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1 Introduction

Motivated by the interesting contribution by Xu and Du [4] and Xu and Ma [6] to the stability analysis by means of
iterative schemes and comparison principles, Beretta and Breda [1] recently investigated a two delayed SEIR epidemic
model with a saturation incidence rate. One delay is a time taken by the infected individuals to become infectious, and
the other delay is a time taken by an infectious individual to be removed from the infection. The model is as follows.

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t),

dE(t)

dt
= g(I(t))S(t)− g(I(t− τ1))S(t− τ1)e

−µ2τ1 − µ2E(t),

dI(t)

dt
= g(I(t− τ1))S(t− τ1)e

−µ2τ1 − g(I(t− τ1 − τ2))S(t− τ1 − τ2)e
−µ2(τ1+τ2) − µ2I(t),

dR(t)

dt
= g(I(t− τ1 − τ2))S(t− τ1 − τ2)e

−µ2(τ1+τ2) − µ3R(t),

(1.1)

where S(t), E(t), I(t) and R(t) denote the numbers of susceptible individuals, exposed individuals, infected individuals
and recovered individuals, respectively. The exposed individuals who have been infected, take a time τ1 ≥ 0 to become
infectious and the infected individuals who have become infected individual take a time τ2 ≥ 0 to be removed from the
infection. In addition, we assume that the removed individuals cannot return to the susceptible class, because they have
been quarantined and/or acquired permanent immunity to infectious diseases. Λ > 0 is the constant recruitment rate of
the population, and µ1 > 0, µ2 > 0 and µ3 > 0 are the constant death rates of the susceptible individuals, both exposed
individuals and infectious individuals, and the recovered individuals, respectively. We assume that g(I) is a saturated
incidence rate of the form

g(I) =
βI

1 + αI
, (1.2)
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where βI is a measure of the force of infection and 1
1+αI accounts for the inhibition effect on the rate of infection when

I becomes large. We assume that
µ1 = min

i=1,2,3
{µi}, µ2 = max

i=1,2,3
{µi}. (1.3)

By taking into account that the rate of infection at time t is g(I(t))S(t) and that the exposed individuals that become
infection I at time t are those infected at the previous time t− τ1, multiplied for the fraction equation for the exposed
survived in the time interval [t − τ1, t], we also get the evolution equations for I(t) and R(t), while the one for S(t) is
standard.

Since in (1.1), the evolution equations for S(t) and I(t) do not contain the variables E(t) and R(t), we may consider
the following reduced system:

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t),

dI(t)

dt
= g(I(t− τ1))S(t− τ1)e

−µ2τ1 − g(I(t− τ1 − τ2))S(t− τ1 − τ2)e
−µ2(τ1+τ2) − µ2I(t).

(1.4)

We here note that the second equation of (1.4) can be rewritten by formally integrating the delay differential equations
for I(t) as follows:

I(t) =

∫ τ1+τ2

τ1

g(I(t− θ))S(t− θ)e−µ2θdθ. (1.5)

The initial conditions of (1.4) are given by biological reasons as

S(θ) = φ1(θ) and I(θ) = φ2(θ), θ ∈ [−(τ1 + τ2), 0] with S(0) > 0, I(0) > 0, (1.6)

where φ1 and φ2 are nonnegative continuous functions on a closed interval [−(τ1 + τ2), 0] and satisfy

I(0) =

∫ −τ1

−(τ1+τ2)

g(φ2(θ))φ1(θ)e
µ2θdθ. (1.7)

The basic reproduction number of system (1.4) becomes

R0 =
βΛ

µ1µ2
e−µ2τ1(1− e−µ2τ2), (1.8)

which depends on the delays τ1 and τ2.
One can see immediately that system (1.4) always has a disease-free equilibrium E0 = (Λ/µ, 0). Apart from the

above equilibrium, if R0 > 1, then system (1.4) allows a unique endemic equilibrium E+ = (S+, I+) satisfying the
following equations. {

