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Abstract. We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by Cooke
et al. [1]. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals.
By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium
when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study
the model with two specific birth rate functions B1(N) = be−aN and B3(N) = A/N + c, where N denotes the total
population. For each model, we obtain the disease induced death rate which guarantees the global stability of the
endemic equilibrium and this gives a positive answer for an open problem by Zhao and Zou [5].
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1 Introduction

Cooke et al. [1] derived a population growth model for single-species with multiple life stages as follows.

N ′(t) = B(N(t− T ))N(t− T )e−d1T − dN(t), (1.1)

where ′ = d
dt , N(t) is the adult (matured) population size at time t, d > 0 is the death rate at the adult stage, B(N) is

a birth rate function, T is the developmental or maturation time and d1 is the death rate for each life stage prior to the
adult stage. Typical examples of the birth rate functions are

(B1) B1(N) = be−aN , a > 0, (B2) B2(N) =
p

q +Nn
, p > 0, q > 0, n > 0, (B3) B3(N) =

A

N
+ c, A > 0, c > 0.

Ther functions B1(N) and B2(N) with n = 1 are known as the Ricker type and the Beverton Holt type, respectively.
B3(N)N denotes a constant immigration rate with a linear birth term cN . Cooke et al. [1] investigated the dynamics
of (1.1). They established global asymptotic stability of a unique positive equilibrium if it exists by assuming that the
birth rate function satisfies suitable monotone properties. The maturation delay changes dynamics and periodic solution
was observed when the birth rate function is the Ricker type. Population model, which has taken the maturation delay
into the consideration, has been studied by many authors (see [2–4] and the references therein).

Moreover, Cooke et al. [1] introduced an infectious disease into (1.1) and divided the population into two classes:
susceptible and infective individuals. They obtained the following SIS epidemic model.

S′(t) = B(N(t− T ))N(t− T )e−d1T − dS(t)− λS(t)I(t)

N(t)
+ γI(t),

I ′(t) =
λS(t)I(t)

N(t)
− (d+ ϵ+ γ)I(t),

(1.2)

*Corresponding author.
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where S(t) is the susceptible population, I(t) is the infective population and N(t) = S(t) + I(t) is the total population.
ϵ ≥ 0 is the disease induced death rate, γ ≥ 0 is the recovery rate and λ > 0 is the contact rate. (1.2) can be written as
the following system:  I ′(t) = λ(N(t)− I(t))

I(t)

N(t)
− (d+ ϵ+ γ)I(t),

N ′(t) = B(N(t− T ))N(t− T )e−d1T − dN(t)− ϵI(t).
(1.3)

If we assume

• (H1) B(N) ∈ C1((0,+∞), (0,+∞)) with B′(N) < 0 for all N ∈ (0,+∞), B(0+) > (d+ ϵ)ed1T ≥ ded1T > B(+∞)
and there exists a G(N) ∈ C1((0,+∞), (0,+∞)) such that G(N) = B(N)N for all N > 0,

then (1.3) has two possible equilibria. To characterize existence of equilibria, we define the basic reproduction number
for (1.3) by

R0(ϵ) :=
λ

d+ ϵ+ γ
. (1.4)

R0(ϵ) gives the average number of new infectives produced by one infective during the mean death adjusted infective
period (see also [1, Theorem 4.2]). System (1.3) always has a disease-free equilibrium E0 := (0, B−1

(
ded1T

)
). If

R0(ϵ) > 1 then there exists an endemic equilibrium E∗
ϵ := (I∗(ϵ), N∗(ϵ)) given by

N∗(ϵ) := B−1

({
d+ ϵ

(
1− 1

R0(ϵ)

)}
ed1T

)
, (1.5)

I∗(ϵ) :=

(
1− 1

R0(ϵ)

)
N∗(ϵ). (1.6)

To investigate (1.3), we set a suitable phase space. We denote by C = C
(
[−T, 0] ,R2

)
the Banach space of continuous

functions mapping the interval [−T, 0] into R2 equipped with the sup-norm. The nonnegative cone of C is defined as
C+ = C

(
[−T, 0],R2

+

)
. From the biological meanings, the initial condition for (1.1) is I(θ) = ϕ1(θ), N(θ) = ϕ2(θ) for

θ ∈ [−T, 0], where (ϕ1, ϕ2) ∈ C+. We set

X = {(ϕ1, ϕ2) ∈ C+ : ϕ2(θ) ≥ ϕ1(θ), for all θ ∈ [−T, 0]} , X0 = {(ϕ1, ϕ2) ∈ X : ϕ1(0) > 0}

and assume that the initial conditions satisfy (I(θ, ϕ), N(θ, ϕ)) = ϕ(θ) for all θ ∈ [−T, 0] and ϕ = (ϕ1, ϕ2) ∈ X0.
Further, if we assume

• (H2) G′(N) = d
dN (B(N)N) > 0 for all N ∈ (0,+∞) or G(N) = B(N)N is bounded on (0,+∞) and positive

equilibrium N∗(0) = B−1(ded1T ) of (1.1) is globally asymptotically stable for initial values in C([−T, 0],R+)\ {0},

then, the equilibrium N∗(0) = B−1(ded1T ) of (1.1) is globally asymptotically stable in the absence of disease (see [1,
Theorems 3.1, 3.3]). Thus, the population is stable at the equilibrium, if there is no disease in the host population.

For (1.3) Cooke et al. [1] showed that R0(ϵ) works as a global threshold parameter for the cases i) T = 0 and
ϵ ≥ 0 (there is no maturation delay and disease may induce the death of the infective) and ii) T > 0 and ϵ = 0
(there is maturation delay and disease does not induce the death of the infective) under the assumptions (H1) and
(H2) (see [1, Theorems 4.1, 4.3 and 4.4]). More precisely, if R0(ϵ) < 1, then the disease-free equilibrium E0 is globally
asymptotically stable and if R0(ϵ) > 1, then the endemic equilibrium E∗

ϵ exists and is globally asymptotically stable in
these cases. Furthermore, they showed the local asymptotic stability of the endemic equilibrium E∗

ϵ for ϵ > 0 with two
specific birth rate functions, B2(N) = p

q+N and B3(N) = A
N + c (see [1, Theorem 4.5]).

Zhao and Zou [5] also studied the global dynamics of (1.3). By a combination of the theory of monotone dynamical
systems and uniform persistence theory, they established that the basic reproduction number R0(ϵ) works as a threshold
parameter which determines the extinction of the disease, even if the disease causes the death of the population (ϵ > 0).
They obtained the following threshold type result.

Theorem 1.1. (See Zhao and Zou [5, Theorem 2.1]) Assume that (H1) and (H2) hold. If R0(ϵ) < 1, then every solution
(I(t, ϕ), N(t, ϕ)) of system (1.3) with ϕ ∈ X0 satisfies

lim
t→+∞

I(t, ϕ) = 0, lim
t→+∞

N(t, ϕ) = N∗(0).

If R0(ϵ) > 1, then there is a β > 0 such that every solution (I(t, ϕ), N(t, ϕ)) of system (1.3) with ϕ ∈ X0 satisfies

lim inf
t→+∞

N(t, ϕ) ≥ lim inf
t→+∞

I(t, ϕ) ≥ β.

From their result, it is shown that if R0(ϵ) > 1, then the disease persists in the host population. Moreover, they studied
the global attractivity of the endemic equilibrium E∗

ϵ by using a perturbation theory. They showed that if ϵ > 0 is small
enough, then the endemic equilibrium E∗

ϵ is still globally attractive.

2



Theorem 1.2. (See Zhao and Zou [5, Theorem 2.2].) Assume that (H1) with ϵ = 0 and (H2) hold. If R0(0) =
λ

d+γ > 1,

then there exists an ϵ > 0 such that for any ϵ ∈ [0, ϵ], system (1.3) admits an endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ))

which is globally attractive in X0.

However, how to determine ϵ in Theorem 1.2 is still an open problem and the dynamics of (1.3) is not completely
understood. Is the endemic equilibrium E∗

ϵ globally asymptotically stable for the large value of ϵ? Such a question also
can be found in Zhao and Zou [5] with their numerical simulations.

