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Abstract. We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by Cooke
et al. [0. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals.
By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium
when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study
the model with two specific birth rate functions By (N) = be~%Y and Bs(N) = A/N + ¢, where N denotes the total
population. For each model, we obtain the disease induced death rate which guarantees the global stability of the
endemic equilibrium and this gives a positive answer for an open problem by Zhao and Zou [A].
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1 Introduction

Cooke et al. [I] derived a population growth model for single-species with multiple life stages as follows.
N'(t) = B(N(t = T))N(t — T)e~ 4T — dN(¢), (1.1)

where / = &4 N(¢) is the adult (matured) population size at time ¢, d > 0 is the death rate at the adult stage, B(NV) is

a birth rate function, T is the developmental or maturation time and d; is the death rate for each life stage prior to the
adult stage. Typical examples of the birth rate functions are
p

A
(B1) B1(N) = be~ N a >0, (B2) By(N) = quNn,p>0,q>0,n>0, (B3) Bg(N):N+C,A>O,C>O.

Ther functions By (V) and By(N) with n = 1 are known as the Ricker type and the Beverton Holt type, respectively.
B;3(N)N denotes a constant immigration rate with a linear birth term ¢N. Cooke et al. [I] investigated the dynamics
of (II). They established global asymptotic stability of a unique positive equilibrium if it exists by assuming that the
birth rate function satisfies suitable monotone properties. The maturation delay changes dynamics and periodic solution
was observed when the birth rate function is the Ricker type. Population model, which has taken the maturation delay
into the consideration, has been studied by many authors (see 2H4] and the references therein).

Moreover, Cooke et al. [I] introduced an infectious disease into ([([I]) and divided the population into two classes:
susceptible and infective individuals. They obtained the following SIS epidemic model.

S'(t)=B(N({t—T))N(t —T)e~hT —dS(t) — W +~I(t),
o ASOI) (1.2)
I'(t) = NE (d+e+7)I(t),
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where S(t) is the susceptible population, I(t) is the infective population and N(t) = S(t) + I(t) is the total population.
€ > 0 is the disease induced death rate, v > 0 is the recovery rate and A > 0 is the contact rate. ([[L2)) can be written as
the following system:

I'(t) = AN(t) = 1(t) 7~ — (d+e+)I(1),
N'(t) = B(N(t — T))N(

(1.3)

If we assume

e (H1) B(N) € C*((0,+00), (0, +00)) with B'(N) < 0 for all N € (0, +00), B(0+) > (d+ €)etT > de®T > B(+00)
and there exists a G(N) € C*((0,+00), (0, +00)) such that G(N) = B(N)N for all N > 0,

then ([[3]) has two possible equilibria. To characterize existence of equilibria, we define the basic reproduction number
for (T3) by

A
RO(E) = m

Ry(€) gives the average number of new infectives produced by one infective during the mean death adjusted infective
period (see also [0 Theorem 4.2]). System ([[3) always has a disease-free equilibrium Ey := (0,B~! (de™?)). If
Ry(€) > 1 then there exists an endemic equilibrium E¥ := (I*(¢), N*(¢)) given by

N*(e):= B! ({d+ € (1 - R01(€)> } ele) : (1.5)

I*(e) == (1 - Rol(6)> N*(e). (1.6)

To investigate (L3, we set a suitable phase space. We denote by C' = C ([fT ,0] ,Rz) the Banach space of continuous
functions mapping the interval [T, 0] into R? equipped with the sup-norm. The nonnegative cone of C' is defined as
Cy = C([-T,0],R%). From the biological meanings, the initial condition for () is I(6) = ¢1(0), N(6) = ¢2(0) for
0 € [-T,0], where (¢1,¢2) € C1. We set

X = {(¢1,(Z)2) S C+ : (/)2(9) > ¢1(0>7 for all 6 € [—T, 0]}, Xo = {(¢1,¢2) € X: ¢1(0> > O}

and assume that the initial conditions satisfy (I(6,¢), N(6,¢)) = ¢(0) for all § € [-T,0] and ¢ = (¢1, ¢2) € Xo.
Further, if we assume

(1.4)

e (H2) G'(N) = % (B(N)N) > 0 for all N € (0,+00) or G(N) = B(N)N is bounded on (0,+0c0) and positive
equilibrium N*(0) = B~!(de1T) of () is globally asymptotically stable for initial values in C([-T, 0], RT)\ {0},

then, the equilibrium N*(0) = B~!(de®T) of () is globally asymptotically stable in the absence of disease (see [T}
Theorems 3.1, 3.3]). Thus, the population is stable at the equilibrium, if there is no disease in the host population.

For ([[3) Cooke et al. [[] showed that Rg(e) works as a global threshold parameter for the cases i) T = 0 and
€ > 0 (there is no maturation delay and disease may induce the death of the infective) and ii) T > 0 and € = 0
(there is maturation delay and disease does not induce the death of the infective) under the assumptions (H1) and
(H2) (see [ Theorems 4.1, 4.3 and 4.4]). More precisely, if Ro(e) < 1, then the disease-free equilibrium Ej is globally
asymptotically stable and if Ry(e) > 1, then the endemic equilibrium E} exists and is globally asymptotically stable in
these cases. Furthermore, they showed the local asymptotic stability of the endemic equilibrium E? for € > 0 with two
specific birth rate functions, By(N) = 5 and B3(N) = 2 + ¢ (see [ Theorem 4.5]).

Zhao and Zou [A] also studied the global dynamics of (I3]). By a combination of the theory of monotone dynamical
systems and uniform persistence theory, they established that the basic reproduction number Ry(¢e) works as a threshold
parameter which determines the extinction of the disease, even if the disease causes the death of the population (e > 0).
They obtained the following threshold type result.

Theorem 1.1. (See Zhao and Zou [A, Theorem 2.1]) Assume that (H1) and (H2) hold. If Ro(e) < 1, then every solution
(I(t,9),N(t,®)) of system (L) with ¢ € Xy satisfies

lim I(t.¢) =0, lim N(t,¢)=N"(0).

t—+o0
If Ro(e) > 1, then there is a B > 0 such that every solution (I(t,$), N(t,¢)) of system (L3) with ¢ € Xo satisfies
o S Tim S
liminf N (¢, ¢) > ltlin_ﬁgof I(t,9) > B.

t——+o0
From their result, it is shown that if Ro(e) > 1, then the disease persists in the host population. Moreover, they studied
the global attractivity of the endemic equilibrium E¥ by using a perturbation theory. They showed that if € > 0 is small
enough, then the endemic equilibrium E? is still globally attractive.