Λ− µ1S+ − g(I+)S+ = 0,
g(I+)S+e

−µ2τ1(1− e−µ2τ2)− µ2I+ = 0,
(1.9)

and hence, we have that

S+ =
Λ

µ1

β + αµ1R0

R0(β + αµ1)
, I+ =

µ1(R0 − 1)

β + αµ1
. (1.10)

By applying iterative schemes as used for a delayed SIR epidemic model in Xu and Du [4] and the comparison principles,
Beretta and Breda [1] established the following result:

Theorem A (See Beretta and Breda [1]). If R0 ≤ 1, then the disease-free equilibrium of system (1.1) is globally
asymptotically stable. If R0 > 1, then there exists an endemic equilibrium of system (1.1) which uniquely exists and is
locally asymptotically stable. Moreover, if

R0 >
β

αµ1
, (1.11)

then system (1.1) is permanent, and in particular, if

β

αµ1
< 1, (1.12)

then the endemic equilibrium of system (1.1) is globally asymptotically stable.
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Because Beretta and Breda [1] needed more restricted condition R0 > 1 > β
αµ1

, to compare with the permanence

conditions of system (1.1) such that R0 > 1 and R0 > β
αµ1

, there remains an open question for the case R0 > β
αµ1

≥ 1

on the global asymptotic stability of the endemic equilibrium of system (1.1).
On the other hand, Muroya et al. [3] (see also Muroya et al. [2]) investigated improvement on monotone iterative

techniques in Xu and Ma [5] to obtain the global stability of the endemic equilibrium of a delayed SIRS epidemic model.
Motivated by the above results, in this note, applying the techniques in Muroya et al. [3] to construct a strictly

monotone decreasing sequence {S̄n}∞n=1 of upper bound of lim supt→+∞ S(t) and a strictly monotone increasing sequence
{Sn}∞n=1 of lower bound of lim inft→+∞ S(t) (see Lemma 3.2), we establish the following theorem which completely solves
the above open question and improves the result in Beretta and Breda [1].

Theorem 1.1. Assume R0 > 1. Then there exists an endemic equilibrium of system (1.1) which is locally asymptotically
stable. Moreover, if (1.11) holds, then the endemic equilibrium of system (1.1) is globally asymptotically stable.

The organization of this paper is as follows. In Section 2, we give some known results for system (1.1). In Section 3,
using monotone techniques similar to Muroya et al. [3], we first offer our basic Lemmas 3.1 and 3.2, from which we prove
Theorem 1.1. In Section 4, we offer numerical examples in order to investigate the feasibility of the sufficient condition
(1.11) ensuring the global stability of the endemic equilibrium of system (1.1).

2 Some known results in Beretta and Breda [1]

In this section, we state some known results for system (1.1) by Beretta and Breda [1]. By the comparison principle,
the following result is obtained in Beretta and Breda [1, Lemma 2.1].

Lemma 2.1. The compact set

Ω :=

{
(S,E, I,R) ∈ R4

+0 :
Λ

µ2
≤ S + E + I +R ≤ Λ

µ1

}
(2.1)

is globally attractive and invariant for the solutions of (1.1), where

R4
+0 = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}. (2.2)

Moreover, the following results are also obtaind in Beretta and Breda [1, Lemma 2.2 and Theorems 2.7-2.8].

Lemma 2.2. If R0 > 1, then the endemic equilibrium of system (1.1) uniquely exists and is locally asymptotically stable.
Moreover, if the condition (1.11) holds, then system (1.1) is permanent.

3 Monotone iterative techniques to the reduced model

In this section, we restrict our attention to obtain the improved result for the global stability of the endemic equilibrium
of system (1.4) for the case R0 > 1 in Theorem 1.1, because the global stability for R0 ≤ 1 and the permanence for
R0 > 1 has been already completed by Beretta and Breda [1]. By Lemma 2.1, we have

S̄ := lim sup
t→+∞

S(t) ≤ Λ

µ1
, Ī := lim sup

t→+∞
I(t) ≤ Λ

µ1
, (3.1)

and by Lemma 2.2, under the condition (1.11), there exist some positive constants v1 and v2 such that

S := lim inf
t→+∞

S(t) ≥ v1, I := lim inf
t→+∞

I(t) ≥ v2. (3.2)

Then, similar to Muroya et al. [3, Lemma 4.2], from the first equation of (1.4), we have the following lemma.