In this paper, we investigate the global stability of the endemic equilibrium E∗
ϵ by monotone iterative method and

establish sufficient conditions for the global stability of the endemic equilibrium E∗
ϵ of (1.3). Our analysis allows us to

determine the disease induced death rate ϵ for the global stability of the endemic equilibrium E∗
ϵ . In fact, we will find ϵ

in Theorem 1.2 for B3(N) = A
N + c and B1(N) = be−aN in Section 4.

The organization of this paper is as follows. In the next section, we show the permanence of (1.3) for R0(ϵ) > 1. This
implies that the disease eventually persists for R0(ϵ) > 1. Indeed, Theorem 1.1 by Zhao and Zou [5] also has the same
meaning. However, we need to determine the lower and upper bound of the solution explicitly to start the discussion
in Section 3. In Section 3, we introduce a set of sequences to estimate the solution by below and above, respectively.
By employing a monotone iterative method, we establish Theorems 3.1 and 3.2, dependently on the monotone property
of the birth rate function B(N). In Section 4, we study (1.3) with two specific birth rate functions B3(N) = A/N + c
and B1(N) = be−aN and obtain some global stability results. For each model, the disease induced death rate which
guarantees the global stability of the endemic equilibrium is obtained and this gives a positive answer for the problem
proposed by Zhao and Zou [5]. In Section 5, we offer a brief discussion.

2 Permanence

In this section, we show that (1.3) is permanent for R0(ϵ) > 1. Indeed, uniform persistence of the system is established
in Theorem 1.1 by Zhao and Zou [5]. However, we need to introduce the following result to derive (2.2) and (2.3). (2.2)
will be used as an initial data of the monotone iterative method in the next section.

Theorem 2.1. Assume that (H1) and (H2) hold. If R0(ϵ) > 1, then for any solution of (1.3) in X0, it holds that0 < N ϵ ≤ lim inf
t→+∞

N(t) ≤ lim supt→+∞ N(t) ≤ N ϵ < +∞,

0 < Iϵ ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ Iϵ < +∞,
(2.1)

where

N ϵ := B−1
(
(d+ ϵ)ed1T

)
, N ϵ := B−1

(
ded1T

)
, (2.2)

Iϵ :=

(
1− 1

R0(ϵ)

)
N ϵ, Iϵ :=

(
1− 1

R0(ϵ)

)
N ϵ. (2.3)

Proof. From the second equation of (1.3),

N ′(t) ≤ B(N(t− T ))N(t− T )e−d1T − dN(t),

holds. We consider the following auxiliary equation

N
′
(t) = B(N(t− T ))N(t− T )e−d1T − dN(t).

Since limt→+∞ N(t) = B−1(ded1T ) = N∗(0) = N ϵ follows from (H1) and (H2), lim supt→+∞ N(t) ≤ N ϵ by the compar-
ison theorem.

From the second equation of (1.3),

N ′(t) ≥ B(N(t− T ))N(t− T )e−d1T − (d+ ϵ)N(t),

holds. We consider the following auxiliary equation

N ′(t) = B(N(t− T ))N(t− T )e−d1T − (d+ ϵ)N(t).

Since limt→+∞ N(t) = B−1((d+ ϵ)ed1T ) = N ϵ follows, we have lim inft→+∞ N(t) ≥ N ϵ by the comparison theorem.
For any δ1 > 0, there exists a t1 such that N(t) ≤ N ϵ + δ1 for t ≥ t1. Then, from the first equation of (1.3) and

R0(ϵ) > 1, we obtain that

I ′(t) = I(t)

(
λ
N(t)− I(t)

N(t)
− (d+ ϵ+ γ)

)
= I(t)λ

((
1− 1

R0(ϵ)

)
− I(t)

N(t)

)
≤ I(t)λ

((
1− 1

R0(ϵ)

)
− I(t)

N ϵ + δ1

)
for t ≥ t1.
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We consider the following auxiliary equation:

I
′
(t) = I(t)λ

((
1− 1

R0(ϵ)

)
− I(t)

N ϵ + δ1

)
.

Then, it holds limt→+∞ I(t) =
(
1− 1

R0(ϵ)

) (
N ϵ + δ1

)
. Since δ1 can be chosen arbitrarily, this yields that lim supt→+∞ I(t) ≤

Iϵ holds true. Similarly, we also obtain that lim inft→+∞ I(t) ≥ Iϵ. Hence the proof is complete. □
Remark 2.1. Since B(N) is monotone decreasing with respect to N from (H1), it holds N ϵ ≤ N ϵ.

3 Global stability of the endemic equilibrium

In this section, by using monotone iterative techniques, we investigate the global asymptotic stability of the endemic
equilibrium E∗

ϵ of (1.3) for R0(ϵ) > 1. We assume ϵ > 0, because our aim is to derive a sufficient condition for the global
stability of the endemic equilibrium E∗

ϵ for the case ϵ > 0, that is, the disease causes death of the infective individuals.
We can observe that G(N) = B(N)N is monotone increasing function of N for the birth rate functions B3(N) =

A/N+c and B2(N) = p
q+N . On the other hand, G(N) is a unimodal function for the birth rate function B1(N) = be−aN .

Hence, to obtain global stability results for these cases, we divide this section into two parts, dependently on the property
of G(N). In Section 3.1, we study the global stability when G(N) is monotone increasing. We can apply Theorem 3.1
to the case that the birth rate function B(N) satisfies a suitable monotone property, for example, B3(N) = A

N + c and
B2(N) = p

q+N . In Section 3.2, we study the global stability when G(N) is monotone decreasing on a region of N .

We apply Theorem 3.2 to the case that G(N) has a unimodal property, for example, B1(N) = be−aN . We present a
graphical representation of G(N) = B(N)N for B(N) = B1(N) and B(N) = B3(N) (see Figures 1 and 2).

3.1 Case: G(N) is a increasing function

We observe that G(N) = B(N)N is a monotone increasing function of N for the birth rate functions B3(N) = A/N + c
and B2(N) = p

q+N . Thus, in this subsection, we study the case that G(N) = B(N)N is monotone increasing on[
N ϵ, N ϵ

]
. We assume that

0 ≤ G′(N) for N ∈
[
N ϵ, N ϵ

]
.

Let
H1(N) = B(N)Ne−d1T − dN = G(N)e−d1T − dN for N ∈

[
N ϵ, N ϵ

]
. (3.1)

If we further assume that
0 ≤ G′(N)e−d1T < d for N ∈

[
N ϵ, N ϵ

]
, (3.2)

then H1(N) is strictly monotone decreasing on
[
N ϵ, N ϵ

]
and hence, its inverse function H−1

1 (N) is well defined and is
also strictly monotone decreasing. From (1.5) and (2.2), the following hold

H1(N ϵ) = ϵN ϵ, (3.3)

H1(N
∗(ϵ)) = ϵ

(
1− 1

R0(ϵ)

)
N∗(ϵ), (3.4)

H1(N ϵ) = 0. (3.5)

Thus,

H1(N) :
[
N ϵ, N ϵ

]
→ [0, ϵN ϵ] and H−1

1 (N) : [0, ϵN ϵ] →
[
N ϵ, N ϵ

]
.

Let us introduce the following four sequences {Nn}
+∞
n=0 ,

{
Nn

}+∞
n=1

, {In}
+∞
n=1 and

{
In
}+∞
n=1

such that
Nn = H−1

1

(
ϵ̃Nn−1

)
, In =

(
1− 1

R0(ϵ)

)
Nn,

Nn = H−1
1

(
ϵ̃Nn

)
, In =

(
1− 1

R0(ϵ)

)
Nn,

for n = 1, 2, 3, · · · , (3.6)

where

N0 = N ϵ

and

ϵ̃ = ϵ

(
1− 1

R0(ϵ)

)
. (3.7)

These sequences will be used as an estimation of upper and lower bounds of the solution. We introduce the following
result.
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Lemma 3.1. Assume that (H1), (H2) and (3.2) hold. If

N ϵ ≥
(
1− 1

R0(ϵ)

)
N ϵ, (3.8)

holds, then 0 < N ϵ = N0 ≤ Nn ≤ N∗(ϵ) ≤ Nn ≤ N ϵ < +∞ for n = 1, 2, 3, · · · .