Theorem 1.2. (See Zhao and Zow [3, Theorem 2.2].) Assume that (H1) with e =0 and (H2) hold. If Ry(0) = F)\'y >1,
then there exists an € > 0 such that for any € € [0,€], system (L3) admits an endemic equilibrium E} = (I*(¢), N*(¢))

which is globally attractive in Xj.

However, how to determine € in Theorem is still an open problem and the dynamics of [[3]) is not completely
understood. Is the endemic equilibrium E} globally asymptotically stable for the large value of €? Such a question also
can be found in Zhao and Zou [f] with their numerical simulations.

In this paper, we investigate the global stability of the endemic equilibrium E} by monotone iterative method and
establish sufficient conditions for the global stability of the endemic equilibrium E* of ([3]). Our analysis allows us to
determine the disease induced death rate € for the global stability of the endemic equilibrium E?. In fact, we will find €
in Theorem for B3(N) = 4 + c and B;(N) = be~*N in Section 4.

The organization of this paper is as follows. In the next section, we show the permanence of (3] for Ry(e) > 1. This
implies that the disease eventually persists for Ro(e) > 1. Indeed, Theorem [Tl by Zhao and Zou [B] also has the same
meaning. However, we need to determine the lower and upper bound of the solution explicitly to start the discussion
in Section 3. In Section 3, we introduce a set of sequences to estimate the solution by below and above, respectively.
By employing a monotone iterative method, we establish Theorems Bl and B2, dependently on the monotone property
of the birth rate function B(N). In Section 4, we study ([3) with two specific birth rate functions B3(N) = A/N + ¢
and B(N) = be %Y and obtain some global stability results. For each model, the disease induced death rate which
guarantees the global stability of the endemic equilibrium is obtained and this gives a positive answer for the problem
proposed by Zhao and Zou []. In Section 5, we offer a brief discussion.

2 Permanence

In this section, we show that ([3)) is permanent for Ry(e) > 1. Indeed, uniform persistence of the system is established
in Theorem [T by Zhao and Zou [f]. However, we need to introduce the following result to derive (Z2)) and @3). Z2)
will be used as an initial data of the monotone iterative method in the next section.

Theorem 2.1. Assume that (H1) and (H2) hold. If Ro(e) > 1, then for any solution of (L3) in Xo, it holds that

0<N, < ltlﬂlﬁ}}fN(t) < limsup,_,, ,, N(t) < N < +o0,

- 2.1
0< I, <liminfI(t) <limsupl(t) <I. < +o0, (2.1)
t—+oo t—+oo
where
= (d+e)ehT), N.:=B""'(dem?), (2.2)
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(1 - Rol<e>) e

N'(t) < B(N(t —T))N(t — T)e ™" — dN(t),

Proof. From the second equation of (L3])

holds. We consider the following auxiliary equation

!

N ({t)=B(N({t—T)N({t—T)e T —dN(¢).

Since limy_, yoo N(t) = B~ (de™”) = N*(0) = N, follows from (H1) and (H2), limsup,_,, ., N(t) < N by the compar-
ison theorem.
From the second equation of (3),

N'(t) > B(N(t = T))N(t = T)e™ ™" — (d+ €)N(t),
holds. We consider the following auxiliary equation
N'(t) = B(N(t = T))N(t = T)e ™" — (d + )N (t).

Since limy 400 N(t) = B~*((d + €)e™™) = N, follows, we have liminf, o N(t) > N, by the comparison theorem.
For any d; > 0, there exists a ¢; such that N(¢) < N+ §; for ¢ > ¢;. Then, from the first equation of (L3) and
Ry(€) > 1, we obtain that

I'(t) = I(t) ()\N(t])v(_t)[(t) —(d+e +7)) =I()A ((1 - R01(€>> - ]{7((?))

cron (1 i) ) e




We consider the following auxiliary equation:

70=10: (1~ 7@) ~7oag)

Then, it holds lim;_, ;oo I(t) = (1 — #(6)) (WG + (51). Since 0; can be chosen arbitrarily, this yields that limsup,_, , . I(t) <

1. holds true. Similarly, we also obtain that liminf; ,, . I(¢) > I.. Hence the proof is complete. O

Remark 2.1. Since B(N) is monotone decreasing with respect to N from (H1), it holds N, < N..

3 Global stability of the endemic equilibrium

In this section, by using monotone iterative techniques, we investigate the global asymptotic stability of the endemic
equilibrium E* of [3) for Ry(e) > 1. We assume € > 0, because our aim is to derive a sufficient condition for the global
stability of the endemic equilibrium E} for the case € > 0, that is, the disease causes death of the infective individuals.

We can observe that G(IN) = B(N)N is monotone increasing function of N for the birth rate functions Bs(N) =
A/N +cand By(N) = 5. On the other hand, G(N) is a unimodal function for the birth rate function By (N) = be=N.
Hence, to obtain global stability results for these cases, we divide this section into two parts, dependently on the property
of G(N). In Section 3.1, we study the global stability when G(V) is monotone increasing. We can apply Theorem BI]
to the case that the birth rate function B(N) satisfies a suitable monotone property, for example, B3(N) = % + c and
By(N) = HLN. In Section 3.2, we study the global stability when G(N) is monotone decreasing on a region of N.
We apply Theorem to the case that G(IN) has a unimodal property, for example, B;(N) = be™%V. We present a
graphical representation of G(N) = B(N)N for B(N) = B1(N) and B(N) = B3(N) (see Figures [l and BI).

3.1 Case: G(N) is a increasing function

We observe that G(IN) = B(IN)N is a monotone increasing function of N for the birth rate functions B3(N) = A/N +¢
and By(N) = 5. Thus, in this subsection, we study the case that G(N) = B(N)N is monotone increasing on
[ﬂe,ﬁe]. We assume that

0<G'(N)for Ne [N, ,N.