Lemma 3.1. {
0 ≤ Λ− µ1S̄ − S̄g(I),
0 ≥ Λ− µ1S − Sg(Ī).

(3.3)

Proof. Assume that S(t) is eventually monotone decreasing for t ≥ 0. Then, by Lemma 2.2, there exists limt→+∞ S(t) =
S̄ = S = S∗ > 0. Then, by the first equation of (1.4), we obtain that

0 = Λ− µ1S
∗ − { lim

t→+∞
g(I(t))}S∗,
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from which by the continuity and strong monotonicity of g(I) with respect to I, there exists limt→+∞ I(t) = Ī = I =
I∗ > 0 such that

g(I∗)S∗ = Λ− µ1S
∗,

and from the second equation of (1.4), we obtain that (S∗, I∗) satisfies the equation (1.9). Since the positive equilibrium
E+ = (S+, I+) is unique, we have that S∗ = S+ = S̄ = S and I∗ = I+ = Ī = I. Thus, by (1.9), the inequality (3.3)
holds.

We now suppose that S(t) is not eventually monotone decreasing for t ≥ 0. Then, there exists a sequence {tn}∞n=1

such that limn→+∞ S′(tn) ≥ 0 and limn→+∞ S(tn) = S̄. Therefore, we immediately derive the first equation of (3.3).
Similarly, we obtain the second equation of (3.3). This completes the proof. □

Then, we obtain that

S̄ ≤ Λ

µ1 + g(I)
, S ≥ Λ

µ1 + g(Ī)
. (3.4)

Now, we construct four sequences {S̄n}∞n=1, {Sn}∞n=1, {Īn}∞n=1 and {In}∞n=1 forR0 > 1 as follows. First, {S̄n}∞n=1 of upper
bound of lim supt→+∞ S(t) and a strictly monotone increasing sequence {Sn}∞n=1 of lower bound of lim inft→+∞ S(t), we
use the following sequences constructed by (3.4) which are derived by similar monotone techniques in Muroya et al. [3].

S̄n =
Λ

µ1 + g(In−1)
, Sn =

Λ

µ1 + g(Īn)
. (3.5)

However, in order to construct a strictly monotone decreasing sequence {Īn}∞n=1 of upper bound of lim supt→+∞ I(t)
and a strictly monotone increasing sequence {In}∞n=1 of lower bound of lim inft→+∞ I(t), we use the following one on
the proof of permanence in Beretta and Breda [1].

Īn =
1

α

(
R0

S̄n

S̄1
− 1

)
, In =

1

α

(
R0

Sn

S̄1
− 1

)
. (3.6)

As a result, we consider the following four sequences:
S̄n =

Λ

µ1 + g(In−1)
, Īn =

1

α

(
R0

S̄n

S̄1
− 1

)
,

Sn =
Λ

µ1 + g(Īn)
, and In =

1

α

(
R0

Sn

S̄1
− 1

)
, n = 1, 2, 3, · · ·

(3.7)

with
I0 = 0. (3.8)

Lemma 3.2. Let {Īn}∞n=1, {In}∞n=1, {S̄n}∞n=1 and {Sn}∞n=1 be the sequences defined by (3.7) with (3.8). Then,
S̄1 =

Λ

µ1
, Ī1 =

1

α
(R0 − 1), S1 =

Λ

µ1 +
β
α (1−

1
R0

)
, and

I1 =
1

α

{
R0

1 + β
αµ1

(1− 1
R0

)
− 1

}
=

µ1(R0 − 1)(R0 − β
αµ1

)

αµ1R0 + β(R0 − 1)
.

(3.9)

Moreover, if R0 > 1 and (1.11) hold, if and only if,

I1 =
µ1(R0 − 1)(R0 − β

αµ1
)

αµ1R0 + β(R0 − 1)
> 0 = I0, (3.10)

and there exist four positive constants such that the two sequences {S̄n}∞n=1 and {Īn}∞n=1 are strongly monotone decreasing
sequences and converge to S+ and I+, respectively, and the two sequences {Sn}∞n=1 and {In}∞n=1 are strongly monotone
increasing sequences and converge to S+ and I+, respectively, as n tends to +∞.

