
Published in Acta Mathematica Scientia 32 (2012) 851-865
DOI: 10.1016/S0252-9602(12)60066-6

Global stability of SIRS epidemic models
with a class of nonlinear incidence rates and distributed delays

Yoichi Enatsu*

Department of Pure and Applied Mathematics, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

E-mail: yo1.gc-rw.docomo@akane.waseda.jp

Yukihiko Nakata
Basque Center for Applied Mathematics
Mazarredo, 14 E-48009 Bilbao, Spain

E-mail: nakata@bcamath.org

Yoshiaki Muroya
Department of Mathematics, Waseda University

3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
E-mail: ymuroya@waseda.jp

Abstract. In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic
equilibrium of an SIRS epidemic model with a class of nonlinear incidence rates and distributed delays. By using strict
monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under
which the endemic equilibrium is globally asymptotically stable. When the nonlinear incidence rate is a saturated
incidence rate, our result provides a new global stability condition for a small rate of immunity loss.

Keywords: SIRS epidemic model, nonlinear incidence rate, global asymptotic stability, distributed delays, Lyapunov
functional.
2000 Mathematics Subject Classification. Primary: 34K20, 34K25; Secondary: 92D30.

1 Introduction

To investigate the global behavior of the prevalence of infectious diseases, stability analysis of equilibria for epidemic
models have been carried out (see [1–19] and the references therein).

Mena-Lorca and Hethcote [15] considered several SIRS epidemic models with a bilinear incidence rate of the form
βS(t)I(t) and a standard incidence rate of the form βS(t)I(t)/N(t), where N(t) = S(t) + I(t) + R(t). A threshold
parameter of the models was also found in Mena-Lorca and Hethcote [15] to determine whether the disease dies out or
approaches to an endemic equilibrium. Later, to investigate the effect of an immunity loss of diseases, a significant body of
work concerning the stability analysis for the SIRS epidemic models has been carried out (see, for example, [7–12,16–19]
and the references therein).

In modeling of those communicable diseases, an incidence rate has played a vital role in ensuring that the model
can give a reasonable qualitative description for the disease dynamics. A bilinear incidence rate and a standard in-
cidence rate were frequently used in the literature of mathematical modeling. In contrast, many authors suggested
that transmission of the infection would have a nonlinear incidence rate. For example, Capasso and Serio [2] studied
the cholera epidemic spread in Bari in 1973 and gave an assumption that the incidence rate takes the nonlinear form
βS(t)I(t)
1+αI(t) , which was interpreted as a saturated incidence rate. The saturation effect was originally introduced for the

Holling functional response of the predator in a prey-predator system. This incidence rate includes crowding effect of
the infective individuals. Korobeinikov and Maini [9] thereafter formulated a variety of models with an incidence rate
of the form F (S(t))G(I(t)) and Korobeinikov [10, 11] obtained the global properties of basic SIR and SIRS epidemic
models with a more general framework of the incidence rate F (S(t), I(t)).

Recently, Xu and Ma [18] investigated the spread of vector-borne diseases and formulated an SIRS epidemic model

with the saturated incidence rate βS(t) I(t−h)
1+αI(t−h) . Some authors have now proposed several reasons for the nonlinearity

of the incidence rates and introduced various nonlinear incidence functions with delays (see also [7, 19]).

*Corresponding author.
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In this article, to study the impact of nonlinearity of those incidence rates and time delay effects, we consider the
global dynamics of the following SIRS epidemic model with a class of nonlinear incidence rates and distributed delays:

dS(t)

dt
= B − µS(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t).

(1.1)

S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered individuals at time t, respectively. B > 0
is the recruitment rate of the population, µ > 0 is the natural death rate of the population, β > 0 is the proportionality
constant, γ > 0 is the natural recovery rate of the infective individuals, and δ ≥ 0 is the rate at which recovered
individuals lose immunity and return to the susceptible class. h > 0 is a maximum time taken to become infectious, and

the transmission of the infection is governed by an incidence rate βS(t)
∫ h

0
f(τ)G(I(t− τ))dτ . f(τ) denotes the fraction

of vector population in which the time taken to become infectious is τ . Here, f : [0, h] → [0,+∞) is continuous on [0, h]

satisfying
∫ h

0
f(τ)dτ = 1. The initial conditions of system (1.1) take the form

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), −h ≤ θ ≤ 0, (1.2)

where φ = (φ1, φ2, φ3)
T ∈ C such that φi(θ) = φi(0) ≥ 0 (−h ≤ θ ≤ 0, i = 1, 3), φ2(θ) ≥ 0 (−h ≤ θ ≤ 0). C denotes

the Banach space C([−h, 0],R3
+0) of continuous functions mapping the interval [−h, 0] into R3

+0 with the supremum
norm, where R+0 = {x ∈ R|x ≥ 0}. From a biological meaning, we assume φi(0) > 0 for i = 1, 2, 3.