Let
Hy(N) = B(N)Ne T —dN = G(N)e™#" —dN for N € [N, N]. (3.1)
If we further assume that o
0<G'(N)ee“T <dfor Ne [N,N, (3.2)

then Hj(N) is strictly monotone decreasing on [N, N] and hence, its inverse function H; '(N) is well defined and is
also strictly monotone decreasing. From (L) and [22), the following hold

Hi(N.) = eN,, (3.3)
Hi(N*(e) = 6(1_ Rol(e)>N*(€)’ (3.4)
Hi(No) = 0. (3.5)

Thus,
Hy(N): [N.,N.] —[0,eN,] and H;"(N):[0,eN] — [N, N].

Let us introduce the following four sequences {N,, Z:E) , {Wn}:z AL, :?1 and {Tn}:z such that

—H{U (N, ), T.= (1 - #()) N,

N,
N, = H{' (éN,), I, = (1 _ R01(6)>Nn’

formn=1,2,3,---, (3.6)

where

and

P (1 - R01(6)> . (3.7)

These sequences will be used as an estimation of upper and lower bounds of the solution. We introduce the following
result.



Lemma 3.1. Assume that (H1), (H2) and (32) hold. If
N > <1 - 1) Ne, (3.8)
Ro(e)
holds, then 0 < N, = Ng < N, < N*(¢) < N, < N, < +oo forn=1,2,3,---.
Proof. By B2), H;(N) is monotone decreasing on [N, N.]. From @Z) and (&5), it holds

Hy (N1) =éNy=éN, <EéN*(e) = Hy (N*(e)).
Since Hy(NN) is monotone decreasing, we see o
Ny > N*(e). (3.9
On the other hand, from B3], it follows

Hy (Ny) = eNy = eN, >0 = i, (N,).
Since Hy(NN) is monotone decreasing, we se L
N; < N.. (3.10)
From B4), B4) and @B3), it holds that
Hy (N;) =éNy > éN*(e) = Hy (N*(e)) .
Since H;(NN) is monotone decreasing, we see
N, < N*(e). (3.11)

On the other hand, from [B]), we have o
N, > éN.. (3.12)

Then, from B3), BI0) and @I2), it holds that

Hy(N,)=¢éN1 <éN.<eN_,=H;(N,).

Since Hy(NN) is monotone decreasing, we see

N, >N.. (3.13)
Consequently, from (&3), GI0), BII) and @EI3), we obtain
N, =Ny <N; <N*(e) < N1 < Ne.

We show that the conclusion holds by using the mathematical induction. Suppose that N < N, < N*(e) for some
n > 1. From [B4), B4) and the assumption, we have

H1 (NnJrl) = gﬁn S gN*(G) = H1 (N*<€)) .

Since H;(NN) is monotone decreasing, we see

Npt1 > N*(e). (3.14)
On the other hand, from the assumption and B3, it follows
H,y (NnJrl) = gﬁn > gﬂe >0=H (Ne) .

Since Hy(N) is monotone decreasing, we see o o
Nypi1 < N.. (3.15)

From 34), B4) and BI4), we see
Hy (N, 1) =€Nni1 > eN*(e) = Hy (N*(e)).

Since Hp(NN) is monotone decreasing, we see
N, < N*(e). (3.16)
From &3], BI2) and @BIH), it holds that

Hy (N,, ) =¢N,41 <éN.<eN_=H;(N,).



Since H;(N) is monotone decreasing, we see
Mn+1 2 M<-:' (317)

Consequently, from BI4), BI5), BI6) and BIT), we obtain
ME = MO < Mn+1 < N*(E) < NnJrl < Ne

Thus, we obtain the conclusion by the mathematical induction. Hence, the proof is complete. O
Let us define _
Fi(e) := <1— L ) e for e € (0,A — (d +7)). (3.18)
Ro(e) ) N,
Since
lim Fi()=1- —— <1, lm Fy()=0,

€S+0 Ry(0) e—A—(d+7)

if Ry(0) > Ro(€) > 1, we see that if e € (0, A — (d+ 7)) is sufficiently close to 0 or A — (d+ ), then Fi(e) < 1 and hence,
B3) holds. We define
Q:={e€ (0,A—(d+7))|Fi(e) <1}. (3.19)

Therefore, if € € 1, then F(e) < 1 which implies that (8] holds.
Now we consider the situation where N, and N,, converge to N*(¢) as n — +o0.

Lemma 3.2. Assume that (H1), (H2) and (Z3) hold. If € € & defined by (319) and

0<é< min {—H{(N)}, (3.20)
Ne[N,,N]

hold, then

lim N, = lim N, =N"(e).

n—+4+oo - n—-+oo

Proof. From (B0, we have the following relation

H'(eN =N,
1_1 (i:n) o o n:071727"'7
H{" (ENpy1) =N,i1s
which is equivalent to the following
eEN =H; (Npi1),
N, N R S T (3.21)
éNyp1 = Hy (N, 4)

Let
én :N*(e)_ﬂnv TLZO,].,Q,"',
l, =N,—N*@), n=1,23---.

Then we have [,, > 0 and [,, > 0 by Lemma Bl There exist n, €[N, N*(e)],n=0,1,2,-- and 7, € [N*(€),Nn],n=
1,2,3,--- such that

g%n =H (N*(€)) - H, (Nn+1) = _H{ (ﬁn-}-l)ZnJrl’ (3 22)
elpyr = Hi (Nyyy) — Hi(N*(€)) = —H{(1,, g1,

by B4), B2I) and the mean value theorem. Then, from F22]), we obtain

by = ¢ ( ¢ ) !
In = nt+l = n -n:
T —H{(,, ) —Hi(n,.,) ) \=H{(n41)

Moreover,

€
<

bt = (mianNe,Ne] {—Hi(N)}>

follows by (320). Thus, lim,,_, 4 ,, = 0 follows and hence, we obtain lim,,_, ;o N,, = N*(¢). Similarly, lim,, 4o Ny,
N*(e) holds. Hence, the proof is complete.
Let us consider the following auxiliary equation with a fixed n, before giving the main result in this subsection.

N'(t) = G(N(t —T))e ™" —dN(t) — éN,,, (3.23)

with initial conditions N (0) = ¢ (6) for 6 € [T, 0] where ¢ € C ([-T,0], [N, N.]).
For (B23)), we have the following lemma.