Proof. By (3.7) with (3.8), we obtain (3.9) except the last equation. Since

R0 −
{
1 +

β

αµ1

(
1− 1

R0

)}
=

1

R0
(R0 − 1)

(
R0 −

β

αµ1

)
> 0,

we have that

I1 =
1

α

{
R0

1 + β
αµ1

(1− 1
R0

)
− 1

}
=

µ1(R0 − 1)(R0 − β
αµ1

)

αµ1R0 + β(R0 − 1)
,
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and we obtain the last equation of (3.9). Moreover, by the second equation of (3.6), I1 > 0 is equivalent to R0 > S̄/S ≥ 1.
Thus, R0 > 1 and R0 > β

αµ1
, if and only if, I1 > 0 = I0.

Next, if I1 > 0 = I0, then we will prove the remaining part of this lemma. At first, we claim that for the sequences
of (3.7), it holds that {

I0 = 0 < I1 < I2 < · · · < In < · · · < Īn < · · · < Ī2 < Ī1, and
S1 < S2 < · · · < Sn < · · · < S̄n < · · · < S̄2 < S̄1.

The proof will be given by induction. Since g(I) is increasing in I, by the iteration (3.7), one can see that{
I0 = 0 < I1 < I2 < Ī2 < Ī1, and
S1 < S2 < S̄2 < S̄1.

We assume the following inequalities hold for some positive integer n ≥ 2.{
I0 = 0 < I1 < I2 < · · · < In−1 < Īn−1 < · · · < Ī2 < Ī1, and
S1 < S2 < · · · < Sn−1 < S̄n−1 < · · · < S̄2 < S̄1.

(3.11)

We need to prove that (3.11) implies{
I0 = 0 < I1 < I2 < · · · < In < Īn < · · · < Ī2 < Ī1, and
S1 < S2 < · · · < Sn < S̄n < · · · < S̄2 < S̄1.

(3.12)

In fact, since g(I) is monotone increasing with respect to I, by (3.7), we know that

S̄n =
Λ

µ1 + g(In−1)
<

Λ

µ1 + g(In−2)
= S̄n−1.

From the second equation of (3.7), it is obvious that

Īn =
1

α

(
R0

S̄n

S̄1
− 1

)
<

1

α

(
R0

S̄n−1

S̄1
− 1

)
= Īn−1.

From the third and fourth equations of (3.7), we similarly have

Sn =
Λ

µ1 + g(Īn)
>

Λ

µ1 + g(Īn−1)
= Sn−1

and

In =
1

α

(
R0

Sn

S̄1
− 1

)
>

1

α

(
R0

Sn−1

S̄1
− 1

)
= In−1.

Therefore, the proof of our claim is complete.
Hence, there exist four positive constants I ≤ Ī and S ≤ S̄ such that

I = lim
n→+∞

In ≤ lim
n→+∞

Īn = Ī S = lim
n→+∞

Sn ≤ lim
n→+∞

S̄n = S̄

and 
S̄ =

Λ

µ1 + g(I)
, Ī =

1

α

(
R0

S̄

S̄1
− 1

)
,

S =
Λ

µ1 + g(Ī)
, and I =

1

α

(
R0

S

S̄1
− 1

)
, n = 1, 2, 3, · · ·.

