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1 Introduction

Mathematical models which describe the dynamics of infectious diseases have played a crucial role in the disease control
in epidemiological aspect. In order to understand the mechanism of disease transmission, many authors have proposed
various kinds of epidemic models (see also [1–22] and the references therein).

One of the basic SIR epidemic models is given as follows (see Hethcote [7]).

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t),

dI(t)

dt
=

βS(t)I(t)

N(t)
− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t),

(1.1)

where N(t) = S(t) + I(t) + R(t). The initial conditions of (1.1) is S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0 with N(0) =
S(0) + I(0) +R(0) ≡ N0 > 0. For system (1.1), since N ′(t) = 0 holds for all t > 0, we have N(t) ≡ N0 for all t ≥ 0.

S(t), I(t) and R(t) denote the proportions of the population susceptible to the disease, of infective members and
of members who have been removed from the possibility of infection, respectively. Hence, N(t) denotes the total
population size. µ > 0 represents the birth rate of the population and the death rates of susceptibles, infected and
recovered individuals. We assume that all newborns are susceptibles. σ > 0 represents the recovery rate of infectives,
and β > 0 represents the product of the average number of contacts of an individual per unit time. For system (1.1),
individuals leave the susceptible class at a rate βS(t)I(t)/N(t), which is called standard incidence rate. By defining

S̃(t) =
S(t)

N0
, Ĩ(t) =

I(t)

N0
, R̃(t) =

R(t)

N0
, (1.2)

*Corresponding author.
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and dividing the equations in (1.1) by the constant total population size N0 yields the following form (“˜” is dropped
for convenience of readers). 

dS(t)

dt
= µ− βS(t)I(t)− µS(t),

dI(t)

dt
= βS(t)I(t)− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t).

(1.3)

On the other hand, many authors have suggested that the bilinear incidence rate should be modified into a nonlinear
incidence rate because the effect concerning the nonlinearity of incidence rates has been observed for some disease
transmissions. For example, Capasso and Serio [4] studied the cholera epidemic spread in Bari in 1973 and introduced

an incidence rate which takes a form βS(t)I(t)
1+αI(t) , and Brown and Hasibuan [3] studied infection model of the two-spotted

spider mites, Tetranychus urticae and introduced an incidence rate which takes a form (S(t)I(t))b. In order to study
the impact of those nonlinearity, Korobeinikov and Maini [10] considered a variety of models with the incidence rate of
the form F (S(t))G(I(t)). Later, Korobeinikov [11,12] obtained the global properties of the following basic SIR epidemic
model with more general framework of the incidence rate.

dS(t)

dt
= µ− f(S(t), I(t))− µS(t),

dI(t)

dt
= f(S(t), I(t))− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t).

(1.4)

However, it is advocated in [2, 5] that more realistic models should incorporate time delays, which enable us to
investigate the spread of an infectious disease transmitted by a vector (e.g. mosquitoes, rats, etc.) after an incubation
time denoting the time during which the infectious agents develop in the vector. This is called the phenomena of time
delay effect which now has important biological meanings in epidemic models.

In this paper, we establish the global asymptotic stability of equilibria for a SIR epidemic model with a wide class
of nonlinear incidence rates and distributed delays by modifying Lyapunov functional techniques in Huang et al. [9],
Korobeinikov [11,12] and McCluskey [17]. Our results indicate that the global dynamics is fully determined by a single
threshold number R0 independently of time delay effects under some biologically feasible conditions on the nonlinearity
of the incidence rate.

The organization of this paper is as follows. In Section 2, for an SIR epidemic model with a wide class of nonlinear
incidence rates and distributed delays, we establish our main results. In Section 3, we offer a basic result. In Section 4,
we show the global stability of the disease-free equilibrium of the system. In Section 5, we show the permanence of the
system and establish the global asymptotic stability of the positive equilibrium for the system using a key lemma (see
Lemma 5.2). Finally, we offer a discussion in Section 6.