Proof. By (3.2), H1(N) is monotone decreasing on
[
N ϵ, N ϵ

]
. From (3.4) and (3.6), it holds

H1

(
N1

)
= ϵ̃N0 = ϵ̃N ϵ ≤ ϵ̃N∗(ϵ) = H1 (N

∗(ϵ)) .

Since H1(N) is monotone decreasing, we see
N1 ≥ N∗(ϵ). (3.9)

On the other hand, from (3.5), it follows

H1

(
N1

)
= ϵ̃N0 = ϵ̃N ϵ ≥ 0 = H1

(
N ϵ

)
.

Since H1(N) is monotone decreasing, we se
N1 ≤ N ϵ. (3.10)

From (3.4), (3.6) and (3.9), it holds that

H1 (N1) = ϵ̃N1 ≥ ϵ̃N∗(ϵ) = H1 (N
∗(ϵ)) .

Since H1(N) is monotone decreasing, we see
N1 ≤ N∗(ϵ). (3.11)

On the other hand, from (3.8), we have
ϵN ϵ ≥ ϵ̃N ϵ. (3.12)

Then, from (3.3), (3.10) and (3.12), it holds that

H1 (N1) = ϵ̃N1 ≤ ϵ̃N ϵ ≤ ϵN ϵ = H1 (N ϵ) .

Since H1(N) is monotone decreasing, we see
N1 ≥ N ϵ. (3.13)

Consequently, from (3.9), (3.10), (3.11) and (3.13), we obtain

N ϵ = N0 ≤ N1 ≤ N∗(ϵ) ≤ N1 ≤ N ϵ.

We show that the conclusion holds by using the mathematical induction. Suppose that N ϵ ≤ Nn ≤ N∗(ϵ) for some
n ≥ 1. From (3.4), (3.6) and the assumption, we have

H1

(
Nn+1

)
= ϵ̃Nn ≤ ϵ̃N∗(ϵ) = H1 (N

∗(ϵ)) .

Since H1(N) is monotone decreasing, we see
Nn+1 ≥ N∗(ϵ). (3.14)

On the other hand, from the assumption and (3.5), it follows

H1

(
Nn+1

)
= ϵ̃Nn ≥ ϵ̃N ϵ ≥ 0 = H1

(
N ϵ

)
.

Since H1(N) is monotone decreasing, we see
Nn+1 ≤ N ϵ. (3.15)

From (3.4), (3.6) and (3.14), we see

H1

(
Nn+1

)
= ϵ̃Nn+1 ≥ ϵ̃N∗(ϵ) = H1 (N

∗(ϵ)) .

Since H1(N) is monotone decreasing, we see
Nn+1 ≤ N∗(ϵ). (3.16)

From (3.3), (3.12) and (3.15), it holds that

H1

(
Nn+1

)
= ϵ̃Nn+1 ≤ ϵ̃N ϵ ≤ ϵN ϵ = H1 (N ϵ) .

5



Since H1(N) is monotone decreasing, we see
Nn+1 ≥ N ϵ. (3.17)

Consequently, from (3.14), (3.15), (3.16) and (3.17), we obtain

N ϵ = N0 ≤ Nn+1 ≤ N∗(ϵ) ≤ Nn+1 ≤ N ϵ.

Thus, we obtain the conclusion by the mathematical induction. Hence, the proof is complete. □
Let us define

F1(ϵ) :=

(
1− 1

R0(ϵ)

)
N ϵ

N ϵ

for ϵ ∈ (0, λ− (d+ γ)). (3.18)

Since

lim
ϵ→+0

F1(ϵ) = 1− 1

R0(0)
< 1, lim

ϵ→λ−(d+γ)
F1(ϵ) = 0,

if R0(0) > R0(ϵ) > 1, we see that if ϵ ∈ (0, λ− (d+ γ)) is sufficiently close to 0 or λ− (d+ γ), then F1(ϵ) < 1 and hence,
(3.8) holds. We define

Ω1 := {ϵ ∈ (0, λ− (d+ γ))|F1(ϵ) ≤ 1} . (3.19)

Therefore, if ϵ ∈ Ω1, then F1(ϵ) ≤ 1 which implies that (3.8) holds.
Now we consider the situation where Nn and Nn converge to N∗(ϵ) as n → +∞.

Lemma 3.2. Assume that (H1), (H2) and (3.2) hold. If ϵ ∈ Ω1 defined by (3.19) and

0 < ϵ̃ < min
N∈[Nϵ,Nϵ]

{−H ′
1(N)} , (3.20)

hold, then

lim
n→+∞

Nn = lim
n→+∞

Nn = N∗(ϵ).

Proof. From (3.6), we have the following relation{
H−1

1 (ϵ̃Nn) = Nn+1,

H−1
1

(
ϵ̃Nn+1

)
= Nn+1,

n = 0, 1, 2, · · · ,

which is equivalent to the following{
ϵ̃Nn = H1

(
Nn+1

)
,

ϵ̃Nn+1 = H1

(
Nn+1

)
.

for n = 0, 1, 2, · · · . (3.21)

Let {
ln = N∗(ϵ)−Nn, n = 0, 1, 2, · · · ,
ln = Nn −N∗(ϵ), n = 1, 2, 3, · · · .

Then we have ln ≥ 0 and ln ≥ 0 by Lemma 3.1. There exist η
n
∈ [Nn, N

∗(ϵ)] , n = 0, 1, 2, · · · and ηn ∈
[
N∗(ϵ), Nn

]
, n =

1, 2, 3, · · · such that {
ϵ̃ln = H1 (N

∗(ϵ))−H1

(
Nn+1

)
= −H ′

1(ηn+1)ln+1,

ϵ̃ln+1 = H1

(
Nn+1

)
−H1 (N

∗(ϵ)) = −H ′
1(ηn+1

)ln+1,
(3.22)

by (3.4), (3.21) and the mean value theorem. Then, from (3.22), we obtain

ln+1 =
ϵ̃

−H ′
1(ηn+1

)
ln+1 =

(
ϵ̃

−H ′
1(ηn+1

)

)(
ϵ̃

−H ′
1(ηn+1)

)
ln.

Moreover,

ln+1 ≤

(
ϵ̃

minN∈[Nϵ,Nϵ] {−H ′
1(N)}

)2

ln < ln,

follows by (3.20). Thus, limn→+∞ ln = 0 follows and hence, we obtain limn→+∞ Nn = N∗(ϵ). Similarly, limn→+∞ Nn =
N∗(ϵ) holds. Hence, the proof is complete. □

Let us consider the following auxiliary equation with a fixed n, before giving the main result in this subsection.

Ñ ′(t) = G(Ñ(t− T ))e−d1T − dÑ(t)− ϵ̃Nn, (3.23)

with initial conditions Ñ(θ) = ϕÑ (θ) for θ ∈ [−T, 0] where ϕÑ ∈ C
(
[−T, 0] ,

[
N ϵ, N ϵ

])
.

For (3.23), we have the following lemma.
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Lemma 3.3. Assume that (H1), (H2) and (3.2) hold. Then,

N ϵ ≤ lim inf
t→+∞

Ñ(t) ≤ lim sup
t→+∞

Ñ(t) ≤ N ϵ,

for (3.23).

Proof. Suppose that there exists a t1 such that Ñ(t1) = N ϵ and Ñ(t) < N ϵ for t < t1. Then we see

Ñ ′(t1) = G(Ñ(t1 − T ))e−d1T − dN ϵ − ϵ̃Nn.

From (3.2), G(N) is monotone increasing and hence, it follows

Ñ ′(t1) ≤ G(N ϵ)e
−d1T − dN ϵ − ϵ̃Nn = H1(N ϵ)− ϵ̃Nn = −ϵ̃Nn < 0,

by (3.5). This implies that lim supt→+∞ Ñ(t) ≤ N ϵ.