(3.13)

Then, we have that 

Ī − I =
R0

αS̄1
(S̄ − S) =

β

αµ2
e−µ2τ1(1− e−µ2τ2)(S̄ − S),

S̄ − S =
Λ

µ1 + g(I)
− Λ

µ1 + g(Ī)
=

Λ

{µ1 + g(I)}{µ1 + g(Ī)}
{g(Ī)− g(I)}

=
Λβ

{µ1 + g(I)}{µ1 + g(Ī)}(1 + αĪ)(1 + αI)
(Ī − I),

from which we obtain

Ī − I =
β2Λe−µ2τ1(1− e−µ2τ2)

αµ2{µ1 + g(I)}{µ1 + g(Ī)}(1 + αĪ)(1 + αI)
(Ī − I)

=
β

αµ1

R0

{1 + (α+ β/µ1)I}{1 + (α+ β/µ1)Ī}
(Ī − I). (3.14)
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Now, we will prove that 
β2Λe−µ2τ1(1− e−µ2τ2)

αµ2{µ1 + g(I)}{µ1 + g(Ī)}(1 + αĪ)(1 + αI)
= 1,

that is, R0 =
αµ1

β
{1 + (α+ β/µ1)I}{1 + (α+ β/µ1)Ī}

(3.15)

is equivalent to

R0 =
β

αµ1
, I = 0, and Ī =

1

α

(
β

αµ1
− 1

)
. (3.16)

In fact, (3.15) is equivalent to

βµ1

α
R0 = [{µ1 + g(Ī)}(1 + αI)][{µ1 + g(I)}(1 + αĪ)]. (3.17)

From (3.13), we have that

Ī =
1

α(R0
µ1

µ1+g(I) − 1)
, I =

1

α

(
R0

µ1

µ1 + g(Ī)
− 1

)
,

and we obtain that
(1 + αĪ){µ1 + g(I)} = µ1R0 = (1 + αI){µ1 + g(Ī)}.

Thus, (3.17) is equivalent to

βµ1

α
R0 = [{µ1 + g(Ī)}(1 + αI)][{µ1 + g(I)}(1 + αĪ)] = (µ1R0)

2.

Then,

R0 =
β

αµ1
,

and by (3.9), we obtain that

I = 0, and Ī =
1

α

(
β

αµ1
− 1

)
.

Hence, R0 > 1 and (1.11) imply

β2Λe−µ2τ1(1− e−µ2τ2)

αµ2{µ1 + g(I)}{µ1 + g(Ī)}(1 + αĪ)(1 + αI)
̸= 1, (3.18)

and by (3.14) and the uniqueness of the endemic equilibrium E+ of (1.4), we obtain that

I = Ī = I+ and S = S̄ = S+. (3.19)

Hence, the proof is complete. □

Remark 3.1. For the iteration (3.7) with (3.8), if R0 = β
αµ1

, then

In = 0 and Īn =
1

α

(
β

αµ1
− 1

)
, n = 1, 2, 3, · · · . (3.20)

Proof of Theorem 1.1. By Lemma 3.2, under the condition (1.11), by the convergence of the monotone iterations
(3.9), one can easily see that the endemic equilibrium E+ = (S+, I+) of (1.4) is uniformly stable and globally attractive.
For system (1.1), limt→+∞ S(t) = S+ and limt→+∞ I(t) = I+ yield limt→+∞ E(t) = (1 − e−µ2τ1)g(I+)S+/µ2 and
limt→+∞ R(t) = (1− e−µ2(τ1+τ2))g(I+)S+/µ3. Moreover, since E+ of (1.4) is uniformly stable, the endemic equilibrium
of (1.1) is also uniformly stable. Hence, the global stability of the endemic equilibrium for the reduced system (1.4)
implies the global stability of the endemic equilibrium for the original system (1.1). This completes the proof. □

4 Numerical examples

In this section, by using matlab, at first, for the case R0 > β
αµ1

≥ 1 to illustrate the first 20 steps of the four sequences

{Sn}+∞
n=1 and {S̄n}+∞

n=1, and {In}+∞
n=1 and {Īn}+∞

n=1 of (3.7) in Lemma 3.2, we offer Example 4.1.
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Figure 1: Figures of {Sn}20n=1 and {S̄n}20n=1, and {In}20n=1 and {Īn}20n=1 for R0 > β
αµ1

> 1 show that each sequence

converges monotonically to the corresponding limit value of endemic equilibrium E+ = (S+, I+), respectively.
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Figure 2: Figures of S(t), I(t), E(t) and R(t) for R0 > 1 > β
αµ1

show that the endemic equilibrium is globally asymptot-
ically stable.