2 Main results

In the present paper, we consider the following SIR epidemic model with a wide class of nonlinear incidence rates and
distributed delays: 

dS(t)

dt
= µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t),

(2.1)

with the initial conditions

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), −h ≤ θ ≤ 0, h > 0, (2.2)

where φ = (φ1, φ2, φ3)
T ∈ C such that φi(θ) = φi(0) ≥ 0 (−h ≤ θ ≤ 0, i = 1, 3), φ2(θ) ≥ 0 (−h ≤ θ ≤ 0). C denotes

the Banach space C([−h, 0],R3
+0) of continuous functions mapping the interval [−h, 0] into R3

+0 with the supremum
norm, where R+0 = {x ∈ R|x ≥ 0}. From a biological meaning, we assume that φi(0) > 0 for i = 1, 2, 3.

h is a maximum time taken to become infectious and the transmission of the infection is governed by an incidence

rate
∫ h

0
p(τ)f(S(t), I(t− τ))dτ . Here, p(τ) denotes the fraction of vector population in which the time taken to become
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infectious is τ [20]. We assume that p(τ) is continuous on [0, h] satisfying
∫ h

0
p(τ)dτ = 1, and f : R2

+0 → R+0 is
continuously differentiable on R2

+0 satisfying f(0, I) = f(S, 0) = 0 for S, I ≥ 0 and the following conditions:
(H1) f(S, I) is a strictly monotone increasing function of S ≥ 0, for any fixed I > 0,

and a monotone increasing function of I ≥ 0, for any fixed S ≥ 0,

(H2) ϕ(S, I) = f(S,I)
I is a bounded and monotone decreasing function of I > 0, for any fixed S ≥ 0,

and K(S) ≡ limI→+0 ϕ(S, I) is continuous on S ≥ 0 and a monotone increasing function of S ≥ 0.

We note that K(S) > 0 holds for any S > 0. The basic reproduction number of system (2.1) becomes

R0 =
K(S0)

µ+ σ
, S0 = 1. (2.3)

R0 denotes the expected number of secondary infectious cases generated by one typical primary case in an entirely
susceptible and sufficiently large population. If R0 ≤ 1, then under the conditions (H1) and (H2), system (2.1) always
has a disease-free equilibrium E0 = (S0, 0, 0). On the other hand, if R0 > 1, then system (2.1) also admits a unique
positive equilibrium E∗ = (S∗, I∗, R∗), where S∗, I∗, R∗ > 0.

Our main theorems are as follows.

Theorem 2.1. The disease-free equilibrium E0 of system (2.1) is the only equilibrium and globally asymptotically stable,
if and only if R0 ≤ 1.

Theorem 2.2. The positive equilibrium E∗ of system (2.1) is globally asymptotically stable, if and only if R0 > 1.

Under the conditions (H1) and (H2), for a class of delayed epidemic models, f(S, I) includes various special incidence
rates. If f(S, I) = βSI, then the incidence rate becomes a bilinear form, which is proposed in [15–17, 20]. If f(S, I) =
βSI
1+αI , then the incidence rate describes saturated effects of the prevalence of infectious diseases, which is proposed
in [4, 18,22]. In addition, f(S, I) = F (S)G(I), then the incidence rate is of the form proposed in Huang et al. [9].

3 Preliminary

In this section, we prove the following basic result, which guarantees the existence and uniqueness of the solution
(S(t), I(t), R(t)) for system (2.1) satisfying initial conditions (2.2).