On the other hand, suppose that there exists a t2 such that Ñ(t2) = N ϵ and Ñ(t) > N ϵ for t < t2. Then we see

Ñ ′(t2) = G(Ñ(t2 − T ))e−d1T − dN ϵ − ϵ̃Nn.

From (3.2), G(N) is monotone increasing and hence, it follows

Ñ ′(t2) ≥ G(N ϵ)e
−d1T − dN ϵ − ϵ̃Nn = H1(N ϵ)− ϵ̃Nn = ϵN ϵ − ϵ̃Nn ≥ (ϵ− ϵ̃)N ϵ > 0,

by (3.3). This implies that N ϵ ≤ lim inft→+∞ Ñ(t). The proof is complete. □
Eq. (3.23) has a positive equilibrium Ñ∗ which satisfies

G(Ñ∗)e−d1T − dÑ∗ − ϵ̃Nn = H1(Ñ
∗)− ϵ̃Nn = 0.

Then,

Ñ∗ = H−1
1 (ϵ̃Nn) = Nn+1.

From the following lemma, every solution converges to the positive equilibrium Ñ∗.

Lemma 3.4. Assume that (H1), (H2) and (3.2) hold. Then,

lim
t→+∞

Ñ(t) = Ñ∗,

for (3.23).

Proof. There exists a positive sequence {th}+∞
h=1 such that limh→+∞ th = +∞ and

Ñ ′(th) ≥ 0, Ñ(t) ≤ Ñ(th), for t ≤ th, h = 1, 2, · · · and lim
h→+∞

Ñ(th) = lim sup
t→+∞

Ñ(t).

Then, we have that

0 ≤ Ñ ′(th) = G(Ñ(th − T ))e−d1T − dÑ(th)− ϵ̃Nn.

Since Ñ(th−T ) ≤ Ñ(th) and, from (3.2), G(N) is monotone increasing of N , we have G(Ñ(th−T )) ≤ G(Ñ(th)). Then,
it holds that

0 ≤ G(Ñ(th))e
−d1T − dÑ(th)− ϵ̃Nn = H1(Ñ(th))− ϵ̃Nn.

We have Nn+1 = H−1
1 (ϵ̃Nn) from (3.6) and H1(N) is monotone decreasing of N by (3.2). Then Ñ(th) ≤ Nn+1 follows.

Thus, lim supt→+∞ Ñ(t) ≤ Ñ∗ = H−1
1 (ϵ̃Nn) = Nn+1.

Similarly, we obtain lim inft→+∞ Ñ(t) ≥ Ñ∗ = H−1
1 (ϵ̃Nn) = Nn+1. Consequently, limt→+∞ Ñ(t) = Ñ∗ holds and

the proof is complete. □
We establish the following result.

Theorem 3.1. Assume that (H1) and (H2) hold. If R0(ϵ) > 1 then (1.3) admits an endemic equilibrium E∗
ϵ =

(I∗(ϵ), N∗(ϵ)). In addition, assume that (3.2) holds. Then, for any ϵ ∈ Ω1 defined by (3.19) such that

0 < ϵ

(
1− d+ ϵ+ γ

λ

)
< − max

N∈[Nϵ,Nϵ]

{
G′(N)e−d1T

}
+ d, (3.24)

the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.
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Proof. At first, by Theorem 2.1, we have lim inft→+∞ N(t) ≥ N0 and lim inft→+∞ I(t) ≥ I0, if R0(ϵ) > 1. Then we
obtain the following limiting equation

N ′(t) ≤ G(N(t− T ))e−d1T − dN(t)− ϵI0 = G(N(t− T ))e−d1T − dN(t)− ϵ̃N0.

By Lemma 3.4 and the comparison theorem, we obtain

lim sup
t→+∞

N(t) ≤ H−1
1 (ϵ̃N0) = N1.

Similar to the proof of Theorem 2.1, we see lim supt→+∞ I(t) ≤ I1.
Then, we obtain the following limiting equation

N ′(t) ≥ G(N(t− T ))e−d1T − dN(t)− ϵI1 = G(N(t− T ))e−d1T − dN(t)− ϵ̃N1.

By Lemma 3.4 and the comparison theorem, we obtain

lim inf
t→+∞

N(t) ≥ H−1
1

(
ϵ̃N1

)
= N1.

Similar to the proof of Theorem 2.1, we see lim inft→+∞ I(t) ≥ I1.
Repeating the above arguments, we obtain

Nn ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ Nn, n = 1, 2, 3, · · · .

We see that (3.20) in Lemma 3.2 holds from (3.24). Then, by letting n → +∞, it follows

N∗(ϵ) ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ N∗(ϵ),

which implies the conclusion of this theorem. The proof is complete. □

3.2 Case: G(N) is a unimodal function

In this subsection, we study the case that G(N) = B(N)N is monotone decreasing on
[
N ϵ, N ϵ

]
. Therefore, we assume

that
0 ≥ G′(N), for any N ∈

[
N ϵ, N ϵ

]
. (3.25)

Let
H2(N) = B(N)Ne−d1T − ϵ̃N = G(N)e−d1T − ϵ̃N for N ∈

[
N ϵ, N ϵ

]
. (3.26)

then H2(N) is strictly monotone decreasing on
[
N ϵ, N ϵ

]
from (3.25). From (1.5) and (2.2), it holds

H2(N ϵ) = (d+ ϵ− ϵ̃)N ϵ, (3.27)

H2(N
∗(ϵ)) = dN∗(ϵ), (3.28)

H2(N ϵ) = (d− ϵ̃)N ϵ. (3.29)

Now we introduce the following four sequences {Nn}
+∞
n=0,

{
Nn

}+∞
n=1

, {In}
+∞
n=1 and

{
In
}+∞
n=1

such that
Nn = 1

dH2

(
Nn−1

)
, In =

(
1− 1

R0(ϵ)

)
Nn,

Nn = 1
dH2

(
Nn

)
, In =

(
1− 1

R0(ϵ)

)
Nn,

for n = 1, 2, 3, · · · , (3.30)

with N0 = N ϵ. These sequences will be used as an estimation of upper and lower bounds of the solution. We introduce
the following result.

Lemma 3.5. Assume that (H1), (H2) and (3.25) hold. If ϵ̃ < d and

dN ϵ ≤ (d− ϵ̃)N ϵ, (d+ ϵ− ϵ̃)N ϵ ≤ dN ϵ, (3.31)

hold, then

0 < N ϵ = N0 ≤ Nn ≤ N∗(ϵ) ≤ Nn ≤ N ϵ < +∞,

for n = 1, 2, 3, · · · .
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Proof. By (3.25), H2(N) is monotone decreasing on
[
N ϵ, N ϵ

]
. From (3.28) and (3.30), it holds

dN1 = H2 (N0) = H2 (N ϵ) ≥ H2 (N
∗(ϵ)) = dN∗(ϵ),

since H2(N) is monotone decreasing. Then,
N1 ≥ N∗(ϵ), (3.32)

follows. On the other hand, from (3.31), we have

(d+ ϵ− ϵ̃)N ϵ ≤ dN ϵ. (3.33)

Then, from (3.27), it follows that

dN1 = H2 (N0) = H2 (N ϵ) = (d+ ϵ− ϵ̃)N ϵ ≤ dN ϵ

and hence, we obtain
N1 ≤ N ϵ. (3.34)

From (3.28), (3.30) and (3.32), it holds

dN1 = H2

(
N1

)
≤ H2 (N

∗(ϵ)) = dN∗(ϵ),

since H2(N) is monotone decreasing. Then, we see

N1 ≤ N∗(ϵ). (3.35)

On the other hand, from (3.31), we have
(d− ϵ̃)N ϵ ≥ dN ϵ. (3.36)

Then, from (3.34) and (3.29), it holds

dN1 = H2

(
N1

)
≥ H2

(
N ϵ

)
= (d− ϵ̃)N ϵ ≥ dN ϵ,

since H2(N) is monotone decreasing. Then, we see

N1 ≥ N ϵ. (3.37)

Consequently, from (3.32), (3.34), (3.35) and (3.37), it holds

N ϵ ≤ N1 ≤ N∗(ϵ) ≤ N1 ≤ N ϵ.