L, <l,,

o



Lemma 3.3. Assume that (H1), (H2) and (32) hold. Then,

N, <liminf N(t) < limsup N(t) < N,

T todeo t—+400
for (Z23).
Proof. Suppose that there exists a t; such that N(tl) = N, and N(t) < N, for t < t;. Then we see
N'(t;) = G(N(t; — T))e 4T —dN, —éN,,.
From 2], G(N) is monotone increasing and hence, it follows
N'(t;) < G(N)e ®T —dN, —éN, = Hi(N,) — éN, = —éN,, <0,

by B3). This implies that limsup,_, | N(t) < N..
On the other hand, suppose that there exists a ty such that N(t) = N, and N(t) > N, for t < t5. Then we see

N'(t) = G(N(ty — T))e™“T —dN, — éN,,.
From 2], G(N) is monotone increasing and hence, it follows

N/(tQ) 2 G(ﬁe)eile - dﬂe - gﬂn = Hl(ﬂe) - gﬂn = GME - gﬂn 2 (6 - E) Me > 03

by @3). This implies that N, <liminf; , ., N(t). The proof is complete. O
Eq. 323) has a positive equilibrium N* which satisfies
G(N*)e 4T — dN* —&éN, = H,(N*) —éN,, = 0.
Then,
N*=H;'(éN,)=Npi1.
From the following lemma, every solution converges to the positive equilibrium N*.

Lemma 3.4. Assume that (H1), (H2) and (33) hold. Then,

lim N(t) = N*,

t—+o00

for 323).

Proof. There exists a positive sequence {th};fz such that limp_, o &), = +00 and

N'(tn) > 0,N(t) < N(tp,), for t <tp,h=1,2,--- and lim N(t,) = limsup N(t).

h—+o00 t— 400

Then, we have that
0< N'(tn) = G(N(ty, — T))e~hT —dN(ty) — éN,,.

Since N(t, —T) < N(t) and, from B2), G(N) is monotone increasing of N, we have G(N(t;, —T)) < G(N(t3)). Then,
it holds that

0 < G(N(tp))e T —dN(ty) —éN, = H (N(t,)) — éN,,.

We have N,, 11 = H; ' (éN,,) from @3) and H;(N) is monotone decreasing of N by @2). Then N (t;) < N, follows.
Thus, limsup,_,, o N(t) < N* = H ' (eN,)) = Npt1.
Similarly, we obtain liminf;_, 4 N(t) > N* = H1_1 (€N,)) = N,11. Consequently, lim; | N(t) = N* holds and
the proof is complete. O
We establish the following result.

Theorem 3.1. Assume that (H1) and (H2) hold. If Ro(e) > 1 then (L3) admits an endemic equilibrium E* =
(I*(€),N*(€)). In addition, assume that [32) holds. Then, for any e € Qy defined by (1) such that

0<e (1 - M) <— max {G'(N)ehT} 44, (3.24)
A Ne[N_ V.|

the endemic equilibrium E* = (I*(€), N*(e)) is globally asymptotically stable in Xg.



Proof. At first, by Theorem 1] we have liminf, , . N(¢) > N, and liminf, , . I(t) > I, if Ry(¢) > 1. Then we
obtain the following limiting equation

N'(t) < G(N(t —T))e T —dN(t) —ely = G(N(t — T))e~ T —dN(t) — EN,,.
By Lemma B4 and the comparison theorem, we obtain

limsup N(¢) < H; ' (EN,) = N;.

t——+oo

Similar to the proof of Theorem 1] we see limsup,_, , . I(t) < I;.
Then, we obtain the following limiting equation

N'(t) > G(N(t—T))e hT —dN(t) — el = G(N(t — T))e 4T — dN(t) — éN,.
By Lemma B4 and the comparison theorem, we obtain

liminf N(¢) > H; ' (EN1) = N;.

t——+oo

Similar to the proof of Theorem ] we see liminf; o I(t) > I;.
Repeating the above arguments, we obtain

N, <liminf N(¢) < limsup N(¢) < N,,,n =1,2,3,---

t—+oo t—+00
We see that (320) in Lemma B2 holds from ([B24)). Then, by letting n — +o0, it follows

N*(e) <liminf N(t) < limsup N(t) < N*(e),

t—+o0 t—+400

which implies the conclusion of this theorem. The proof is complete. O

3.2 Case: G(N) is a unimodal function

In this subsection, we study the case that G(N) = B(IN)N is monotone decreasing on [ﬂ E,NG]. Therefore, we assume
that
0> G'(N), forany N € [N, N.]. (3.25)

Let
H(N) = B(N)Ne 4T —¢N = G(N)e T —éN for N € [N, N.]. (3.26)

then Hy(N) is strictly monotone decreasing on [N, N| from @Z5). From (IH) and @32), it holds

Hy(N,) = (d+e—¢éN,, (3.27)
Hy(N*(e)) = dN™(e), (3.28)
H2(N€) = (d_g)ﬁe (329)

Now we introduce the following four sequences {NN. n}::g, {N”}:Z’ {I n}:: and {Tn}j;z such that

- 1
n:éH2 (ﬁnfl)v In: 1_m
1

I, =|1———
=-n RO(C) n

ny

forn=1,2,3,---, (3.30)

= =
I

SHL

E

3

= =

n

with N, = V.. These sequences will be used as an estimation of upper and lower bounds of the solution. We introduce
the following result.

Lemma 3.5. Assume that (H1), (H2) and (323) hold. If é < d and
AN, < (d— € Ne,(d+e— €N, <dN, (3.31)
hold, then
0<N,=N;<N,<N'()<N, <N, < +o0,

form=1,23,---.



Proof. By [B25), H>(N) is monotone decreasing on [N, N.]|. From ([B28) and @30), it holds
ANy = Hy (No) = Hz (N,) > Hz (N*(¢)) = dN"(e),

since Ho(N) is monotone decreasing. Then, o
N1 > N*(e), (3.32)

follows. On the other hand, from B3]), we have
(d+e—€ N, <dN.. (3.33)
Then, from B2Z1), it follows that
dN, = Hy (Ny) = Hy(N,) = (d+e€—€é) N, <dN,

and hence, we obtain L
Ni < N.. (3.34)

From (328), B30) and [B32), it holds
dN, = Hy (N1) < Hy (N*(e)) = dN*(e),
since Ho(N) is monotone decreasing. Then, we see
N, < N*(e). (3.35)

On the other hand, from B31]), we have o
(d—&N.>dN,. (3.36)

Then, from B34) and B29), it holds
dN, = Hy (N1) > Hy (N.) = (d—é)N. > dN
since Ho(N) is monotone decreasing. Then, we see
(3.37)
Consequently, from B32), B34), B33) and F31), it holds
N, <N, <N*() <N < N..