Throughout this article, we further assume that

(H1) G(I) is continuous and monotone increasing on [0,+∞) with G(0) = 0,

(H2) I/G(I) is monotone increasing on (0,+∞) with lim
I→+0

(I/G(I)) = 1.

Under the hypotheses (H1) and (H2), G is Lipschitz continuous on [0,+∞) and 0 < G(I) ≤ I holds for all I > 0. The
basic reproduction number of the system (1.1) becomes

R0 =
Bβ

µ(µ+ γ)
. (1.3)

R0 denotes the expected number of secondary infectious cases generated by one typical primary case in an entirely
susceptible and sufficiently large population.

By the fundamental theory of functional differential equations, system (1.1) has a unique solution (S(t), I(t), R(t)),
and S(t) > 0, I(t) > 0 and R(t) > 0 hold for all t ≥ 0. It is clear that system (1.1) always has a disease-free equilibrium
E0 = (B/µ, 0, 0), and if R0 > 1, then system (1.1) allows a unique endemic equilibrium E∗ = (S∗, I∗, R∗), S∗ > 0,
I∗ > 0, and R∗ > 0 (see Lemma 4.1).

In this article, applying Lyapunov functional techniques for a delayed SIR epidemic model in McCluskey [13] and the
property that the total population of system (1.1) converges to a positive constant B/µ, we obtain sufficient conditions
which ensure the global asymptotic stability of the endemic equilibrium E∗ for R0 > 1 (see Lemma 5.1). The main
results are as follows.

Theorem 1.1. If R0 < 1, then the disease-free equilibrium E0 of system (1.1) is globally asymptotically stable.

Theorem 1.2. Let us assume that R0 > 1 holds. Then system (1.1) is permanent. Moreover, we assume that the
following conditions hold:

(I) There exist positive constants C1 and C2 such that

inf
0≤I≤B/µ

G(I)−G(I∗)

I − I∗
≥ C1 > 0 and inf

0<I≤B/µ

I
G(I) −

I∗

G(I∗)

I − I∗
≥ C2 > 0,

(II) δ2 − 4C1C2(µ+ γ)(µ+ δ) B
µ+βG(B/µ) < 0.

Then the endemic equilibrium E∗ of system (1.1) is globally asymptotically stable.

We show the global asymptotic stability of the endemic equilibrium for a small rate of immunity loss δ as long as
the infection rate has suitable properties concerning the concavity of function G characterized by the hypotheses (H1)
and (H2).
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The organization of this article is as follows. In Section 2, we offer a basic result for system (1.1). In Section
3, we prove Theorem 1.1. In Section 4, we establish the permanence and global asymptotic stability of the endemic
equilibrium E∗ of system (1.1) for R0 > 1. In Section 5, we prove Theorem 1.2 by means of a Lyapunov functional on
a reduced system which is derived from system (1.1) with a key lemma (see Lemma 5.1). To show the feasibility of our
global stability conditions of the endemic equilibrium for R0 > 1, we present numerical examples in Section 6. Finally,
a discussion is offered in Section 7.

2 Global stability of the endemic equilibrium E∗ for R0 > 1

In this section, we introduce a basic result on boundedness of the solution of system (1.1).

Lemma 2.1. For any solution of system (1.1) with the initial conditions (1.2), it holds that

lim
t→+∞

(S(t) + I(t) +R(t)) =
B

µ
. (2.1)

Proof. Let N(t) = S(t) + I(t) +R(t). Then, it follows from system (1.1) that

dN(t)

dt
= B − µS(t)− µI(t)− µR(t) = B − µN(t).

Hence, we obtain limt→+∞ N(t) = B/µ. □

3 Stability of the Disease-Free Equilibrium E0 for R0 < 1

3.1 Local stability of the disease-free equilibrium E0

In this subsection, we investigate the local asymptotic stability of the disease-free equilibrium E0 of system (1.1).

Lemma 3.1. If R0 < 1, then the disease-free equilibrium E0 of system (1.1) is locally asymptotically stable. If R0 > 1,
then the disease-free equilibrium E0 of system (1.1) is unstable.