Lemma 3.1. The solution (S(t), I(t), R(t)) of system (2.1) with initial conditions (2.2) uniquely exists and is positive
for all t ≥ 0. Furthermore, it holds that

lim
t→+∞

(S(t) + I(t) +R(t)) = 1. (3.1)

Proof. We notice that the right hand side of system (2.1) is completely continuous and locally Lipschitzian on C.
Then, it follows that the solution of system (2.1) exists and is unique on [0, α) for some α > 0. It is easy to prove that

S(t) > 0 for all t ∈ [0, α). Indeed, this follows from that dS(t)
dt = µ > 0 for any t ∈ [0, α) when S(t) = 0. Let us now

show that I(t) > 0 for all t ∈ [0, α). Suppose on the contrary that there exists some t1 ∈ (0, α) such that I(t1) = 0 and
I(t) > 0 for t ∈ [0, t1). Integrating the second equation of system (2.1) from 0 to t1, we see that

I(t1) = I(0)e−(µ+σ)t1 +

∫ t1

0

∫ h

0

p(τ)f(S(u), I(u− τ))e−(µ+σ)(t1−u)dτdu > 0.

This contradicts I(t1) = 0. From the third equation of system (2.1), we also have that R(t) > 0 for all t ∈ [0, α).
Furthermore, for t ∈ [0, α), we obtain

dN(t)

dt
= µ− µ(S(t) + I(t) +R(t)) = µ(1−N(t)), (3.2)

which implies that (S(t), I(t), R(t)) is uniformly bounded on [0, α). It follows that (S(t), I(t), R(t)) exists and is unique
and positive for all t ≥ 0. From (3.2), we immediately have (3.1), which completes the proof. □

Since the variable R does not appear in the first and the second equations of system (2.1), we omit the third equation
of system (2.1). Thus, we consider the following 2-dimensional system:

dS(t)

dt
= µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t).

(3.3)
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4 Global stability of the disease-free equilibrium for R0 ≤ 1

In this section, we give a proof of the global asymptotic stability of the disease-free equilibrium E0 = (S0, 0, 0) of system
(2.1) for R0 ≤ 1. The following theorem indicates that the disease can be eradicated in the host population if R0 ≤ 1.

Theorem 4.1. The disease-free equilibrium Q0 ≡ (S0, 0) of system (3.3) is the only equilibrium and globally asymptot-
ically stable, if and only if R0 ≤ 1.

Proof. From the conditions (H1) and (H2), the disease-free equilibrium is the only equilibrium for system (3.3). We
now consider the following Lyapunov functional:

U0(t) = U0
1 (t) + I(t) + U0

+(t),

where

U0
1 (t) =

∫ S(t)

S0

(
1− K(S0)

K(s)

)
ds, U0

+(t) =

∫ h

0

p(τ)

∫ t

t−τ

f(S(u+ τ), I(u))
K(S0)

K(S(u+ τ))
dudτ.

We show that dU0(t)
dt ≤ 0 for all t ≥ 0. First, we calculate

dU0
1 (t)
dt . By using µ = µS0,

dU0
1 (t)

dt
=

(
1− K(S0)

K(S(t))

)(
µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t)

)

= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
−
(
1− K(S0)

K(S(t))

)∫ h

0

p(τ)f(S(t), I(t− τ))dτ.

Second, calculating
dU0

+(t)

dt , we get that

dU0
+(t)

dt
=

∫ h

0

p(τ)

{
f(S(t+ τ), I(t))

K(S0)

K(S(t+ τ))
− f(S(t), I(t− τ))

K(S0)

K(S(t))

}
dτ.

Therefore, it follows that

dU0(t)

dt
= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
−
(
1− K(S0)

K(S(t))

)∫ h

0

p(τ)f(S(t), I(t− τ))dτ

+

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t)

+

∫ h

0

p(τ)

{
f(S(t+ τ), I(t))

K(S0)

K(S(t+ τ))
− f(S(t), I(t− τ))

K(S0)

K(S(t))

}
dτ

= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
+

∫ h

0

p(τ)

{
ϕ(S(t+ τ), I(t))

µ+ σ
· K(S0)

K(S(t+ τ))
− 1

}
(µ+ σ)I(t)dτ.

By the condition (H1), we obtain that

−µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
≤ 0,

with equality if and only if S(t) = S0. It follows from the condition (H2) that

ϕ(S(t+ τ), I(t))

µ+ σ
· K(S0)

K(S(t+ τ))
≤ K(S(t+ τ))

µ+ σ
· K(S0)

K(S(t+ τ))
=

K(S0)

µ+ σ
= R0.