We show that the conclusion holds by using the mathematical induction. Suppose that N, < N, < N*(e) for some

n > 1. From B28) and @B30), it holds
AN = Hy (N,)) > Hy (N*(e)) = dN*(e),
since Ho(N) is monotone decreasing. Then, we see
Npi1 > N*(e). (3.38)
Since we have B33), from the assumption and B27), we see
dNpy1 = Hy (N,) <Hy(N.) = (d+e—é N, <dN,.

Then, we see o o
Nypi1 < Ne. (3.39)

From [B28), B30) and B3]), it holds
AN, = Hy (Nyy1) < Ho (N*(€)) = dN"(e),
since Ho(N) is monotone decreasing. Then, we see
N, <N (o). (3.40)
Since we have (B30), from [B29) and [B39)), it holds
dN, 1 =H; (Nyt1) > Hy (No) = (d—é) N > d

AV e



since Ho(N) is monotone decreasing. Then, we see

Consequently, from [3.38), .39), (40) and A1), we obtain
N, = Ny < Nppy € N*(€) < Nups < W

Thus, we obtain the conclusion by the mathematical induction. Hence, the proof is complete.
For € € (0, \ — (d + 7)) we define

dN,

Fy(e) = A
d+e—€) N,
Fy(e) := %7

under the condition € < d. We see from (B7))

GI_IH_IOF]'(E) =1,7=23,

if Ro(0) > Ro(e) > 1. We assume

o (F1) If € is sufficiently small, then Fj(e) <1 for j = 2,3

and define
Oy = {6 S (0,)\— (d+’7))|F](€) <l,j= 273}

(3.41)

(3.42)

(3.43)

(3.44)

We see that if € € Qg then, F;(e) < 1,j = 2,3, which implies that (331I]) holds. In Section 4, we discuss on a sufficient

condition which ensure (F1) for By(N) = be™N.
Now we consider the situation where N, and N,, converge to N*(e) as n — +oc.

Lemma 3.6. Assume that (H1), (H2), (323) and (F1) hold. If € € Qo defined by (3.44) and

N I[rjlvaxﬁ | {-H3(N)} <d,

hold, then

n—+oo~ n——+o0o
Proof. Let

-n

l, =N*(e)—N,,n=0,1,2,---,
I, =Nn—N*(e),n=1,23,--.

(3.45)

We have [, > 0 and [,, > 0 by Lemmal[ZEl There exist 77,, € [N*(€), N,,| and n €[N, N*(e)],n=1,2,3, - such that

dlnir = H (N,)) = Ha (N*(6)) = =Hj (1, ) Ln = 0,1,2,- -
dlyyy = Hy(N*(€)) — Hy (Npy1) = —Hj ﬂn+1) lnt1,m=1,2,3,---,

by B28)), 330) and the mean value theorem. Then, from [B46]) we obtain

fus = ), () (TTEO)Y

Moreover,

ln,

Iny1 < 7

] (maXNG[Ne,Ne] {-H; (N)}>21 3

(3.46)

follows by B4H). Thus, lim,_, {« I, = 0 follows and hence, we obtain lim,_, y o N, = N*(€). Similarly, lim, . N,, =

N*(e) holds. Hence, the proof is complete.
Then, we give the following result:

10
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Theorem 3.2. Assume that (H1) and (H2) hold. If Ro(e) > 1 then (L3) admits an endemic equilibrium E} =
(I*(€),N*(e)). In addition, assume that (3.21) and (F1) hold. Then, for any € € Qy defined by (3-74) such that

0<e <1 - d“”) < min_ {G(N)e BT +4, (3.47)
A Ne[N_ V.|

the endemic equilibrium E* = (I*(€), N*(€)) is globally asymptotically stable in Xy.
Proof. At first, by;_[‘heoremlﬂl we havelim inf; , o N(t) > N, and liminf;, o I(t) > I,. Since G(N) is monotone
decreasing on [ﬂ o N 6] under the condition ([B25]), we obtain the following limiting equation

N'() £ GNp)e~®T — AN(t) — eIy = G(Np)e™T — dN(t) — ENy = Ha(Ny) — dN().

By the comparison theorem, we obtain

1
limsup N(t) < - Hz (Ny) = V1.

t—+oo

Similar to the proof of Theorem Il we see limsup,_, . I(t) < I; follows.
Since G(NN) is monotone decreasing on [N, N.| under the condition ([B2H), we obtain the following limiting equation

N'(t) > G(N1)e T —dN(t) — eI, = G(N1)e T —dN(t) — éNy = Ho(Ny) — dN(1).
By the comparison theorem, we obtain

.. 1 —
B 30> i () =,
Similar to the proof of Theorem [ZT] we have liminf; o I(t) > I;.
Repeating the above arguments, we obtain

N, <liminf N(t) < limsup N(¢t) < N,,,n=1,2,3,---

t—+o0 t—+oo

We see that [3Z3) in Lemma B0 holds from ([B47). Then, by letting n — +o00, it follows

N*(e) <liminf N(t) < limsup N(t) < N*(e),
t—+o0 t—+oo
which implies the conclusion of this theorem. The proof is complete. O

From Theorems B and B.2] we can determine ¢ which guarantees the global stability of the endemic equilibrium
E*, respectively. This allows us to find € in Theorem [[L2 by Zhao and Zou [].

4 Applications

In this section, we consider (I3) with two specific birth rate functions Bs(N) = 4 + ¢ and By(N) = be~*". For the
reader, we illustrate the graph of G(IN) = B(IN)N for these birth rate functions, respectively (Figuresland ). For the
case B3(N) = 4 + c in (), we establish Theorem FZI] from Theorem ] because G(N) = A + ¢N is increasing of N.
For the case By(N) = be~*" in ([3), G(N) = be "N N is increasing on (0, 1] and decreasing on [1, +00). We obtain
two global stability results, Theorems and 3], from Theorems Bl and B2] respectively.