We show that the conclusion holds by using the mathematical induction. Suppose that N ϵ ≤ Nn ≤ N∗(ϵ) for some
n ≥ 1. From (3.28) and (3.30), it holds

dNn+1 = H2 (Nn) ≥ H2 (N
∗(ϵ)) = dN∗(ϵ),

since H2(N) is monotone decreasing. Then, we see

Nn+1 ≥ N∗(ϵ). (3.38)

Since we have (3.33), from the assumption and (3.27), we see

dNn+1 = H2 (Nn) ≤ H2 (N ϵ) = (d+ ϵ− ϵ̃)N ϵ ≤ dN ϵ.

Then, we see
Nn+1 ≤ N ϵ. (3.39)

From (3.28), (3.30) and (3.38), it holds

dNn+1 = H2

(
Nn+1

)
≤ H2 (N

∗(ϵ)) = dN∗(ϵ),

since H2(N) is monotone decreasing. Then, we see

Nn+1 ≤ N∗(ϵ). (3.40)

Since we have (3.36), from (3.29) and (3.39), it holds

dNn+1 = H2

(
Nn+1

)
≥ H2

(
N ϵ

)
= (d− ϵ̃)N ϵ ≥ dN ϵ,
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since H2(N) is monotone decreasing. Then, we see

Nn+1 ≥ N ϵ. (3.41)

Consequently, from (3.38), (3.39), (3.40) and (3.41), we obtain

N ϵ = N0 ≤ Nn+1 ≤ N∗(ϵ) ≤ Nn+1 ≤ N ϵ.

Thus, we obtain the conclusion by the mathematical induction. Hence, the proof is complete. □
For ϵ ∈ (0, λ− (d+ γ)) we define

F2(ϵ) :=
dN ϵ

(d− ϵ̃)N ϵ

, (3.42)

F3(ϵ) :=
(d+ ϵ− ϵ̃)N ϵ

dN ϵ

, (3.43)

under the condition ϵ̃ < d. We see from (3.7)

lim
ϵ→+0

Fj(ϵ) = 1, j = 2, 3,

if R0(0) > R0(ϵ) > 1. We assume

• (F1) If ϵ is sufficiently small, then Fj(ϵ) ≤ 1 for j = 2, 3

and define
Ω2 := {ϵ ∈ (0, λ− (d+ γ))|Fj(ϵ) ≤ 1, j = 2, 3} . (3.44)

We see that if ϵ ∈ Ω2 then, Fj(ϵ) ≤ 1, j = 2, 3, which implies that (3.31) holds. In Section 4, we discuss on a sufficient
condition which ensure (F1) for B1(N) = be−aN .

Now we consider the situation where Nn and Nn converge to N∗(ϵ) as n → +∞.

Lemma 3.6. Assume that (H1), (H2), (3.25) and (F1) hold. If ϵ ∈ Ω2 defined by (3.44) and

max
N∈[Nϵ,Nϵ]

{−H ′
2 (N)} < d, (3.45)

hold, then

lim
n→+∞

Nn = lim
n→+∞

Nn = N∗(ϵ).

Proof. Let {
ln = N∗(ϵ)−Nn, n = 0, 1, 2, · · · ,
ln = Nn −N∗(ϵ), n = 1, 2, 3, · · · .

We have ln ≥ 0 and ln ≥ 0 by Lemma 3.5. There exist ηn ∈
[
N∗(ϵ), Nn

]
and η

n
∈ [Nn, N

∗(ϵ)], n = 1, 2, 3, · · · such thatdln+1 = H2 (Nn)−H2 (N
∗(ϵ)) = −H ′

2

(
η
n

)
ln, n = 0, 1, 2, · · · ,

dln+1 = H2 (N
∗(ϵ))−H2

(
Nn+1

)
= −H ′

2

(
η
n+1

)
ln+1, n = 1, 2, 3, · · · ,

(3.46)

by (3.28), (3.30) and the mean value theorem. Then, from (3.46) we obtain

ln+1 =
−H ′

2(ηn)

d
ln =

(−H ′
2(ηn)

d

)(−H ′
2(ηn+1

)

d

)
ln.

Moreover,

ln+1 ≤

(
maxN∈[Nϵ,Nϵ] {−H ′

2 (N)}

d

)2

ln < ln,

follows by (3.45). Thus, limn→+∞ ln = 0 follows and hence, we obtain limn→+∞ Nn = N∗(ϵ). Similarly, limn→+∞ Nn =
N∗(ϵ) holds. Hence, the proof is complete. □

Then, we give the following result:
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Theorem 3.2. Assume that (H1) and (H2) hold. If R0(ϵ) > 1 then (1.3) admits an endemic equilibrium E∗
ϵ =

(I∗(ϵ), N∗(ϵ)). In addition, assume that (3.25) and (F1) hold. Then, for any ϵ ∈ Ω2 defined by (3.44) such that

0 < ϵ

(
1− d+ ϵ+ γ

λ

)
< min

N∈[Nϵ,Nϵ]

{
G′(N)e−d1T

}
+ d, (3.47)

the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.

Proof. At first, by Theorem 2.1, we havelim inft→+∞ N(t) ≥ N0 and lim inft→+∞ I(t) ≥ I0. Since G(N) is monotone
decreasing on

[
N ϵ, N ϵ

]
under the condition (3.25), we obtain the following limiting equation

N ′(t) ≤ G(N0)e
−d1T − dN(t)− ϵI0 = G(N0)e

−d1T − dN(t)− ϵ̃N0 = H2(N0)− dN(t).

By the comparison theorem, we obtain

lim sup
t→+∞

N(t) ≤ 1

d
H2 (N0) = N1.

Similar to the proof of Theorem 2.1, we see lim supt→+∞ I(t) ≤ I1 follows.

Since G(N) is monotone decreasing on
[
N ϵ, N ϵ

]
under the condition (3.25), we obtain the following limiting equation

N ′(t) ≥ G(N1)e
−d1T − dN(t)− ϵI1 = G(N1)e

−d1T − dN(t)− ϵ̃N1 = H2(N1)− dN(t).

By the comparison theorem, we obtain

lim inf
t→+∞

N(t) ≥ 1

d
H2

(
N1

)
= N1.

Similar to the proof of Theorem 2.1, we have lim inft→+∞ I(t) ≥ I1.
Repeating the above arguments, we obtain

Nn ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ Nn, n = 1, 2, 3, · · · .

We see that (3.45) in Lemma 3.6 holds from (3.47). Then, by letting n → +∞, it follows

N∗(ϵ) ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ N∗(ϵ),

which implies the conclusion of this theorem. The proof is complete. □
From Theorems 3.1 and 3.2, we can determine ϵ which guarantees the global stability of the endemic equilibrium

E∗
ϵ , respectively. This allows us to find ϵ in Theorem 1.2 by Zhao and Zou [5].

4 Applications

In this section, we consider (1.3) with two specific birth rate functions B3(N) = A
N + c and B1(N) = be−aN . For the

reader, we illustrate the graph of G(N) = B(N)N for these birth rate functions, respectively (Figures 1 and 2). For the
case B3(N) = A

N + c in (1.3), we establish Theorem 4.1 from Theorem 3.1, because G(N) = A+ cN is increasing of N .
For the case B1(N) = be−aN in (1.3), G(N) = be−aNN is increasing on (0, 1

a ] and decreasing on [ 1a ,+∞). We obtain
two global stability results, Theorems 4.2 and 4.3, from Theorems 3.1 and 3.2, respectively.