Proof. The characteristic equation of system (1.1) at E0 is of the form

(λ+ µ)

{
λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)}
(λ+ µ+ δ) = 0. (3.1)

It is clear that both λ = −µ and λ = −(µ+ δ) are roots of (3.1). All other roots of (3.1) are determined by the following
equation:

λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)
= 0. (3.2)

For the case R0 < 1, we suppose on the contrary that E0 is not locally asymptotically stable. Then, there exists a root
λ = λ̃ such that Reλ̃ ≥ 0. However, from (3.2), we obtain

Reλ̃ = (µ+ γ)

{
R0e

−Reλ̃τ

∫ h

0

f(τ) cos(Imλ̃τ)dτ − 1

}
≤ (µ+ γ)(R0 − 1) < 0,

which is a contradiction. Hence, if R0 < 1, then the disease-free equilibrium E0 of system (1.1) is locally asymptotically
stable. Now, we put

Q(λ) := λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)
. (3.3)

For the case R0 > 1, it is directly seen that Q(0) = (µ + γ)(1 − R0) < 0 and limλ→+∞ Q(λ) = +∞ holds for λ ∈ R.
Therefore, (3.1) has at least one positive real root. Hence, if R0 > 1, then the disease-free equilibrium E0 is unstable. □
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3.2 Global stability of the disease-free equilibrium E0

In this subsection, by constructing a Lyapunov functional, we prove Theorem 1.1.

Proof of Theorem 1.1. By R0 < 1, we choose εs > 0 sufficiently small such that

β

(
B

µ
+ εs

)
< µ+ γ. (3.4)

We consider the following Lyapunov functional:

W (t) = I(t) + (µ+ γ)

∫ h

0

f(τ)

∫ t

t−τ

I(u)dudτ.

From Lemma 3.1, there exists a T = T (εS) > 0 such that S(t) < B
µ + εS for all t > T . We then obtain

dW (t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

+(µ+ γ)

∫ h

0

f(τ) (I(t)− I(t− τ)) dτ

≤ β

(
B

µ
+ εs

)∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)

∫ h

0

f(τ)I(t− τ)dτ

≤ β

(
B

µ
+ εs

)∫ h

0

f(τ)I(t− τ)dτ − (µ+ γ)

∫ h

0

f(τ)I(t− τ)dτ

=

∫ h

0

f(τ)

{
β

(
B

µ
+ εs

)
− (µ+ γ)

}
I(t− τ)dτ

for t > T +h. From (3.4) and the arbitrarity of εs > 0, we verify that dW (t)
dt ≤ 0 holds for t > T +h. Thus, it holds that

limt→+∞ W (t) = 0, which implies that limt→+∞ I(t) = 0. It follows that limt→+∞ R(t) = 0 and limt→+∞ S(t) = B/µ
hold. By Lemma 3.1 and Lyapunov-LaSalle asymptotic stability theorem, the disease-free equilibrium E0 is globally
asymptotically stable. □
Remark 3.1. To establish the global asymptotic stability of the disease-free equilibrium E0 of system ((1.1)) for R0 < 1,
the hypothesis of the monotonicity of G(I) in (H1) is not necessary.

4 Permanence for R0 > 1

4.1 Existence and uniqueness of the endemic equilibrium E∗

In this subsection, by the hypothesis (H2), we give a lemma of the unique existence of E∗ for R0 > 1:

Lemma 4.1. If R0 > 1, then system (1.1) has a unique endemic equilibrium E∗ satisfying B − µS∗ − βS∗G(I∗) + δR∗ = 0,
βS∗G(I∗)− (µ+ γ)I∗ = 0,
γI∗ − (µ+ δ)R∗ = 0.

(4.1)

Proof. At a fixed point (S, I,R) of system (1.1), the following equations hold.
B − µS −

(
µ+ γ − γδ

µ+ δ

)
I = 0,

βSG(I)− (µ+ γ)I = 0,
γI − (µ+ δ)R = 0.

(4.2)

Substituting the second equation of (4.2) into the first equation of (4.2), we consider the following equation:

H(I) := B − µ(µ+ γ)I

βG(I)
− µ(µ+ γ + δ)

µ+ δ
I = 0.

By the hypothesis (H2), H is strictly monotone decreasing on (0,+∞) satisfying

lim
I→+0

H(I) = B − µ(µ+ γ)

β
= B

(
1− 1

R0

)
> 0

and H(I) < 0 for all I > B(µ+δ)
µ(µ+γ+δ) . Thus, there exists a unique I∗ > 0 such that H(I∗) = 0. By (4.2), we obtain

S∗ = (µ+γ)I∗

βG(I∗) > 0 and R∗ = γI∗

µ+δ > 0. Hence, system (1.1) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗). □
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4.2 Permanence for R0 > 1

In this subsection, we show the permanence of system (1.1). The following lemma indicates that the disease eventually
persists in the host population if R0 > 1.