4.1 Case: B3(N)=A/N +c¢
In this subsection, we study (3] with B3(N) = % + ¢. We consider the following system

I'(t) = A(N (1) —I(t))]if((?) — (d+e+)I(D), @)
N'(t)=[A+cN(t—T) e 4T —dN(t) — el(t).
For (H1), we assume
i B3(N) = 400 > (d + €)eT > de™” > Jhm B3(N) =c¢>0. (4.2)

Then, @) has the disease-free equilibrium Ey = (0, By ' (de®'T)) and the endemic equilibrium E} = (I*(e), N*(e)) if

Ry(e) = ﬁ > 1. Since G'(N) = ¢ > 0, (H2) also holds.

11
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N

Figure 1: Graph trajectory of G(N) = B(N)N = A+ c¢N with A=1.2 and ¢ = 0.3

G(N)

Figure 2: Graph trajectory of G(N) = B(N)N = be *N N with b= 3.5 and a = 0.3
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From Theorem 2] it holds

0<N_ < ltimian(t) <limsup N(t) < N, < +o0,

—+oo t—+o0

where

$ N _L
= (d+eehT —¢' T dediT — ¢’

if Ry (6) > 1.
Then, we establish the following result which is obtained from Theorem Bl

Theorem 4.1. Assume that {{.3) and Ro(e) > 1 then {{.1) admits an endemic equilibrium E} = (I*(e),N*(¢)). In
addition, the following holds.
i) If \ 4+ ce~hT — (2d + ) < 0 then, for any e € (0, A\ — (d + 7)) such that

0<e <1 - d—’—f\ﬂ> < —ce M7 4 4, (4.3)

holds, the endemic equilibrium E¥ = (I*(e), N*(¢)) is globally asymptotically stable in X.
i) If X+ ce~hT — (2d + ) > 0 and Fy(eprr) < 1, where

d—|—e+*y) (d—|—e)ed1T—c’ foree (0,A—(d+7)) (4.4)

Fi(e) = (1— \ Jed T — ¢

and

e = % A+ ce T —(2d+ 7)),
then, for any € € (0, \ — (d + y)) such that {.3) holds, the endemic equilibrium E} = (I*(e), N*(€)) is globally asymp-
totically stable in X.

iii) If \+ce~hT —(2d + ) > 0 and Fy(epr) > 1, then, there exist two positive solutions, 0 < €; < e3 < A—(d+7), of
Fi(e) =1 =0 and for any € € (0,€1]U[e2, A — (d+ 7)) such that [{-3) holds, the endemic equilibrium E = (I*(¢), N*(€))
1s globally asymptotically stable in Xg.

Proof. At first, we see G'(N)e 4T = cehT < d by [@Z). Hence, (32) in Theorem BI] holds.
Now we determine €y defined by BI9) in Theorem Bl for the cases i)- iii).
i) To determine €2, we consider the function Fj(e) defined by [J]). It holds that lim. 4o Fi(e) =1

Ro(0) > Ro(e) > 1 and lim,_, (44~ F1(€) = 0. Moreover, direct calculation gives

1 .
—m<1lf

1(d+e)ehT —c d+e+~ et T 1 —dy T T
F{(e):—XW 1— 3 AT N (dehT — o) (A +ce —(2d+2e+7))e (4.5)
and hence,
. / _ 1 —d1 T di T
dim, Fi(0) = ygpmr—gy (e = 2d+7)) 7,

follows. If A + ce=@T — (2d ++) < 0 then we see that Fj(e) is nonincreasing from (@XH). Hence, Fi(e) < 1 for
e€ (0,A—(d+7)). Thus, Q4 = (0,A — (d+7)).
ii) From @3), if A +ce= 4T — (2d +~) > 0, then F(e) attains a maximum at ey € (0, — (d+7)). It is easy to see
that if Fy(eps) <1, then Fi(e) < 1 for e € (0,A — (d+)). Thus, 21 = (0, — (d +7)).
iii) If Fy(epr) > 1, then we see that Fy(e) < 1 for any € € (0,€1]U[e2, A— (d+7y)). Thus, Q1 = (0, 1] U[e2, A\ — (d+7)).
Finally, it follows
— max  G'(N)e T 4d=—ce T 4 d>0,

Ne[N, N]
and hence, by Theorem [BI] we obtain the conclusion. The proof is complete. 0
We can determine e which guarantees the global asymptotic stability of the endemic equilibrium E} = (I*(¢), N*(¢))
by @3). We also see that if € is sufficiently small or Ry(e) > 1 is sufficiently close to 1 (that is, e < A — (d + ) is
sufficiently close to A — (d + 7)) then [{3) holds. From [{3), we also determine € in Theorem [[2
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4.2 Case: Bi(N) = be "
In this subsection, we consider the SIS epidemic model with B(N) = be~N  that is,

1) I(t)
I(t)—A(N(t)—f(t))m—(dﬂJrv)I() (4.6)
N'(t) = be " NEDIN(t — T)e=hT —dN(t) — el (t).
For (H1), we assume
lim By(N)=0b> (d+e)e™” > de™” > lim B;(N)=0. (4.7)

N—+0 N—+o0
Then, (IE) has the disease-free equilibrium Ey = (0, By ' (de®'T)) and the endemic equilibrium E} = (I*(€), N*(e)) if

Ro(e) = d+e+v > L.
From Kuang [B Corollary 4.3], the positive equilibrium N*(0) = N, of

N'(t) = be NEDIN (@t —T)e T — dN(t),

is globally asymptotically stable if

b
1dalT<2 (4.8)

Hence, we assume ([8) to ensure that (H2) holds. Other conditions for the global stability were investigated by Cooke

et al. 1.
On the other hand, by Theorem 211 if Ry(€) > 1, then it holds

0<N, < l1m1an( ) <limsup N(t) < N, < +0o0,

t—+oo t——+o00

where ) b ) b
N="In—"  N,=-ln——. 4.9
1V e 0 n (d+e)ed1T’ p ndele ( )

To present global stability results for [£0), we introduce the following lemma.

Lemma 4.1. Let G(N) = B1(N)N, N € (0,+00), where B1(N) =be™*N b > 0,a > 0. Then
G'(N)= Bi(N)+ B{(N)N = (1—aN) B;(N), (4.10)
G"(N)= 2B|(N)+ B/(N)N = (aN — 2)aB;(N). (4.11)

In particular, G(N) is monotone increasing on (0, ] and decreasing on [X,+00).