4.1 Case: B3(N) = A/N + c

In this subsection, we study (1.3) with B3(N) = A
N + c. We consider the following system I ′(t) = λ(N(t)− I(t))

I(t)

N(t)
− (d+ ϵ+ γ)I(t),

N ′(t) = [A+ cN(t− T )] e−d1T − dN(t)− ϵI(t).
(4.1)

For (H1), we assume
lim

N→+0
B3(N) = +∞ > (d+ ϵ)ed1T ≥ ded1T > lim

N→+∞
B3(N) = c > 0. (4.2)

Then, (4.1) has the disease-free equilibrium E0 = (0, B−1
3

(
ded1T

)
) and the endemic equilibrium E∗

ϵ = (I∗(ϵ), N∗(ϵ)) if

R0(ϵ) =
λ

d+ϵ+γ > 1. Since G′(N) = c > 0, (H2) also holds.
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Figure 1: Graph trajectory of G(N) = B(N)N = A+ cN with A = 1.2 and c = 0.3

Figure 2: Graph trajectory of G(N) = B(N)N = be−aNN with b = 3.5 and a = 0.3

12



From Theorem 2.1, it holds

0 < N ϵ ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ N ϵ < +∞,

where

N ϵ =
A

(d+ ϵ)ed1T − c
, N ϵ =

A

ded1T − c
,

if R0(ϵ) > 1.
Then, we establish the following result which is obtained from Theorem 3.1.

Theorem 4.1. Assume that (4.2) and R0(ϵ) > 1 then (4.1) admits an endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)). In

addition, the following holds.
i) If λ+ ce−d1T − (2d+ γ) ≤ 0 then, for any ϵ ∈ (0, λ− (d+ γ)) such that

0 < ϵ

(
1− d+ ϵ+ γ

λ

)
< −ce−d1T + d, (4.3)

holds, the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.

ii) If λ+ ce−d1T − (2d+ γ) > 0 and F1(ϵM ) ≤ 1, where

F1(ϵ) =

(
1− d+ ϵ+ γ

λ

)
(d+ ϵ)ed1T − c

ded1T − c
, for ϵ ∈ (0, λ− (d+ γ)) (4.4)

and

ϵM =
1

2

(
λ+ ce−d1T − (2d+ γ)

)
,

then, for any ϵ ∈ (0, λ − (d+ γ)) such that (4.3) holds, the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymp-

totically stable in X0.
iii) If λ+ce−d1T −(2d+ γ) > 0 and F1(ϵM ) > 1, then, there exist two positive solutions, 0 < ϵ1 < ϵ2 < λ−(d+γ), of

F1(ϵ)−1 = 0 and for any ϵ ∈ (0, ϵ1]∪ [ϵ2, λ− (d+γ)) such that (4.3) holds, the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ))

is globally asymptotically stable in X0.

Proof. At first, we see G′(N)e−d1T = ce−d1T < d by (4.2). Hence, (3.2) in Theorem 3.1 holds.
Now we determine Ω1 defined by (3.19) in Theorem 3.1 for the cases i)- iii).
i) To determine Ω1, we consider the function F1(ϵ) defined by (4.4). It holds that limϵ→+0 F1(ϵ) = 1 − 1

R0(0)
< 1 if

R0(0) > R0(ϵ) > 1 and limϵ→λ−(d+γ) F1(ϵ) = 0. Moreover, direct calculation gives

F ′
1(ϵ) = − 1

λ

(d+ ϵ)ed1T − c

ded1T − c
+

(
1− d+ ϵ+ γ

λ

)
ed1T

ded1T − c
=

1

λ (ded1T − c)

(
λ+ ce−d1T − (2d+ 2ϵ+ γ)

)
ed1T (4.5)

and hence,

lim
ϵ→+0

F ′
1(ϵ) =

1

λ (ded1T − c)

(
λ+ ce−d1T − (2d+ γ)

)
ed1T ,

follows. If λ + ce−d1T − (2d+ γ) ≤ 0 then we see that F1(ϵ) is nonincreasing from (4.5). Hence, F1(ϵ) < 1 for
ϵ ∈ (0, λ− (d+ γ)). Thus, Ω1 = (0, λ− (d+ γ)).

ii) From (4.5), if λ+ ce−d1T − (2d+ γ) > 0, then F1(ϵ) attains a maximum at ϵM ∈ (0, λ− (d+ γ)). It is easy to see
that if F1(ϵM ) ≤ 1, then F1(ϵ) < 1 for ϵ ∈ (0, λ− (d+ γ)). Thus, Ω1 = (0, λ− (d+ γ)).

iii) If F1(ϵM ) > 1, then we see that F1(ϵ) ≤ 1 for any ϵ ∈ (0, ϵ1]∪ [ϵ2, λ− (d+γ)). Thus, Ω1 = (0, ϵ1]∪ [ϵ2, λ− (d+γ)).
Finally, it follows

− max
N∈[Nϵ,Nϵ]

G′(N)e−d1T + d = −ce−d1T + d > 0,

and hence, by Theorem 3.1, we obtain the conclusion. The proof is complete. □
We can determine ϵ which guarantees the global asymptotic stability of the endemic equilibrium E∗

ϵ = (I∗(ϵ), N∗(ϵ))
by (4.3). We also see that if ϵ is sufficiently small or R0(ϵ) > 1 is sufficiently close to 1 (that is, ϵ < λ − (d + γ) is
sufficiently close to λ− (d+ γ)) then (4.3) holds. From (4.3), we also determine ϵ in Theorem 1.2.
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4.2 Case: B1(N) = be−aN

In this subsection, we consider the SIS epidemic model with B(N) = be−aN , that is, I ′(t) = λ(N(t)− I(t))
I(t)

N(t)
− (d+ ϵ+ γ)I(t),

N ′(t) = be−aN(t−T )N(t− T )e−d1T − dN(t)− ϵI(t).
(4.6)

For (H1), we assume
lim

N→+0
B1(N) = b > (d+ ϵ)ed1T > ded1T > lim

N→+∞
B1(N) = 0. (4.7)

Then, (4.6) has the disease-free equilibrium E0 = (0, B−1
1

(
ded1T

)
) and the endemic equilibrium E∗

ϵ = (I∗(ϵ), N∗(ϵ)) if

R0(ϵ) =
λ

d+ϵ+γ > 1.

From Kuang [3, Corollary 4.3], the positive equilibrium N∗(0) = N ϵ of

N ′(t) = be−aN(t−T )N(t− T )e−d1T − dN(t),

is globally asymptotically stable if

ln
b

ded1T
< 2. (4.8)

Hence, we assume (4.8) to ensure that (H2) holds. Other conditions for the global stability were investigated by Cooke
et al. [1].

On the other hand, by Theorem 2.1, if R0(ϵ) > 1, then it holds

0 < N ϵ ≤ lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) ≤ N ϵ < +∞,

where

N ϵ =
1

a
ln

b

(d+ ϵ)ed1T
, N ϵ =

1

a
ln

b

ded1T
. (4.9)

To present global stability results for (4.6), we introduce the following lemma.

Lemma 4.1. Let G(N) = B1(N)N , N ∈ (0,+∞), where B1(N) = be−aN , b > 0, a > 0. Then

G′(N) = B1(N) +B′
1(N)N = (1− aN)B1(N), (4.10)

G′′(N) = 2B′
1(N) +B′′

1 (N)N = (aN − 2) aB1(N). (4.11)

In particular, G(N) is monotone increasing on (0, 1
a ] and decreasing on [ 1a ,+∞).

Proof. We see B′
1(N) = −aB1(N) and B′′

1 (N) = a2B1(N). By direct calculation, we obtain the conclusion. □
We see that if N ϵ ≤ 1

a , then G′(N) ≥ 0 for N ∈
[
N ϵ, N ϵ

]
. In this case, we establish the following result from

Theorem 3.1.

Theorem 4.2. Assume that (4.7) holds. If R0(ϵ) > 1, then (4.6) admits an endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)).

