4)P2153 17 g(w2y1) — (a2 — aa)Ba255 15 g(w2y2)
— {(B1257 +ma2)15 — (a2f2155 + asmar) 11 }g(y1)
+ [(ag — a4)S5 (Bo1 I + Pa2l3) + (81257 + mi2)I5 — (a282155 + asmai)I{]g(y2)

— (w11 + lin) + (B1a Iy + Bi2l3) ST — l1255]g<$11>

— as[{(p21 + l22) + (Bar I + Po2l35)} S5 — 5215ﬂ9< ! )

T2

x z * x * Tk € %
B {112529(2) + a2l21519(1> } - {51251 Izg<ly2> + m12129(y2) }
. 2 n Y1
X
_ a4{ﬁ21S;Iikg<2y1> + m21]i“g<y1> }
Y2 Y2

Noting that the endemic equilibrium of (L2 satisfy the following equations:

{(p11 +111) + (Biodf + Bi2l3) ST — 11255 = by > 0,
{(p21 + la2) + (Bar I} + Ba2l5)}S5 — 121ST = b2 > 0,
St (Budy + Pr2l3) — (p12 + 1 + mor)If +ma2ls =0,
S5 (Bor Iy + Pa2l3) — (22 + 72 +ma2)ls +marIf =0,

we therefore obtain

— {11 + lin) + (B Iy + Bi2l5)}ST — 1125§]g<$11> — as[{(p21 + lo2) + (Bar I + Pa2l5)} S5 — l215ik]g<1_1>

2
1 1
=— b1g<> — 02b29<) <0.
T X9

Moreover,
* x * X * 7 €T N
uasio(5) +oamsio(3) ) - {psiszo( ) <t (1)}
T To U1 Y1 (54>
—a4{52152*1fg(x2y1) + mgllfg(yl> }g 0.
Y2 Y2
Thus,
dU (t) . . ) )
T < —A(p11 + 1) + By — asla1 }STg(x1) — {aa(per + la2) + asBanls — 112155 g(x2)

— (a2 — a4) 215517 g(x2y1) — (a2 — aa)B2255 15 g(x2y2)
—{(B12S] +mi2)I5 — (a2£2155 + asma1)1y }g(y1)
+ [(ag — a1) S5 (Ba1 1y + Baaly) + {(B12S7 + mi2)l5 — (azB21S5 + asma1)l] }g(yz2). (5.5)

Lemma 5.1. For system ([[2), assume Ry > 1 and consider a Lyapunov function (&) such that the positive constants
as and ay satisfy the following condition:

(i) if B21 # 0 or Bag # 0, then
h1 oo (BuSttmi)ly (e +ha) + Bulf
* — a2 = a4 = * * S s
(p21 + l22) + B2213 (82155 + mo1) I3 loq (56)
(ii) if P21 = B2z = 0, then
ho <a < (11 +l11) + Braly (81257 + mi2) I3

—_— , and ag = ,
S l21 YT Bn Sy + mad;
where
(81257 + m12)I3 _ (f12 +m +ma1) — B11SF _ B125T + ma2 (5.7)
(82155 + ma1) I B2155 + moy (poz2 + 72 + mi2) — 2255 '
Then, % <0.

12



Proof. For system (), assume Ry > 1 and consider a Lyapunov function (GI) such that the positive constants ay
and a4 satisfy the following condition that

(a2 —aq)B21 =0, (az —aq)B22 =0,

(B12ST + ma2)I5 — (a2fB2155 + agmor)I{ =0,
(11 + 1) + Bialf — agler > 0, and

az(p21 + la2) + agParls — 112 > 0,

(5.8)

then by (53 and conditions (58), we obtain that 4% < 0. Moreover, by (E3), one can see that (E1) holds and (58] is
equivalent to (B6). Hence, we obtain the conclusion of this lemma. O

Theorem 5.1. For system ([L2) with n = 2 such that f11 # 0 or P12 # 0 (we may admit Ba1 = Paz = 0), if M is
irreducible, Rg > 1 and [&8) holds, then E* is globally asymptotically stable in T°.

Prloqi. By Lemma [} we obtain 4 < 0 for the Lyapunov function (5II) with (E8). Moreover, d%gt) = 0 holds if and
only i

zp =1, and yy = y;, forany t >0, j=1,2, k=1,2. (5.9)
Then, there exists a positive constant ¢ such that
I (t
kI(*) =c, foranyt >0, 7=1,2, k=1,2.
k

Thus, substituting
Sk(t) =S5, and Ij(t) = eI}, forany t > 0, k=1,2,

into the first equation of system (L2), we obtain that

0=bx — (k1 + k) + ¢ Y BriSely — (1= 6k;)li; Sy, for any k =1,2. (5.10)
j=1

Since the right-hand side of (BI0]) is strictly decreasing in ¢, [@I3) holds if and only if ¢ = 1, namely at E*. Therefore,

the only compact invariant subset where d%it) = 0 is the singleton {E*}. By Proposition Bl and a similar argument as

in Section B E* is globally asymptotically stable in T'°, if Ry > 1. Hence, the proof of this theorem is complete. d

For the case that M is irreducible in (LIZ) but B in (H) is reducible for n > 2, one can similarly investigate by the
above discussions. We leave this to the future work for the readers.