Lemma 4.2. If R0 > 1, then for any solution of system (1.1) with the initial conditions (1.2), it holds that

lim inf
t→+∞

S(t) ≥ v1 :=
B

µ+ βG(B/µ)
, lim inf

t→+∞
I(t) ≥ v2 := qI∗e−(µ+γ)(h+ρh), lim inf

t→+∞
R(t) ≥ v3 :=

γv2
µ+ δ

,

where 0 < q <
B

G(I∗)
I∗ − µδγ

β(µ+δ)

B+ δγ
µ+δ I

∗ < 1 and ρ > 0 satisfy S∗ < S△ := B
k (1− e−kρh), k = µ+ βG(qI∗).

Proof. By Lemma 2.1, it holds that lim sup
t→+∞

I(t) ≤ B
µ . This yields that, for any εI > 0 sufficiently small, there exists

a T1 = T1(εI) > 0 such that I(t) < B
µ + εI for all t > T1. From the hypothesis (H1), for t > T1 + h, we derive

dS(t)

dt
≥ B −

{
µ+ βG

(
B

µ
+ εI

)}
S(t),

which implies that

lim inf
t→+∞

S(t) ≥ B

µ+ βG(B/µ+ εI)
.

As the above inequality holds for arbitrary εI > 0, it follows that lim inft→+∞ S(t) ≥ v1.
We now show that lim inft→+∞ I(t) ≥ v2. First, we prove that it is impossible that I(t) ≤ qI∗ for all t ≥ ρh. Suppose

on the contrary that I(t) ≤ qI∗ for all t ≥ ρh. Since we have G(I∗)
I∗ = µ+γ

βS∗ and S∗ < S∗ + I∗ +R∗ = B/µ, it holds that

βBG(I∗)− µδγ

µ+ δ
I∗ =

(
βB

G(I∗)

I∗
− µδγ

µ+ δ

)
I∗

=

(
βB

µ+ γ

βS∗ − µδγ

µ+ δ

)
I∗

>

{
βB

µ+ γ

βS∗ − µ(µ+ γ)

}
I∗

=
(µ+ γ)(B − µS∗)I∗

S∗ > 0,

which yields

S∗ =
B + δγ

µ+δ I
∗

µ+ βG(I∗)
=

B
B(µ+βG(I∗))

B+ δγ
µ+δ I

∗

=
B

µ+
βBG(I∗)− µδγ

µ+δ I
∗

B+ δγ
µ+δ I

∗

<
B

µ+ βqI∗
≤ B

µ+ βG(qI∗)
,

for any 0 < q <
B

G(I∗)
I∗ − µδγ

β(µ+δ)

B+ δγ
µ+δ I

∗ . From the first equation of system (1.1), one can obtain

dS(t)

dt
≥ B − (µ+ βG(qI∗))S(t), for t ≥ ρh+ h,

which yields

S(t) ≥ e−k(t−ρh−h)

{
S(ρh+ h) +B

∫ t

ρh+h

ek(θ−ρh−h)dθ

}
>

B

k
(1− e−k(t−ρh−h)) (4.3)

for t ≥ ρh+ h. Hence, it follows from (4.3) that

S(t) >
B

k
(1− e−kρh) = S△ > S∗, for t ≥ 2ρh+ h. (4.4)

For t ≥ 0, we define

V (t) = I(t) + βS∗
∫ h

0

f(τ)

∫ t

t−τ

G(I(u))dudτ. (4.5)
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By the hypothesis (H2), calculating the derivative of V (t) along the solution of system (1.1) gives as

dV (t)

dt
= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ + βS∗G(I(t))− (µ+ γ)I(t)

= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ +

{
βS∗G(I(t))

I(t)
− (µ+ γ)

}
I(t)

≥ β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ +

{
βS∗G(I∗)

I∗
− (µ+ γ)

}
I(t)

= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ

> β

∫ h

0

f(τ)G(I(t− τ))(S△ − S∗)dτ, for t ≥ 2ρh+ h. (4.6)

Setting i = minθ∈[−h,0] I(θ + 2ρh + 2h), we claim that I(t) ≥ i for all t ≥ 2ρh + h. Otherwise, if there is a T ≥ 0 such

that I(t) ≥ i for 2ρh+ h ≤ t ≤ 2ρh+ 2h+ T , I(2ρh+ 2h+ T ) = i and dI(t)
dt |t=2ρh+2h+T ≤ 0, then it follows from (4.4)

that

dI(t)

dt

∣∣∣
t=2ρh+2h+T

= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

≥ βS(t)G(I(t))− (µ+ γ)I(t)

≥
{
βS(t)

G(I∗)

I∗
− (µ+ γ)

}
i

>

{
βS△G(I∗)

I∗
− (µ+ γ)

}
i

>

{
βS∗G(I∗)

I∗
− (µ+ γ)

}
i = 0.