Example 4.1. We take

λ = 20, β = 10, α = 1, µ1 = 1.2, µ2 = 2, µ3 = 1.5, τ1 = 1 and τ2 = 1.5. (4.1)

Then, R0 = 10.71644 . . . > β
αµ1 = 8.333333 . . . > 1 and Figure 1 shows the fact that for the endemic equilibrium

E+ = (S+, I+), the two sequences {S̄n}∞n=1 and {Īn}∞n=1 are strongly monotone decreasing sequences and converge to
S+ and I+, respectively, and the two sequences {Sn}∞n=1 and {In}∞n=1 are strongly monotone increasing sequences and
converge to S+ and I+, respectively, as n tends to +∞.

Second, we offer Examples 4.2 and 4.3 to illustrate the global stability of endemic equilibrium for the cases R0 >
1 > β

αµ1
and R0 > β

αµ1
≥ 1, both of which satisfy the condition (1.11) of Theorem 1.1.

Example 4.2. We take

λ = 5, β = 5, α = 10, µ1 = 1, µ2 = 1.1, µ3 = 1, τ1 = 1, and τ2 = 1.5. (4.2)

Then, R0 = 6.1123 · · · > 1 > β
αµ1

= 0.5 and Figure 2 shows the fact that the endemic equilibrium of (1.1) is globally
asymptotically stable by Theorem A.

From the biological viewpoint, the additional condition (1.12) given by Beretta and Breda [1] seems restrictive in the
meaning that the rate of infection force β should be small than αµ1, where parameters α and µ1 denote the saturation
effect and the death rate of susceptible individuals, respectively. On the contrary, since R0 is monotone increasing
with respect to β, the improvement of our result is that the condition (1.11) without the condition (1.12) enables us to
establish the global asymptotic stability of the endemic equilibrium of (1.1), even if the rate of infection force β is high.
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Figure 3: Figures of S(t), I(t), E(t) and R(t) for R0 > β
αµ1

> 1 show that the endemic equilibrium is globally asymptot-
ically stable.
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Figure 4: Graph trajectories of S(t) and I(t) for 1 < R0 < β
αµ1

of (4.5). It seems that E+ = (10.2397 · · · , 0.1386 · · · ) is
globally asymptotically stable.

Example 4.3. We take

λ = 10, β = 2, α = 1, µ1 = 1, µ2 = 1.1, µ3 = 1, τ1 = 1 and τ2 = 1.5. (4.3)

Then, R0 = 4.889877 · · · > β
αµ1

= 2 > 1 and Figure 3 shows the fact that the endemic equilibrium of (1.1) is globally
asymptotically stable by Theorem 1.1.

Note that by the definition of the basic reproduction number R0 in (1.8), the condition (1.11) is equivalent to

αΛe−µ2τ1(1− e−µ2τ2) > µ2.

Therefore, there exist a sufficiently small delay τ1 ≥ 0 and a sufficiently large delay τ2 ≥ 0 such that the condition (1.11)
is satisfied, if and only if,

αΛ > µ2, (4.4)

which does not depend on the rate of infection force β and the death rate of susceptible individuals µ1.
Third, we investigate numerical examples for the case 1 < R0 ≤ β

αµ1
which does not satisfy the condition (1.11).

Example 4.4. We take

λ = 0.8, β = 0.9, α = 6, µ1 = 0.01, µ2 = 0.02, τ1 = 0.2, and τ2 = 0.2. (4.5)

Then, 1 < R0 = 14.3139 · · · < β
αµ1

= 15. However, Figure 4 seems to indicate that the endemic equilibrium of (1.1) is
globally asymptotically stable.

Example 4.4 implies that there remains a question how to analyze the global dynamics of system (1.1) for the case

1 < R0 ≤ β

αµ1
. (4.6)

8



Note: Recently, by using Lyapunov function approach for the corresponding age-structured model, the complete global
stability of endemic equilibrium of (1.1) have been established by the paper [Huang, Beretta and Takeuchi, Global
stavbility for epidemic model with constant latency and infectious periods, Math. Biosi. Eng. 9 (2012) 297-312.
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