Let ϵ̂1 be a unique positive solution of g(ϵ) = 0, where

g(ϵ) = (d+ ϵ) ln
b

(d+ ϵ)ed1T
− ϵ for ϵ > 0 (4.12)

and ϵM ∈ (0, λ− (d+ γ)) be a unique positive solution of f(ϵ)− 1 = 0, where

f(ϵ) = − ln
b

(d+ ϵ)ed1T
+

λ− (d+ ϵ+ γ)

d+ ϵ
,

if limϵ→+0 f(ϵ) = − ln b
ded1T + λ−(d+γ)

d > 0. In addition, suppose that

ln
b

ded1T
≤ 1 (4.13)

and ϵ < ϵ̂1, then the following holds.

i) If − ln b
ded1T + λ−(d+γ)

d ≤ 0, then for any ϵ ∈ (0, λ− (d+ γ)) ∩ (0, ϵ̂1) such that

0 < ϵ

(
1− d+ ϵ+ γ

λ

)
< (d+ ϵ) ln

b

(d+ ϵ)ed1T
− ϵ, (4.14)
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the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.

ii) If − ln b
ded1T + λ−(d+γ)

d > 0 and F1(ϵM ) ≤ 1, where

F1(ϵ) =

(
1− d+ ϵ+ γ

λ

)
ln b

ded1T

ln b
(d+ϵ)ed1T

for ϵ ∈ (0, λ− (d+ γ)), (4.15)

then, for any ϵ ∈ (0, λ− (d+ γ))∩ (0, ϵ̂1) such that (4.14) holds, the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally

asymptotically stable in X0.

iii) If − ln b
ded1T + λ−(d+γ)

d > 0 and F1(ϵM ) > 1, then there there exist two positive solutions 0 < ϵ3 < ϵ4 < λ−(d+γ)
of F1(ϵ) − 1 = 0 and for any ϵ ∈ ((0, ϵ3] ∪ [ϵ4, λ− (d+ γ))) ∩ (0, ϵ̂1) such that (4.14) holds, the endemic equilibrium
E∗

ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.

Proof. Assume that (4.13) holds and ϵ < ϵ̂1. We show −maxN∈[Nϵ,Nϵ]G
′(N) + d > 0 to verify (3.2) in Theorem 3.1.

From (4.11) in Lemma 4.1, G′(N) is monotone decreasing on
[
N ϵ, N ϵ

]
. Then, it holds that

− max
N∈[Nϵ,Nϵ]

{
G′(N)e−d1T

}
+ d = −G′(N ϵ)e

−d1T + d = − (1− aN ϵ)B(N ϵ)e
−d1T + d

= −
(
1− ln

b

(d+ ϵ)ed1T

)
(d+ ϵ) + d

= (d+ ϵ) ln
b

(d+ ϵ)ed1T
− ϵ.

Consider g(ϵ) defined by (4.12). Since we have limϵ→+0 g(ϵ) > 0 and, from (4.13), it follows

g′(ϵ) = ln
b

(d+ ϵ)ed1T
− 2 < 0,

there exists ϵ̂1 such that g(ϵ̂1) = 0 and g(ϵ) > 0 for ϵ < ϵ̂1. Hence, −maxN∈[Nϵ,Nϵ]G
′(N) + d > 0 for ϵ < ϵ̂1 and (3.2)

in Theorem 3.1 holds.
Now we determine Ω1 defined by (3.19) in Theorem 3.1 for i), ii) and iii).
i) We claim Ω1 is (0, λ−(d+γ)). To determine Ω1, we consider F1(ϵ) defined by (4.15). It holds that limϵ→+0 F1(ϵ) =

1− 1
R0(0)

< 1 if R0(0) > R0(ϵ) > 1 and limϵ→λ−(d+γ) F1(ϵ) = 0. Moreover, direct calculation gives

F ′
1(ϵ) =

ln b
ded1T(

ln b
(d+ϵ)ed1T

)2 [− 1

λ
ln

b

(d+ ϵ)ed1T
+

(
1− d+ ϵ+ γ

λ

)(
1

d+ ϵ

)]
=

ln b
ded1T

λ
(
ln b

(d+ϵ)ed1T

)2 f(ϵ).
We see

f ′(ϵ) =
1

d+ ϵ
+

−(d+ ϵ)− (λ− (d+ ϵ+ γ))

(d+ ϵ)
2 =

− (λ− (d+ ϵ+ γ))

(d+ ϵ)
2 < 0,

if R0(ϵ) =
λ

d+ϵ+γ > 1. Since we have

lim
ϵ→+0

F ′
1(ϵ) =

ln b
ded1T

λ
(
ln b

(d+ϵ)ed1T

)2 (− ln
b

ded1T
+

λ− (d+ γ)

d

)
≤ 0, (4.16)

there does not exist ϵ̂ > 0 such that F ′
1(ϵ̂) = 0 and F1(ϵ) is nonincreasing. Hence, F1(ϵ) < 1 for ϵ ∈ (0, λ − (d + γ)).

Thus, Ω1 = (0, λ− (d+ γ)).
ii) Since we have limϵ→+0 f(ϵ) > 0 and limϵ→λ−(d+γ) f(ϵ) < 0, there exists ϵM such that F1(ϵM ) = max0<ϵ<λ−(d+γ) F1(ϵ).

Therefore, if F1(ϵM ) ≤ 1, then F1(ϵ) < 1 for ϵ ∈ (0, λ− (d+ γ)). Thus, Ω1 = (0, λ− (d+ γ)).
iii) If F1(ϵM ) > 1, then we see that F1(ϵ) ≤ 1 for any ϵ ∈ (0, ϵ3]∪ [ϵ4, λ− (d+γ)). Thus, Ω1 = (0, ϵ3]∪ [ϵ4, λ− (d+γ)).
By Theorem 3.1, we obtain the conclusion and the proof is complete. □
If N ϵ ≥ 1

a , then G′(N) ≤ 0 for N ∈
[
N ϵ, N ϵ

]
. In this case, we establish the following result from Theorem 3.2.

Theorem 4.3. Assume that (4.7) and R0(ϵ) > 1 then (4.6) admits an endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)). In

addition, suppose that

1 < ln
b

ded1T
< 2, (4.17)

ϵ ≤ ϵ̂2 = be−1−d1T − d (4.18)
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and

ln
b

ded1T
≤ min

{
1

1− d+γ
λ

,
λ

d+ γ

}
. (4.19)

Then there exists Ω2 = {ϵ ∈ (0, λ− (d+ γ))|Fj(ϵ) ≤ 1, j = 2, 3}, where

F2(ϵ) =
d 1
a ln b

(d+ϵ)ed1T

(d− ϵ̃) 1
a ln b

ded1T

, F3(ϵ) =
(d+ ϵ− ϵ̃) 1

a ln b
(d+ϵ)ed1T

d 1
a ln b

ded1T

for ϵ ∈ (0, λ− (d+ γ)), (4.20)

with ϵ̃ < d and, for any ϵ ∈ Ω2 ∩ (0, ϵ̂2] such that

0 < ϵ

(
1− d+ ϵ+ γ

λ

)
< d

(
2− ln

b

ded1T

)
for ln

b

ded1T
< 2,

the endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically stable in X0.

Proof. From (4.17), we see b > ded1T+1, from which be−1−d1T − d > 0 follows. Assume that ϵ ≤ ϵ̂2 = be−1−d1T − d.
Then, from (4.17), it holds

1 ≤ ln
b

(d+ ϵ)ed1T
< ln

b

ded1T
< 2.

This gives N ϵ ≥ 1
a and hence, we see G′(N) ≤ 0 for N ∈

[
N ϵ, N ϵ

]
from (4.10) in Lemma 4.1. Thus, (3.25) in Theorem

3.2 holds.
Next we show the existence of Ω2 in Theorem 3.2. We see limϵ→0 Fj(ϵ) = 1, j = 2, 3. Now we compute F ′

j(ϵ). By
direct calculation, we obtain

F ′
2(ϵ) =

d

ln b
ded1T


(
− 1

d+ϵ

)
(d− ϵ̃)− ln b

(d+ϵ)ed1T

(
d+2ϵ+γ

λ − 1
)

(d− ϵ̃)
2


and

lim
ϵ→+0

F ′
2(ϵ) =

1

d ln b
ded1T

[
ln

b

ded1T

(
1− d+ γ

λ

)
− 1

]
.