Therefore, R0 ≤ 1 ensures that dU0(t)
dt ≤ 0 for all t > 0, where dU0(t)

dt = 0 holds if S(t) = S0. Hence, it immediately follows

from system (3.3) that Q0 is the largest invariant set in {(S(t), I(t)) ∈ R2
+0|

dU0(t)
dt = 0}. From the Lyapunov-LaSalle

asymptotic stability theorem [14], we obtain that Q0 is the only equilibrium of system (3.3) and globally asymptotically
stable. This completes the proof. □

Proof of Theorem 2.1. By Theorem 4.1, we immediately obtain the conclusion of this theorem. □

Remark 4.1. To establish the global asymptotic stability of the disease-free equilibrium E0 for R0 ≤ 1, the condition
of the monotonicity of f(S, I) of I ≥ 0 for any fixed S ≥ 0 in (H1) is not necessary for our analysis.
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5 Permanence and global stability of the positive equilibrium for R0 > 1

In this section, we show the permanence and the global asymptotic stability of the positive equilibrium E∗ = (S∗, I∗, R∗)
for system (2.1) for R0 > 1.

Corollary 5.1. If R0 > 1, then system (2.1) has a unique positive equilibrium E∗ satisfying the following equations:

µ− µS∗ − f(S∗, I∗) = 0, f(S∗, I∗)− (µ+ σ)I∗ = 0, σI∗ − µR∗ = 0.

Proof. At a fixed point (S, I,R) of system (1.1), the following equations hold. µ− µS − (µ+ σ)I = 0,
f(S, I)− (µ+ σ)I = 0,
σI − µR = 0.

(5.1)

Substituting the second equation of (5.1) into the first equation of (5.1), we consider the following equation:

H(I) :=
f(1− µ+σ

µ I, I)

I
− (µ+ σ) = 0.

By the hypothesis (H2), H is strictly monotone decreasing on (0,+∞) satisfying

lim
I→+0

H(I) = K(S0)− (µ+ σ) = (µ+ σ)(R0 − 1) > 0,

and H( µ
µ+σ ) = −(µ+σ) < 0 holds. Hence, there exists a unique 0 < I∗ < µ

µ+σ such that H(I∗) = 0. By (5.1), we obtain

S∗ = 1− µ+σ
µ I∗ > 0 and R∗ = σI∗

µ > 0. This implies that (2.1) has a unique positive equilibrium E∗ = (S∗, I∗, R∗). □

5.1 Permanence

In this subsection, we show the permanence of system (2.1) by using techniques in Song et al. [19] and Wang [21]. From
(3.1), let us put sufficiently small εS > 0 and sufficiently large TS > 0 satisfying K(S(t)) ≤ K(S0) + εS holds for any
t ≥ TS . The following theorem indicates that the disease eventually persists in the host population if R0 > 1.

Theorem 5.1. If R0 > 1, then for any solution of system (2.1), it holds that

lim inf
t→+∞

S(t) ≥ v1, lim inf
t→+∞

I(t) ≥ v2 := qI∗e−(µ+σ)ρh, lim inf
t→+∞

R(t) ≥ v3 :=
σv2
µ

,

where v1 > 0 satisfies µ−K(v1)− µv1 = 0, and q > 0 and ρ ≥ 1 satisfy

S∗ <
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µρh

)
, 0 < q <

µ

(K(S0) + εS)I∗
. (5.2)

Proof. Let (S(t), I(t), R(t)) be a solution of system (2.1) with initial condition (2.2). By Lemma 3.1, it follows that
lim supt→+∞ I(t) ≤ 1, which implies from the condition (H2) that, for any εI > 0, there is an integer TI ≥ 0 such that

dS(t)

dt
= µ−

∫ h

0

p(τ)
f(S(t), I(t− τ))

I(t− τ)
I(t− τ)dτ − µS(t)

≥ µ−K(S(t))

∫ h

0

p(τ)I(t− τ)dτ − µS(t)

= µ−K(S(t))(1 + εI)− µS(t),

for t ≥ TI + h. Let us now consider the auxiliary equation

dS(t)

dt
= µ−K(S(t))− µS(t).