Proof. We see B{(N) = —aBi(N) and Bf(N) = a®B;(N). By direct calculation, we obtain the conclusion. O
We see that if No < I, then G'(N) > 0 for N € [N_,N¢|. In this case, we establish the following result from
Theorem 311

Theorem 4.2. Assume that {7.7) holds. If Ro(e) > 1, then ([{.0) admits an endemic equilibrium E¥ = (I*(e), N*(€)).
Let €1 be a unique positive solution of g(e€) = 0, where

b

gle) = (d+e) IHW

—€ fore>0 (4.12)

and epr € (0, — (d+ 7)) be a unique positive solution of f(e) —1 =0, where

b A—(d+e+7)
=-—1
fle) n(d+e)ed1T+ d+e )
if lime 10 f(e) = —1In de‘?lT + w > 0. In addition, suppose that
b

and € < €1, then the followmg holds.
i) If —In by +2 (d+7) <0, then for any e € (0, A — (d+ 7)) N (0, &) such that

d+e+7y b
12Ty _ 1
O<e< 3 ><(d+e)ln(d+€)ele €, (4.14)
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the endemic equilibrium EX = (I*(e), N*(¢€)) is globally asymptotically stable in X.
i) If —In -2 + # >0 and Fy(epm) < 1, where

ded1T

d + hl%
Fie) = (1-2F<t7 T fore € (0,0 — (d+7)), (4.15)
A In @roenT

then, for any e € (0, A — (d+)) N (0, é1) such that (£-14) holds, the endemic equilibrium E} = (I*(e), N*(¢)) is globally
asymptotically stable in Xg.

i11) If —In deng + W > 0 and Fy(epr) > 1, then there there exist two positive solutions 0 < €3 < €4 < A—(d+7)
of Fi(e) —1 = 0 and for any € € ((0,e3] U[es, A — (d+7))) N (0,é1) such that {{.1F)) holds, the endemic equilibrium
E* = (I*(€), N*(e)) is globally asymptotically stable in Xj.

Proof. Assume that [@I3) holds and € < é,. We show — maXyely W] G'(N) +d > 0 to verify (B2) in Theorem B.11
From @II)) in Lemmad] G'(N) is monotone decreasing on [N, N|. Then, it holds that

—  max {G’(N)e—le} +d= _G’(ﬂe)e_le +d=-(1-alN,) B(ﬂe)e_le +d
Ne[N,.N.]

:_<1_ln(d+f)ele> (d+e)+d
b

=d+elh—— —
( +€) n(d—|—e)ed1T

Consider g(e) defined by [@I2). Since we have lim._, ;¢ g(e) > 0 and, from [{IJ), it follows

b
()=In———— —2<0
there exists é; such that g(é;) = 0 and g(e) > 0 for € < é;. Hence, — MaXyeln W] G'(N)+d >0 for e < & and B2)
in Theorem B1] holds.
Now we determine 2 defined by I9) in Theorem Bl for i), ii) and iii).
i) We claim €5 is (0, \— (d++)). To determine £, we consider F(e) defined by (IH). It holds that lim._, ¢ Fi(e) =
1- #(0) < 1if Ry(0) > Ro(e) > 1 and lim,_,x_(44+) F1(€) = 0. Moreover, direct calculation gives

In —b 1 b d+ e+ 1 In b
F! — T dehhT el 1— _ ded1 .
1(6) b pY n (d+€>ed1T + by d+ e b 2f(€)

2
<ln s +6)ed1T) A (m y +€)ed1T)
We see
1 —(d —(A—(d —(A—(d
£le) = i e Bl (2+€+7)): (A—( +2+7))<0’

d+e (d+e€) (d+e)

if Ry(e) = ﬁ > 1. Since we have
In i b A—(d+7)
: / _ ded1 T _ Y
el_lg_lOFl(E) = ( In T + y ) <0, (4.16)

A (ln W)z

there does not exist é > 0 such that F](é) = 0 and Fj(e) is nonincreasing. Hence, Fi(e) < 1 for € € (0,A — (d + 7)).
Thus, ; = (0,A — (d+7)).

ii) Since we have lim¢_; 1o f(€) > 0 and lim._,y_(44) f(€) < 0, there exists e5; such that F (epr) = maxXo<ecr—(a4y) F1(€)-
Therefore, if Fy(ep) <1, then Fi(e) <1 for e € (0,\ — (d +7)). Thus, Q1 = (0, A — (d +7)).

iii) If Fy(epr) > 1, then we see that Fy(e) < 1 for any € € (0,€3]U[eq, A— (d+7y)). Thus, Q1 = (0, e3]U[eq, A — (d+7)).

By Theorem B.I] we obtain the conclusion and the proof is complete. O

If N, > 1 then G'(N) <0 for N € [N, N|. In this case, we establish the following result from Theorem B2

Theorem 4.3. Assume that {{.7) and Ro(e) > 1 then {{-0) admits an endemic equilibrium E* = (I*(€),N*(¢)). In
addition, suppose that

b

e<é=be 17T _¢ (4.18)
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and

b . 1 A
lndeﬁ <m1n{1_d_§7,d+7}. (419)
Then there exists Qo = {e € (0, A — (d +7))|F;(e) < 1,7 = 2,3}, where
din b (d+e—8&) it —Ltor
(d+e€)etr™ a (d+e)edrT
Fyfe) = i) = for e € (00— (d+ ). (4.20)
(d—&zlngor diln

with € < d and, for any € € Q2 N (0, é2] such that

d+e+~y b b
0<6(1_)\) <d<2—lndele> fOT' IHW<27

the endemic equilibrium E* = (I*(€), N*(€)) is globally asymptotically stable in Xg.

Proof. From [@IT), we see b > de®”+1 from which be™1=4T — d > 0 follows. Assume that ¢ < é& = be 11T — 4.
Then, from (IT), it holds

This gives N, > L and hence, we see G'(N) < 0 for N € [N, N| from @I0) in Lemma Bl Thus, @25) in Theorem
holds.

Next we show the existence of {23 in Theorem We see limeo Fj(€) = 1,j = 2,3. Now we compute Fj(e). By
direct calculation, we obtain

d (f die) (d—€)—In (d+61)’ed1T (d+2)\e+'y - 1)

gk (d— &)

Fy(e)

and

. 1 b d+
/ — — —
61_1)rJrr101t7'2(6) T deng {ln JeiT (1 3 ) 1} .

Similarly, we obtain

1 d+2e+~ b L1
Fl(e) = 1 - -
3(9) dln bt K ) ) BT et —(dFe E)dﬂ}

and

= b T
€40 dIn o7+ A dets

lim F(e) ! [dJ”ln b —1}.