Similarly, we obtain

F ′
3(ϵ) =

1

d ln b
ded1T

[(
d+ 2ϵ+ γ

λ

)
ln

b

(d+ ϵ)ed1T
− (d+ ϵ− ϵ̃)

1

d+ ϵ

]
and

lim
ϵ→+0

F ′
3(ϵ) =

1

d ln b
ded1T

[
d+ γ

λ
ln

b

ded1T
− 1

]
.

Therefore, (F1) in Theorem 3.2 holds from (4.19) and we see Ω2 ̸= ∅.
Next, we calculate minN∈[Nϵ,Nϵ]

{
G′(N)e−d1T

}
+ d in Theorem 3.2. We have that G′(N) is monotone decreasing on[

N ϵ, N ϵ

]
by (4.11) in Lemma 4.1. Hence, it holds that

min
N∈[Nϵ,Nϵ]

{
G′(N)e−d1T

}
+ d =

(
1− aN ϵ

)
be−aNϵe−d1T + d =

(
1− aN ϵ

)
d+ d = d

(
2− aN ϵ

)
= d

(
2− ln

b

ded1T

)
> 0.

Finally, by Theorem 3.2, we obtain the conclusion. □
From Theorems 4.2 and 4.3, it is possible that the endemic equilibrium E∗

ϵ = (I∗(ϵ), N∗(ϵ)) is globally asymptotically
stable for the corresponding case of (4.8). In fact, we obtain the global stability results for N ϵ <

2
a , that is, (4.8). From

some numerical simulations, every solution seems to converge to the endemic equilibrium E∗
ϵ if R0(ϵ) > 1 and (4.8)

holds. If (4.8) does not holds, periodic solution may arise (see also Cooke et al. [1]). Bifurcation analysis was carried
out by Wei and Zou [4].

Finally, as a numerical example for Theorem 4.3, we consider (4.6) with b = 1.5, a = 0.3, λ = 1.4, d = 0.3, γ = 0.3
and d1T = 0. We vary the parameter ϵ. We see

R0(ϵ) =
λ

d+ ϵ+ γ
=

1.4

0.3 + ϵ+ 0.3
> 1, if ϵ < 0.8,

16



Figure 3: Graph trajectory of Fj(ϵ), j = 2, 3

from (1.4). If ϵ < 0.8, then (4.7) holds, since

b = 1.5 > d+ ϵ = 0.3 + ϵ if ϵ < 0.8,

follows. Hence, there exists an endemic equilibrium E∗
ϵ = (I∗(ϵ), N∗(ϵ)) for (4.6).

Since we have

1 < ln
b

d
= ln

1.5

0.3
≈ 1.6094 · · · < 2.

(4.17) holds. For (4.18), we see

ϵ̂2 = be−1 − d = 1.5e−1 − 0.3 = 0.2518 · · · .

Hence, we restrict ϵ ≤ 0.2518. Further, it holds that

ln
b

d
≈ 1.6094 ≤ min

{
1

1− d+γ
λ

,
λ

d+ γ

}
=

1.4

0.8
= 1.75,

which implies (4.19) holds.
Consider the following functions:

F2(ϵ) =
0.3 ln 1.5

0.3+ϵ(
0.3− ϵ

(
1− 0.3+ϵ+0.3

1.4

))
ln 1.5

0.3

, F3(ϵ) =

(
0.3 + ϵ− ϵ

(
1− 0.3+ϵ+0.3

1.4

))
ln 1.5

0.3+ϵ

0.3 ln 1.5
0.3

.

We present the graph for Fj(ϵ), j = 2, 3 in Figure 3. We see Fj(ϵ) ≤ 1, j = 2, 3 for ϵ ∈ (0, λ − (d + γ)) and hence,
Ω2 = (0, λ− (d+ γ)).

Finally it follows that

max
ϵ∈(0,0.2518]

ϵ̃ = 0.2518

(
1− 0.3 + 0.2518 + 0.3

1.4

)
≈ 0.0985 < d

(
2− ln

b

d

)
≈ 0.1171.

Consequently, by Theorem 4.3, if ϵ ≤ 0.2518, then the endemic equilibrium E∗
ϵ is globally asymptotically stable.

5 Discussion

In this paper, we study the global asymptotic stability for a SIS epidemic model with maturation delay proposed by
Cooke et al. [1]. Cooke et al. [1] showed that R0(ϵ) works as a global threshold parameter if there is no maturation
delay (T = 0) or if the disease does not induce the death of the infective (ϵ = 0) under the assumptions (H1) and (H2).
More precisely, if R0(ϵ) < 1 then the disease-free equilibrium E0 is globally asymptotically stable and if R0(ϵ) > 1 then
the endemic equilibrium E∗

ϵ exists and is globally asymptotically stable in these cases.
Zhao and Zou [5] also studied the global dynamics of (1.3). They established that the basic reproduction number

R0(ϵ) works as a threshold parameter which determines the extinction of the disease, even if the disease causes the
death of the population (ϵ > 0). Moreover, they studied the global attractivity of the endemic equilibrium E∗

ϵ by using
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a perturbation theory and showed that if ϵ is small enough, then the endemic equilibrium E∗
ϵ is still globally attractive

(see Theorems 1.1 and 1.2).
However, the dynamics of (1.3) is not completely understood, in particular, for R0(ϵ) > 1. To obtain a detailed

information about the dynamics when the disease is endemic, we investigate the global stability of the endemic equi-
librium E∗

ϵ by monotone iterative method. Sufficient conditions for the global stability of the endemic equilibrium E∗
ϵ

of (1.3) are established in Theorems 3.1 and 3.2. From these results, we can determine ϵ in Theorem 1.2 by Zhao and
Zou [5]. Our results show that G′(N) = (B(N)N)′ is important to determine the global stability for (1.3). In Section 4,
from Theorems 3.1 and 3.2, we establish the global stability of the endemic equilibrium E∗

ϵ for the birth rate functions
B3(N) = A

N + c and B1(N) = be−aN (see Theorems 4.1, 4.2 and 4.3). For these cases, we obtain the disease induced
death rate ϵ which guarantees the global stability of the endemic equilibrium E∗

ϵ . We also introduce a numerical example.
From these results, we determine ϵ in Theorem 1.2.

For B3(N) = A
N + c, if the disease induced death rate ϵ is sufficiently small or the basic reproduction number

R0(ϵ) > 1 is close to 1 enough, then the condition in Theorem 4.1 holds. This implies that the endemic equilibrium
E∗

ϵ is also globally asymptotic stable even if the disease induced death rate ϵ is sufficiently large. From this, one may
conjecture that ϵ does not influence the global stability of the endemic equilibrium E∗

ϵ , but this is still an open problem.
For B1(N) = be−aN , it is possible that the endemic equilibrium E∗

ϵ is globally asymptotic stable if (4.8) holds. Is the
endemic equilibrium E∗

ϵ always globally asymptotically stable if R0(ϵ) > 1 and (4.8) holds? This problem also needs
further study.

Acknowledgments

The authors are grateful to the two referees for their constructive comments which led to a significant improvement
on the manuscript. The first author is partially supported by Spanish Ministry of Science and Innovation (MICINN),
MTM2010-18318. The third author is partially supported by Scientific Research (c), No. 21540230 of Japan Society for
the Promotion of Science.

References

[1] K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and
epidemic models, J. Math. Biol. 39 (1999), no.4, 332-352.

[2] H. I. Freedman and K. Gopalsamy, Global stability in time-delayed single-species dynamics, Bull. Math. Biol. 48
(1986), no. 5-6, 485-492.

[3] Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology
and population biology, Japan J. Indust. Appl. Math. 9 (1992), no. 2, 205–238.

[4] J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting SIS epidemic model with delay, J.
Comput. Appl. Math. 197 (2006), no. 1, 169–187.

[5] X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl. 257 (2001), no.
2, 282–291.

18