This is a contradiction. Therefore, I(t) ≥ i for all t ≥ 2ρh+ h. By the hypothesis (H1), it follows from (4.6) that

dV (t)

dt
> βG(i)(S△ − S∗) > 0, for t ≥ 2ρh+ 2h,

which implies that lim
t→+∞

V (t) = +∞. However, from Lemma 2.1, it holds that lim sup
t→+∞

V (t) ≤ B
µ + βS∗G(Bµ ) < +∞.

This leads to a contradiction. Hence the claim is proved.
As the above claim holds, we are left to consider two possibilities:{

(i) I(t) ≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.

If the first case holds, then we immediately get the conclusion. If the second case holds, then we show that I(t) ≥ v2
for all t sufficiently large. Let t1 < t2 be sufficiently large such that

I(t1) = I(t2) = qI∗, I(t) < qI∗, t1 < t < t2.

If t2 − t1 ≤ h+ ρh, then it follows from the second equation of system (1.1) that

dI(t)

dt
≥ −(µ+ γ)I(t),

that is,

I(t) ≥ I(t1)e
−(µ+γ)(t−t1) = qI∗e−(µ+γ)(h+ρh) = v2

holds for all t ≥ t1. If t2−t1 ≤ h+ρh, then we similarly verify that I(t) ≥ v2 holds for t1 ≤ t ≤ t1+h+ρh. We now claim
that I(t) ≥ v2 for all t1+h+ρh ≤ t ≤ t2. Otherwise, there is a T ∗ > 0, such that I(t) ≥ v2 for t1 ≤ t ≤ t1+h+ρh+T ∗,

I(t1 + h+ ρh+ T ∗) = v2 and dI(t)
dt |t=t1+h+ρh+T∗ ≤ 0. Then, from (4.4), we get

dI(t)

dt

∣∣∣
t=t1+h+ρh+T∗

= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

≥ βS△G(I(t))− (µ+ γ)I(t)

≥
{
βS△G(v2)

v2
− (µ+ γ)

}
v2.

6



However, by the hypothesis (H2), it holds that

dI(t)

dt

∣∣∣
t=t1+h+ρh+T∗

≥
{
βS△G(I∗)

I∗
− (µ+ γ)

}
v2 > 0,

which is a contradiction. Hence, I(t) ≥ v2 for t1 ≤ t ≤ t2. As the interval [t1, t2] is arbitrarily chosen, I(t) ≥ v2 holds
for all t sufficiently large. Thus, we obtain lim inft→+∞ I(t) ≥ v2, from which we have lim inft→+∞ R(t) ≥ v3.

5 Global Stability of the Endemic Equilibrium E∗ for R0 > 1

From Lemma 2.1, we see that the limit set of system (1.1) in the first octant of R3 locates on the plane S+I+R = B/µ.
Hence, the dynamics of system (1.1) in the first octant of R3 is equivalent to the following system:

dS(t)

dt
=

B(µ+ δ)

µ
− (µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t).

(5.7)

We now discuss the global asymptotic stability of the endemic equilibrium Ẽ∗ of system (5.1) for R0 > 1. By Lemma
4.1, system (5.1) has a unique endemic equilibrium Ẽ∗ := (S∗, I∗) if R0 > 1. For simplicity, we put

xt =
S(t)

S∗ , yt =
I(t)

I∗
, ỹt =

G(I(t))

G(I∗)
. (5.8)

The following lemma plays an important role to obtain Theorem 1.2.

Lemma 5.1. For all t ≥ 0, under the condition (I), it holds that

g(yt)− g(ỹt) ≥ C1C2I
∗(yt − 1)2, (5.9)

where g(x) = x− 1− lnx ≥ g(1) = 0 defined for all x > 0.

Proof. First, we obtain

ỹt − 1 =
G(I(t))−G(I∗)

G(I∗)

and

yt − ỹt =
I(t)

I∗
− G(I(t))

G(I∗)
=

G(I(t))

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
.