Therefore, (F1) in Theorem B2 holds from [I9) and we see Q5 # 0.
Next, we calculate minNe[N N.] {G'(N)e=®T} 4+ d in Theorem We have that G'(N) is monotone decreasing on

[N.,N.| by @II) in Lemma[dl Hence, it holds that

min {G’(N)e*le} +d=(1-aN,) e~ Nee=hT 4 = (1—aN)d+d=d(2—aN.) =d <2 —1In ST) > 0.
Ne[N, N det

Finally, by Theorem B.2] we obtain the conclusion. O
From Theorems2and 3] it is possible that the endemic equilibrium E* = (I*(e), N*(¢)) is globally asymptotically
stable for the corresponding case of [@8). In fact, we obtain the global stability results for N, < %, that is, ([L38). From
some numerical simulations, every solution seems to converge to the endemic equilibrium E* if Ry(e) > 1 and 3J)
holds. If ) does not holds, periodic solution may arise (see also Cooke et al. [I]). Bifurcation analysis was carried
out by Wei and Zou M.
Finally, as a numerical example for Theorem B3] we consider (@) with b = 1.5, = 0.3, A = 1.4,d = 0.3,y = 0.3

and d;T = 0. We vary the parameter e. We see

BT S S
S d+tet+y 03+€+03

Ry(e) 1, if e < 0.8,
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epsilon

Figure 3: Graph trajectory of Fjj(e),j = 2,3

from (IF). If € < 0.8, then 7)) holds, since
b=15>d+e=03+¢€if € <0.§,

follows. Hence, there exists an endemic equilibrium E* = (I*(¢), N*(¢)) for {@0l).
Since we have

b 1.5
l<ln—-=In—~1.6094--- < 2.
< nd n0.3 <

I holds. For ([@IH), we see
é=be ' —d=15e""—-03=0.2518--.

Hence, we restrict € < 0.2518. Further, it holds that

b 1 A 1.4
In-~1.6094 <min{ ————,—— » = — = 1.75,
" mm{l_djv d+7} 0.8
which implies (I9) holds.
Consider the following functions:
‘ 0.34+¢40.3 .
F2(€) _ 031n 0.13-5i-6 Fg(G) — (03 te—e¢ (1 B ﬁj )) hl 0.133-6
0.3+¢+0.3 1.5° 1.5 :
(0.376(17%))1Hﬁ 0.3In 53

We present the graph for Fj(e),j = 2,3 in Figure Bl We see F;(e) < 1,j = 2,3 for € € (0, A\ — (d + 7)) and hence,
Finally it follows that

~ 0.3+0.2518 + 0.3
1.4

max €= 0.2518 (1

b
> ~ 0.0985 < d (2 —In ) ~ 0.1171.
€€(0,0.2518] d

Consequently, by Theorem 3] if € < 0.2518, then the endemic equilibrium E* is globally asymptotically stable.

5 Discussion

In this paper, we study the global asymptotic stability for a SIS epidemic model with maturation delay proposed by
Cooke et al. [I]. Cooke et al. [I] showed that Ry(e) works as a global threshold parameter if there is no maturation
delay (T = 0) or if the disease does not induce the death of the infective (¢ = 0) under the assumptions (H1) and (H2).
More precisely, if Ro(e) < 1 then the disease-free equilibrium Ej is globally asymptotically stable and if Rg(e) > 1 then
the endemic equilibrium E7 exists and is globally asymptotically stable in these cases.

Zhao and Zou [G] also studied the global dynamics of (I3]). They established that the basic reproduction number
Ry(e) works as a threshold parameter which determines the extinction of the disease, even if the disease causes the
death of the population (e > 0). Moreover, they studied the global attractivity of the endemic equilibrium E* by using
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a perturbation theory and showed that if € is small enough, then the endemic equilibrium E} is still globally attractive
(see Theorems [T and [[2).

However, the dynamics of ([3)) is not completely understood, in particular, for Rg(e) > 1. To obtain a detailed
information about the dynamics when the disease is endemic, we investigate the global stability of the endemic equi-
librium E} by monotone iterative method. Sufficient conditions for the global stability of the endemic equilibrium E7
of (L3 are established in Theorems Bl and From these results, we can determine € in Theorem by Zhao and
Zou []. Our results show that G'(N) = (B(N)N)' is important to determine the global stability for (IL3). In Section 4,
from Theorems Bl and B2l we establish the global stability of the endemic equilibrium E* for the birth rate functions
B;(N) = % + ¢ and By (N) = be~*" (see Theorems EI] and [3]). For these cases, we obtain the disease induced
death rate e which guarantees the global stability of the endemic equilibrium E¥. We also introduce a numerical example.
From these results, we determine € in Theorem

For Bs(N) = % + ¢, if the disease induced death rate e is sufficiently small or the basic reproduction number
Ro(e) > 1 is close to 1 enough, then the condition in Theorem ] holds. This implies that the endemic equilibrium
E¥ is also globally asymptotic stable even if the disease induced death rate € is sufficiently large. From this, one may
conjecture that e does not influence the global stability of the endemic equilibrium EY, but this is still an open problem.
For By(N) = be~ %" it is possible that the endemic equilibrium E* is globally asymptotic stable if (X)) holds. Is the
endemic equilibrium E* always globally asymptotically stable if Rg(e) > 1 and (@) holds? This problem also needs
further study.

Acknowledgments

The authors are grateful to the two referees for their constructive comments which led to a significant improvement
on the manuscript. The first author is partially supported by Spanish Ministry of Science and Innovation (MICINN),
MTM2010-18318. The third author is partially supported by Scientific Research (c), No. 21540230 of Japan Society for
the Promotion of Science.

References

[1] K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and
epidemic models, J. Math. Biol. 39 (1999), no.4, 332-352.

[2] H. I. Freedman and K. Gopalsamy, Global stability in time-delayed single-species dynamics, Bull. Math. Biol. 48
(1986), no. 5-6, 485-492.

[3] Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology
and population biology, Japan J. Indust. Appl. Math. 9 (1992), no. 2, 205-238.

[4] J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting SIS epidemic model with delay, J.
Comput. Appl. Math. 197 (2006), no. 1, 169-187.

[5] X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl. 257 (2001), no.
2, 282-291.

18