Then, one can immediately obtain that limt→+∞ S(t) = v1 > 0. Since (5.3) holds for arbitrary εI > 0 sufficiently small,
it follows that lim inft→+∞ S(t) ≥ v1 > 0.

We now prove that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. Suppose on the contrary that there
exists a sufficiently large t1 ≥ TS such that I(t) ≤ qI∗ holds for all t ≥ t1. Then, similar to the above discussion, we
have that for any t ≥ t1 + h,

dS(t)

dt
= µ−

∫ h

0

p(τ)ϕ(S(t), I(t− τ))I(t− τ)dτ − µS(t) ≥ µ− (K(S0) + εS)qI
∗ − µS(t),
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which yields for t ≥ t1 + h,

S(t) ≥ S(t1 + h)e−µ(t−t1−h) + e−µt

∫ t

t1+h

eµs(µ− (K(S0) + εS)qI
∗)ds

= S(t1 + h)e−µ(t−t1−h) +
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µ(t−t1−h)

)
. (5.3)

Hence, it follows from (5.3) that for t ≥ t1 + h+ ρh,

S(t) >
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µρh

)
= S△ > S∗. (5.4)

Now, we define the following functional.

V (t) = I(t) +

∫ h

0

p(τ)

∫ t+τ

t

f(S(u), I(u− τ))dudτ. (5.5)

Calculating the derivative of V (t) along solutions of system (2.1) gives as follows.

dV (t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t) +

∫ h

0

p(τ) {f(S(t+ τ), I(t))− f(S(t), I(t− τ))} dτ

=

∫ h

0

p(τ)f(S(t+ τ), I(t))dτ − (µ+ σ)I(t).

For t ≥ t1 + h+ ρh, it follows from (5.4) and the relation µ+ σ = ϕ(S∗, I∗) that

dV (t)

dt
=

∫ h

0

p(τ) {ϕ(S(t+ τ), I(t))− (µ+ σ)} I(t)dτ

>

∫ h

0

p(τ) {ϕ(S(t+ τ), I∗)− ϕ(S∗, I∗) + ϕ(S∗, I∗)− (µ+ σ)} I(t)dτ

=

∫ h

0

p(τ){ϕ(S(t+ τ), I∗)− ϕ(S∗, I∗)}I(t)dτ

≥ {ϕ(S△, I∗)− ϕ(S∗, I∗)}I(t). (5.6)

Setting

i = min
θ∈[−h,0]

I(θ + t1 + ρh+ 2h),

we claim that I(t) ≥ i for all t ≥ t1 + h + ρh. Otherwise, if there is a T ≥ 0 such that I(t) ≥ i for t1 + h + ρh ≤ t ≤
t1 + 2h + ρh + T , I(t1 + 2h + ρh + T ) = i and d

dtI(t)|t=t1+2h+ρh+T ≤ 0, it follows from the second equation of system
(2.1), the conditions (H1) and (H2) that for t2 = t1 + 2h+ ρh+ T ,

dI(t)

dt

∣∣∣
t=t2

=

∫ h

0

p(τ)f(S(t2), I(t2 − τ))dτ − (µ+ σ)I(t2)

=

∫ h

0

p(τ)ϕ(S(t2), I(t2 − τ))I(t2 − τ)dτ − (µ+ σ)I(t2)

>

∫ h

0

p(τ)ϕ(S(t2), I
∗)I(t2 − τ)dτ − (µ+ σ)I(t2)

≥ {ϕ(S(t2), I∗)− (µ+ σ)} I(t2)
≥

{
ϕ(S△, I∗)− (µ+ σ)

}
i

> {ϕ(S∗, I∗)− (µ+ σ)} i = 0.