Then, it follows from the condition (I) that

(ỹt − 1)(yt − ỹt) =
G(I(t))

I∗G(I∗)
(G(I(t))−G(I∗))

(
I(t)

G(I(t))
− I∗

G(I∗)

)
≥ C1C2G(I(t))

I∗G(I∗)
(I(t)− I∗)2 =

C1C2I
∗G(I(t))

G(I∗)
(yt − 1)2

= C1C2I
∗ỹt(yt − 1)2. (5.10)

By the hypotheses (H1) and (H2), we have

g(yt)− g(ỹt) = yt − ỹt − ln
yt
ỹt

= yt − ỹt −
yt
ỹt

+ 1 +
yt
ỹt

− 1− ln
yt
ỹt

=
1

ỹt
(ỹt − 1)(yt − ỹt) + g

(
yt
ỹt

)
≥ C1C2I

∗(yt − 1)2.

Hence, we get the conclusion of this lemma. □

Now, we are in a position to prove the global asymptotic stability of the endemic equilibrium Ẽ∗ for R0 > 1 by
applying techniques in McCluskey [13, Proof of Theorem 4.1].

Theorem 5.1. If R0 > 1 and the conditions (I) and (II) hold, then the endemic equilibrium Ẽ∗ of system (5.1) is
globally asymptotically stable.
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Proof. Let us consider the following Lyapunov functional:

U(t) =
1

βG(I∗)
US(t) +

I∗

βS∗G(I∗)
UI(t) + U+(t), (5.11)

where

US(t) = g

(
S(t)

S∗

)
, UI(t) = g

(
I(t)

I∗

)
, U+(t) =

∫ h

0

f(τ)

∫ t

t−τ

g

(
G(I(s))

G(I∗)

)
dsdτ. (5.12)

We now show that dU(t)
dt ≤ 0. First, we calculate dUS(t)

dt :

dUS(t)

dt
=

S(t)− S∗

S∗S(t)

{
B(µ+ δ)

µ
− (µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t)

}
.

By the relation B(µ+δ)
µ = (µ+ δ)S∗ + βS∗G(I∗) + δI∗, we have

dUS(t)

dt
=
S(t)− S∗

S∗S(t)

{
(µ+ δ)S∗ + βS∗G(I∗) + δI∗ − (µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t)

}
=
S(t)− S∗

S∗S(t)

[
−(µ+ δ)(S(t)− S∗) + β

∫ h

0

f(τ) {S∗G(I∗)− S(t)G(I(t− τ))} dτ − δ(I(t)− I∗)

]
=− (µ+ δ)(S(t)− S∗)2

S∗S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− S∗

S(t)

)(
1− S(t)

S∗
G(I(t− τ))

G(I∗)

)
dτ − δ(S(t)− S∗)(I(t)− I∗)

S∗S(t)

=− S∗(µ+ δ)(xt − 1)2

S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt

)
(1− xtỹt−τ )dτ − δI∗

S(t)
(xt − 1)(yt − 1)

=− S∗(µ+ δ)(xt − 1)2

S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt
− xtỹt−τ + ỹt−τ

)
dτ − δI∗

S(t)
(xt − 1)(yt − 1). (5.13)

Secondly, we calculate dUI(t)
dt :

dUI(t)

dt
=

I(t)− I∗

I∗I(t)

{
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

}
.

By the relation (µ+ γ)I∗ = βS∗G(I∗), we have

dUI(t)

dt
=
I(t)− I∗

I∗I(t)

(
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − βS∗G(I∗)

I∗
I(t)

)
=βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− I∗

I(t)

)(
S(t)

S∗
G(I(t− τ))

G(I∗)
− I(t)

I∗

)
dτ

=βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− 1

yt

)
(xtỹt−τ − yt)dτ

=βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
xtỹt−τ − xtỹt−τ

yt
− yt + 1

)
dτ. (5.14)

Finally, calculating dU+(t)
dt gives as follows:

dU+(t)

dt
=

∫ h

0

f(τ)

(
g

(
G(I(t))

G(I∗)

)
− g

(
G(I(t− τ))

G(I∗)

))
dτ

=

∫ h

0

f(τ) (g(ỹt)− g(ỹt−τ )) dτ

=

∫ h

0

f(τ)(ỹt − ln ỹt − ỹt−τ + ln ỹt−τ )dτ. (5.15)
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Combining (5.3), (5.7), (5.8), and (5.9), it follows from Lemma 5.1 that

dU(t)

dt
=

1

βG(I∗)