6 Applications

In this section, we give three epidemic models with patches through migration and cross patch infection which satisfies
the sufficient conditions in Theorem [[L1] for n > 2 or Theorem [B.1] for n = 2.

Example 6.1
% =b—pS111 — (p+ a)S1 + aSy — kaS1 1,
G =BS5S L — (u+7+a)li + aly + kaSi I,
= ’711 - (,U + OZ)R1 + O(R27

b5 B0, — (4 )9y + @Sy — kaSyTh, (6.1)
JTtQ = BSoly — (p+ v+ a)ls + aly + kaSa Iy,
2 = I, — (u+ )Ry + aRy,
with initial conditions:
{ Si(o): 37 Ii(o): év Ri(o)quév i=1,2, (6 2)
(Qs%agb%ad%v %7925%7(;5%) GR(-S"-O’ .

where b is the recruitment rate of the population, i is the natural death rate of the population, 3 is the proportionality

constant, v is the natural recovery rate of the infective individuals. Susceptible, infected and recovered individuals of

every i group leave for j group (i # j,i,7 = 1,2) at a per capita rate «. We assume that two groups are connected each

other by the direct communication, etc. When the infective individuals aJ; in j group travel into ¢ group, disease is

transmitted to the susceptible individuals S; in ¢ group with the incidence rate kaS;I; with a transmission rate ko
The basic reproduction number of system (G is

B b(8 + ka)

Coplp ) (63)
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System (6.0) has a unique positive solution (S1(t), I1(t), R1(t), Sa(t), I2(t), R (t)) satisfying the initial condition (6.2) and
always has a disease-free equilibrium E® = (b/u,0,0,b/u,0,0), and an endemic equilibrium E* = (S*, I*, R*, S*, I*, R*)
if Ry > 1, where

R U o b 0 . 7( b p )
S = = —— — ,RF =1 ——— . 6.4
B+ ka pt+vy B+ ka pt+vy  B+ka (64)

Then, condition (i) in (&8) becomes Goaypr <2 =a3 =1< % which is satisfied. Hence, by Theorem

Bl we establish that the global dynamics of system (6] is fully determined by a threshold parameter Ry; the global
stability of the disease-free equilibrium E° and the endemic equilibrium E* of (1)) is completely determined by Ry.

Example 6.2 (See Li et al. [I8 Section 4]).

G =qpA—(u+p)S—BSI+eV,
= @uA+pS—(n+e)V,

fE = BSI— (u+7)E. (65)
ol —’yE— (+a+0)I.

X)) is equivalent to the following system
jd? =01 — (u+p)S1 — BS1Iy + €8s,
= b2t pSi - (1 +€) 5, (6.6)
4 = BS1 L — (u+ )1,

=~ — (u+v2) 12,
which is the case that

by = qipA, by = qauA, g2 =1—q1, f11 =0, Bz = B, P21 = P22 = 0,
l11 =121 =p, lag = liza =€, m11 = ma1 =7, Maz =myz =0, (6.7)
Y1 :07 ’}/2:()(+6,

and the basic reproduction number of system (@3 is

_ PrA(e + ap)
(L+MN(p+a+d)(p+pte)

(6.8)

Assume that Ry > 1. Then, for ag =1 and a4 = %, the condition (ii) in (&6 is satisfied. Thus, we conclude that E*
is globally asymptotically stable in T'°.

Example 6.3 (Sece Li et al. [I8, Section 2]).

éT? A —doS — S(B11h + Ba21z + B313),
ﬁl = S(B1L1 + Bolz + B3l3) — (di + 021) 11 + 01212 + 61313, (6.9)
ﬁ = 02111 — (da + 012 + 032) I2 + d2313 + 02313, '
G = 03215 — (d3 + 013 + 023 + d43) I3,
and % = 4313 — dpT. Then, ([@J) is equivalent to the following system
dcztl =A—doS1 — S1(Buili + Bizls + fisls),
= A —dySq,
M
& = A= doSs, (6.10)
,f? = S1(Bi1l1 + Bizla + Bislz) — (di + mar) 1 + myals + masls,
JTE = mo1lh — (d2 + maz + ms2) Iz + masls + masls,
% = maaly — (d3 + mi3 + maz + v3)13,
which is the case that
{ bl = b2 = b3 :A; 61] :ﬂj> .7 = 152737 62] :Oa 1= 2737 .7 = 172737 (6 11)
mljzéljﬁl#ja]:172a37 71272:07 73:543- ’
Then, we have that
~ di + 601 0 0
V = 0 do + 012 + 039 0 R (6.12)
0 0 d3 + 913 + da3 + dus3
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and for S = (S1,5,,...,5,)7, put

~ B S1B1 S1f2+ 012 5183+ dis
M(S) = V'F(S), F(S)=| dn 0 023 ; (6.13)
0 032 0
and consider the following threshold parameter

Ro = p(NI(S")). (6.14)

Since n = 3 and F is irreducible (which implies that M is irreducible) and [C20) holds, for Ry > 1, by Lemma 3 there
exists a positive 3 column vector v = (v, vs,v3)T such that (LIR) holds. Hence, by Corollary [l we conclude that E*
is globally asymptotically stable in I'°.

Finally, we conclude this section by noting that we can also apply Theorem [[.T] to the stage-progression models for
HIV/AIDS with amelioration in Guo et al. 2O2T].
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