This is a contradiction. Therefore I(t) ≥ i for all t ≥ t1 + h+ ρh. It follows from (5.6) that

dV (t)

dt
> {ϕ(S△, I∗)− ϕ(S∗, I∗)}i > 0, for t ≥ t1 + 2h+ ρh,

which implies that limt→+∞ V (t) = +∞. However, it holds from (3.1) and (5.5) that lim supt→+∞ V (t) < +∞. Hence
the claim holds.

6



Thus, we proved that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. This implies that we are left to
consider the following two possibilities.{

(i) I(t) ≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.

If the first case holds, then we immediately get the conclusion of the proof. If the second case holds, we show that
I(t) ≥ qI∗ exp (−(µ+ σ)ρh) for all t sufficiently large. Let t3 < t4 be sufficiently large such that

I(t3) = I(t4) = qI∗, I(t) < qI∗, t3 < t < t4.

If t4 − t3 ≤ ρh, then from the second equation of system (3.3), we have dI(t)
dt > −(µ+ σ)I(t), that is,

I(t) > I(t3) exp (−(µ+ σ)(t− t3)) ≥ qI∗ exp (−(µ+ σ)ρh) = v2.

If t4− t3 > ρh, we obtain I(t) ≥ v2 for t3 ≤ t ≤ t3+ρh. We now claim that I(t) ≥ v2 for all t3+ρh ≤ t ≤ t4. Otherwise,

there is a T ∗ > 0 such that I(t) ≥ v2 for t3 ≤ t ≤ t3 + ρh+ T ∗ < t4, I(t3 + ρh+ T ∗) = v2 and dI(t)
dt |t=t3+ρh+T∗ ≤ 0. On

the other hand, for t0 = t3 + ρh+ T ∗, it follows from the relation ϕ(S(t0), I(t0)) > ϕ(S(t0), I
∗) ≥ ϕ(S△, I∗) > ϕ(S∗, I∗)

that

dI(t)

dt

∣∣∣
t=t0

=

∫ h

0

p(τ)f(S(t0), I(t0 − τ))dτ − (µ+ σ)I(t0)

=

∫ h

0

p(τ)ϕ(S(t0), I(t0 − τ))I(t0 − τ)dτ − (µ+ σ)I(t0)

> {ϕ(S(t0), I∗)− (µ+ σ)} I(t0)
≥

{
ϕ(S△, I∗)− (µ+ σ)

}
I(t0)

> {ϕ(S∗, I∗)− (µ+ σ)} I(t0) = 0,

which is a contradiction. Hence I(t) ≥ qI∗ exp (−(µ+ σ)ρh) = v2 for t3 ≤ t ≤ t4. Since the interval [t3, t4] is arbitrarily
chosen, we conclude that I(t) ≥ v2 holds for all t sufficiently large. Thus, we obtain lim inft→+∞ I(t) ≥ v2, from which
we have lim inft→+∞ R(t) ≥ v3. Hence, this completes the proof. □

5.2 Global stability of the positive equilibrium

In this subsection, we give a proof of the global asymptotic stability of the positive equilibrium E∗ for R0 > 1.
For a fixed 0 ≤ τ ≤ h, we put

yt =
I(t)

I∗
, ỹt,τ =

f(S(t+ τ), I(t))

f(S(t+ τ), I∗)
. (5.7)

The following lemma plays a key role to obtain Theorems 2.2 and 5.2.

Lemma 5.1. Assume that system (2.1) has a positive equilibrium E∗. Under the conditions (H1) and (H2), it holds
that

g(yt)− g(ỹt,τ ) ≥ 0, (5.8)

for all t ≥ 0 and 0 ≤ τ ≤ h, where g(x) = x− 1− lnx ≥ 0, for x > 0.