{
−S∗(µ+ δ)(xt − 1)2

S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt
− xtỹt−τ + ỹt−τ

)
dτ − δI∗

S(t)
(xt − 1)(yt − 1)

}
+

I∗

βS∗G(I∗)

{
βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
xtỹt−τ − xtỹt−τ

yt
− yt + 1

)
dτ

}
+

∫ h

0

f(τ)(ỹt − ln ỹt − ỹt−τ + ln ỹt−τ )dτ

= −S∗(µ+ δ)(xt − 1)2

βG(I∗)S(t)
− δI∗

βG(I∗)S(t)
(xt − 1)(yt − 1)− (g(yt)− g(ỹt))−

∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt−τ

yt

)}
dτ

≤ −S∗(µ+ δ)(xt − 1)2 + δI∗(xt − 1)(yt − 1) + βG(I∗)S(t)C1C2I
∗(yt − 1)2

βG(I∗)S(t)
.

By Lemma 4.2, for any 0 < ε < v1, there exists a Tε > 0 such that S(t) > v1 − ε for all t > Tε. From the condition (II),
we may restrict this ε > 0 sufficiently small such that

δ2 − 4C1C2(µ+ γ)(µ+ δ)(v1 − ε) < 0.

Then, for all t > Tε, it follows

(δI∗)2 − 4C1C2βS
∗G(I∗)(µ+ δ)I∗S(t) =(I∗)2

{
δ2 − 4C1C2(µ+ γ)(µ+ δ)S(t)

}
<(I∗)2

{
δ2 − 4C1C2(µ+ γ)(µ+ δ)(v1 − ε)

}
<0,

from which we obtain dU(t)
dt ≤ 0 for all t > Tε. We recall that dU(t)

dt = 0 if xt = 1 and yt = 1, or equivalently, if S(t) = S∗

and I(t) = I∗ for all t > Tε. It follows from Lemmas 2.1, 4.2 and LaSalle’s invariance principle that Ẽ∗ of system (5.1)
is globally asymptotically stable. □

Proof of Theorem 1.2. Summarizing results of Lemmas 2.1, 4.1, 4.2, and Theorem 5.1, we obtain the conclusion of
this theorem. □

6 Applications

In this section, we illustrate some examples in order to validate the feasibility of our analytical results for R0 > 1 for
the following model proposed in Xu and Ma [18]:

dS(t)

dt
= B − µS(t)− βS(t)G(I(t− h)) + δR(t),

dI(t)

dt
= βS(t)G(I(t− h))− (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t)

(6.1)

with G(I) = I
1+αI , α > 0.

If R0 < 1, then the disease-free equilibrium E0 of system (6.1) is globally asymptotically stable. If R0 > 1, then
system (6.1) is permanent. Concerning the global stability of a unique endemic equilibrium E∗, Muroya et al [17,
Corollary 4.1] established the following theorem:

Theorem A. If R0 > 1 and

δ > δ1(α) :=
βγ

α(µ+ γ) + β
− µ, (6.2)

then the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable.
Theorem A improves the global stability condition of the endemic equilibrium in Xu and Ma [18, Theorem 3.1]. In

contrast, similar to Theorem 1.2, we establish the following result:

Corollary 6.1. If R0 > 1 and
0 ≤ δ < δ2(α), (6.3)

where

δ2(α) :=
2C1C2 (µ+ γ)B

µ+ βG(B/µ)
+

√{
2C1C2 (µ+ γ)B

µ+ βG(B/µ)

}2

+
4µC1C2 (µ+ γ)B

µ+ βG(B/µ)
,

then the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable.
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Parameter Description Value Reference
β Transmission rate 0.05 per day per inidividual Assumed
B Recruitment rate 30 individuals per day Assumed
µ Natural death rate 0.02 per day [4]
γ Recovery rate of infectives 0.077 per day [4]
h Latency period 0.1 days Assumed

Table 1: Parameters of system (6.1) and their values in Figure 1. For the above parameter values, we have R0 =
257.732 · · · > 1.

(1) E*: GAS

[Theorem A]

(2) E*: GAS

[Theorem 6.1]

(3) E*: LAS

[18, Section 2]

(1.1, 0.003)

0.0 0.5 1.0 1.5
Α0.000

0.001

0.002

0.003

0.004

0.005
∆

Figure 1: Curves of δ1(α) (dotted line) and δ2(α) (dashed line) for the parameter values in Table 1 [(1): δ > δ1(α),
(2): 0 ≤ δ ≤ δ1(α) and 0 ≤ δ < δ2(α), (3): 0 ≤ δ ≤ δ1(α) and δ ≥ δ2(α)]. Here, GAS and LAS denote globally
asymptotically stable and locally asymptotically stable, respectively.