Proof. By the definitions of yt and ỹt,τ , we have that ỹt,τ − 1 = f(S(t+τ),I(t))−f(S(t+τ),I∗)
f(S(t+τ),I∗) and

yt − ỹt,τ =
I(t)

I∗
− f(S(t+ τ), I(t))

f(S(t+ τ), I∗)
=

I(t)

f(S(t+ τ), I∗)
{ϕ(S(t+ τ), I∗)− ϕ(S(t+ τ), I(t))} .

Then, it follows from the conditions (H1) and (H2) that

g(yt)− g(ỹt,τ ) = yt − ỹt,τ − ln
yt
ỹt,τ

= yt − ỹt,τ − yt
ỹt,τ

+ 1 +
yt
ỹt,τ

− 1− ln
yt
ỹt,τ

=
1

ỹt,τ
(ỹt,τ − 1)(yt − ỹt,τ ) + g

(
yt
ỹt,τ

)
≥ 0.

Hence, this completes the proof. □

Now, we are in a position to prove the global asymptotic stability of the positive equilibrium E∗ for R0 > 1, by
applying the technique established by Huang et al. [9], Korobeinikov [11,12] and McCluskey [17].

7



Theorem 5.2. The positive equilibrium Q∗ ≡ (S∗, I∗) of the reduced system (3.3) is globally asymptotically stable, if
and only if R0 > 1.

Proof. We now define the following functional:

U∗(t) = U∗
1 (t) + U∗

+(t), (5.9)

where

U∗
1 (t) =

∫ S(t)

S∗

(
1− ϕ(S∗, I∗)

ϕ(s, I∗)

)
ds+ g

(
I(t)

I∗

)
, U∗

+(t) = f(S∗, I∗)

∫ h

0

p(τ)

∫ t

t−τ

g

(
f(S(u+ τ), I(u))

f(S(u+ τ), I∗)

)
dudτ. (5.10)

We note that U∗
1 (t) satisfies

∂U∗
1

∂S = 1− ϕ(S∗,I∗)
ϕ(S,I∗) and

∂U∗
1

∂I = 1− I∗

I , which implies that the point (S(t), I(t)) = (S∗, I∗) is

a stational point of the function U∗
1 (t) and it is the unique stational point and the global minimum of the function U∗

1 .
Using the relation µ = µS∗ + f(S∗, I∗) and µ + σ = ϕ(S∗, I∗), the time derivative of the function U∗

1 (t) along the
positive solution of system (3.3) becomes

dU∗
1 (t)

dt
=

(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

){
µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t)

}
+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t)

)
=

(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

){∫ h

0

p(τ){f(S∗, I∗)− f(S(t), I(t− τ))}dτ − µ(S(t)− S∗)

}
+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − ϕ(S∗, I∗)I(t)

)
= µS∗

(
1− S(t)

S∗

)(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

)
+ f(S∗, I∗)

(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

)∫ h

0

p(τ)

{
1− f(S(t), I(t− τ))

f(S∗, I∗)

}
dτ

+ f(S∗, I∗)

(
1− I∗

I(t)

)∫ h

0

p(τ)

{
f(S(t), I(t− τ))

f(S∗, I∗)
− I(t)

I∗

}
dτ, (5.11)

and the time derivative of the function U∗
+(t) becomes

dU∗
+(t)

dt
= f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g

(
f(S(t), I(t− τ))

f(S(t), I∗)

)}
dτ. (5.12)

From (5.11) and (5.12), we obtain that

dU∗(t)

dt
= µS∗

(
1− S(t)

S∗

)(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

)
+ f(S∗, I∗)

∫ h

0

p(τ)

(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)
+

f(S(t), I(t− τ))

f(S(t), I∗)

)
dτ

+ f(S∗, I∗)

∫ h

0

p(τ)

(
1− I(t)

I∗
− I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)
dτ

+ f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g

(
f(S(t), I(t− τ))

f(S(t), I∗)

)}
dτ

= µS∗
(
1− S(t)

S∗

)(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

)
+ f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g

(
I(t)

I∗

)}
dτ

− f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
ϕ(S∗, I∗)

ϕ(S(t), I∗)

)
+ g

(
I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)}
dτ. (5.13)

From the condition (H1), we obtain (
1− S(t)

S∗

)(
1− ϕ(S∗, I∗)

ϕ(S(t), I∗)

)
≤ 0,
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with equality holds if and only if S(t) = S∗, and using Lemma 5.1, we have g( f(S(t+τ),I(t))
f(S(t+τ),I∗) ) − g( I(t)I∗ ) ≤ 0 for all

0 ≤ τ ≤ h. This implies that dU∗(t)
dt ≤ 0 holds for all t ≥ 0 since S∗ and f(S∗, I∗) are nonnegative. Therefore, it follows

from (5.13) that dU∗(t)
dt = 0 holds if S(t) = S∗ and f(S∗, I(t− τ)) = f(S∗,I∗)

I∗ I(t) for almost all τ ∈ [0, h]. By Hale and

Lunel [6, Theorem 5.3.1], solutions of system (3.3) limit to M , the largest invariant subset of {dU∗(t)
dt = 0}. We now

show that M consists of only the positive equilibrium Q∗. For each element of M , we have S(t) = S∗ and, since M is

invariant, dS(t)
dt = 0. Using the first equation of system (3.3) and the relation µ = µS∗ + f(S∗, I∗), we obtain that

0 =
dS(t)

dt
= µ−

∫ h

0

p(τ)f(S∗, I(t− τ))dτ − µS∗ = µ− f(S∗, I∗)

I∗
I(t)− µS∗

= µS∗ + f(S∗, I∗)− f(S∗, I∗)

I∗
I(t)− µS∗

= f(S∗, I∗)

(
1− I(t)

I∗

)
.

Thus, each element of M satisfies S(t) = S∗ and I(t) = I∗. Since the permanence result (see Lemma 3.1 and Theorem
5.1) for system (3.3) is already known, by the LaSalle invariance principle [14], Q∗ is the only equilibrium of system
(3.3) on the line and globally asymptotically stable. Hence, the proof is complete. □

Proof of Theorem 2.2. By Lemma 3.1, Theorems 5.1 and 5.2, we obtain the conclusion of this theorem. □

6 Discussion

In this paper, we establish the global asymptotic stability of the disease-free equilibrium for R0 ≤ 1, and the positive
equilibrium for R0 > 1 by modifying Lyapunov functional techniques in Huang et al. [9], Korobeinikov [11, 12] and
McCluskey [17]. From a biological motivation, we do not only extend the nondelayed model (1.4) in Korobeinikov [11,12]
to the delayed model (2.1) but also obtain the permanence result and the global properties for (2.1) with distributed time

delays governed by a wide class of nonlinear incidence rate
∫ h

0
p(τ)f(S(t), I(t− τ))dτ . It is noteworthy that the global

dynamics is completely determined by the basic reproduction number R0 independently of the length of an incubation
period of the diseases as long as the infection rate has a suitable monotone property characterized by (H1) and (H2).

It has been generally considered reasonable to expect that a biologically feasible functional response is associated
with monotonicity with respect to the proportion of susceptible and infected individuals, and is concave, or at least

nonconvex with respect to the proportion of infective individuals (see, e.g., [4, 10–12]). Noting that ϕ(S, I) = f(S,I)
I

denotes the infection force per unit proportion of infective individuals, the conditions that f(S, I) is monotone increasing
of I and ϕ(S, I) is monotone decreasing of I in (H1) and (H2) describe the crowding (saturation) effects. Thus, one
can see that the conditions (H1) and (H2) are natural assumptions which have a biological meaning. Our result further
indicates that the disease dynamics is fully determined when the saturation effects appear (see, e.g., [4, 18,22]).

Finally, we have to stress that Lemma 5.1 plays a vital role to establish the global asymptotic stability of the positive
equilibrium E∗ of system (2.1) for R0 > 1. These techniques are also applicable to various kinds of epidemic models
(e.g. SIRS models, SEIR models, etc.). These will be our future consideration.
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