Next, for system (6.1), using parameter values given in Table 1, we carry out some computational experiments to
investigate the feasibility of our global stability condition (6.3) with respect to the rate of immunity loss δ ≥ 0. For the
parameter values, we obtain R0 = 257.732 · · · > 1 and the endemic equilibrium E∗ exists. In Figure 1, we show regions
of global and local stability of the endemic equilibrium E∗ which were obtained in Theorem A, Corollary 6.1 and Xu
and Ma [18, Section 2] in the parameter space (α, δ).

First, we consider the case α = 1.4. Then, we obtain δ1(α) = 0.0007 · · · by (6.2) and δ2(α) = 0.0021 · · · by (6.3).
Hence, the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable for any δ ≥ 0. From a biological
point of view, the prevalence of the disease settles to an endemic steady state independent of initial conditions concerning
the fractions of a host population for any rate of immunity loss.

Secondly, we consider the case α = 1.1. Then, we obtain δ1(α) = 0.0045 · · · by (6.2) and δ2(α) = 0.0021 · · · by
(6.3). Therefore, the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable for 0 ≤ δ < 0.0021 · · · or
δ > 0.0045 · · · . Thus, the global stability of the endemic equilibrium E∗ is guaranteed for a small rate of immunity loss
δ even if the condition (6.2) in Theorem A does not hold.

In contrast, Figure 2 indicates that the endemic equilibrium E∗ of system (6.1) is also globally asymptotically stable
for the case α = 1.1 and δ = 0.003 ∈ [δ2(α), δ1(α)] with the parameter values in Table 1. There is still an open problem
to determine the global asymptotic stability of E∗ of system (6.1) when both (6.2) and (6.3) fail.

7 Discussions

In this article, we consider delayed SIRS epidemic models with a class of nonlinear incidence rates. For the incidence
function G, we put the hypotheses (H1) and (H2), which describe crowding effects of infective individuals. For R0 < 1,
we establish the global asymptotic stability of the disease-free equilibrium in Theorem 1.1 and for R0 > 1, we obtain
sufficient conditions of the global asymptotic stability of the endemic equilibrium in Theorem 1.2.
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Figure 2: The graph trajectory of S(t), I(t) and R(t) of system (6.1). For the parameter values in Table 1 with α = 1.1
and δ = 0.003, we have R0 = 257.732 · · · > 1 and E∗ = (229.338 · · · , 106.56 · · · , 164.102 · · · ).

In particular, for R0 > 1, by using strict monotonicity of the functions G(I) and I/G(I) on a neighborhood of I∗,
we establish Lemma 5.1, which plays a key role to construct a Lyapunov functional for the reduced limit system (5.1).

For the special case δ = 0 (a delayed SIR epidemic model), Beretta and Takeuchi [1] obtained the global stability of
a disease-free equilibrium and the local stability of an endemic equilibrium of the model with a bilinear incidence rate
(i.e. G(I) = I). However, in their global stability analysis of the endemic equilibrium, they required a condition that
the size of time delay h should be small enough. The global stability of the endemic equilibrium for a sufficiently large
h remained unsolved for a long time. Later, by applying techniques of equation deformation on a calculation of the time
derivative of a Lyapunov functional, McCluskey [13] solved the problem and established that the endemic equilibrium
of the model is globally asymptotically stable whenever it exists. The similar global stability results for delayed SIR
epidemic models with a wide class of incidence rates were obtained in [3, 6, 14].

In contrast, for the case δ > 0, there are few global stability results concerning an endemic equilibrium of delayed
SIRS epidemic models. For a delayed SIRS epidemic model with the saturated incidence rate, by applying new monotone
iterative techniques in [16], Muroya et al [17] recently obtained sufficient conditions, which ensure the global asymptotic

stability of an endemic equilibrium of the model with an incidence rate βS(t) I(t−h)
1+αIp(t−h) with p > 0 for large δ. Their

result for p = 1 improved the global stability condition of the endemic equilibrium in Xu and Ma [18] for (6.1) (see
Theorem A). For system (6.1), we derive Corollary 6.1 from Theorem 1.2 and find the new global stability region of the
endemic equilibrium in the parameter space (α, δ), compared with that of Theorem A (see Figure 1). This illustrates
that the global stability of the endemic equilibrium still holds for small δ as well as the case δ = 0.
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