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Abstract. In this paper, we consider the backward Fuler discretization derived from a continuous SIRS epidemic
model, which contains a remaining problem that our discrete model has two solutions for a given initial infected popula-
tion; one is positive and the other is negative. Under an additional positiveness condition on infected population, we show
that the backward Euler discretization is one of simple discrete-time analogue which preserves the global asymptotic
stability of equilibria of the corresponding continuous model.
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1 Introduction

In order to investigate the long term behavior of disease transmission in a population, Mena-Lorca and Hethcote [0
considered a continuous-time SIRS (Susceptible-Infected-Recovered-Susceptible) epidemic model. The SIRS epidemic
model has been considered to be appropriate when describing the phenomena that susceptible individuals become
infectious, then removed with immunity after recovery from infection and then susceptible again when the temporary
immunity fades away. Later, various kinds of continuous SIRS epidemic models and a significant body of work have
been carried out, for example, FAMINIAIAMRMIE and the references cited therein.

First, we consider the following SIRS epidemic model:

%ﬁﬂ =B —mS(t) = BSMI(t) + 0R(D),
% = BS()I(t) — (p2 +7)I(t), L)
%ﬁt) =~I(t) — (us + 0)R(t), t > 0.

S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered individuals at time ¢, respectively. B
is the recruitment rate of the population and ~y is the natural recovery rate of the infective individuals. u1, pe and s
with g1 < min{pe, 3} are the natural death rates of the susceptible, infective and recovered individuals, respectively.
0 is the disease transmission rate and 0 is the rate at which recovered individuals lose immunity and return to the
susceptible class.

By constructing elegant Lyapunov functions, Vargas-De-Leén [[2] established a complete analysis of the global
asymptotic stability of the disease-free equilibrium and the endemic equilibrium of (IT).

On the other hand, discrete schemes which preserve the global asymptotic stability of the equilibria of the corre-
sponding continous-time epidemic models has been extensively investigated. For SIR epidemic models, by applying a
discrete time analogue of Lyapunov functional techniques in McCluskey [§], Enatsu et al. [3] recently established the
complete global stability results for difference equations with a variation of the backward Euler method. For SIRS
epidemic models, based on the ideas in Izzo and Vecchio [, Izzo et al. [f] and Mickens’ nonstandard discretization,
Sekiguchi [II] proved the global stability of a disease-free equilibrium and permanence for a difference equation derived
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by the corresponding continuous-time model with delays by applying techniques in Wang [[3]. However, in those cases,
how to choose the discrete schemes which preserve the global asymptotic stability of the endemic equilibrium of the
corresponding continous models was an open problem.

In this paper, under an additional positiveness condition on infected population, we show that the backward Euler
discretization is one of discrete-time analogues preserving the global asymptotic stability of equilibria of the corresponding
continuous model. Let us consider the following difference equations:

Sn+1)—=8Sn)=B—mSn+1)—pBSn+1)I(n+1)+dR(n+1),
Im+1)—I(n)=8Sn+1DIn+1)— (u2+7y)I(n+1), I(n+1) >0, (1.2)
R(n+1)—R(n)=~I(n+1)— (u3+d)R(n+1), n=0,1,...

with the initial conditions

S(0) = 61(0) > 0, 1(0) = $2(0) > 0, R(0) = 5(0) > 0. (1.3)

Remark 1.1. Since the backward Euler discretization is an implicit method, I(1) is given in terms of the following
quadratic equation:

B+ o +7)(1 + pz +8) — 07} (1)°
+ {A+p1) (A + p2 +7) = B(B+5(0) + 1(0)) }(1 + ps + 6) — BOR(0)]I(1)
— (14 p1)(1 4+ p3 4+ 0)1(0) = 0. (1.4)
If the condition I(1) > 0 is not assumed in ([[2)), then the equation (L4) has one positive and one negative root (see
also Lemma [ZT] below). This is why the condition I(n 4 1) > 0 for n = 0,1, ... is needed. Recently, the similar results

for the difference equations which are discrete analogues of a continuous-time SIS epidemic model are also obtained in
Enatsu et al. [].

We define a threshold parameter for the system (2] as follows.
_ BB
papz +7)

The system ([2) always has a disease-free equilibrium E° = (5°,0,0), S° = :%. If Ry > 1, then the system (2] admits
a unique endemic equilibrium E* = (S*,I*, R*) € Int(R3,), where

. M2ty . So(u3+5)( 1 ) . S0y ( 1 >
S* = =" (- — ), RF=—— 1 [1-—). 1.6
B p3 + 0+ Ry p3 + 0+ Ry (16)

By constructing a discrete-time analogue of Lyapunov functions, we obtain the following result:

Ro = (1.5)

Theorem 1.1. If Ry > 1, then the endemic equilibrium E* of the system ([L2) is globally asymptotically stable. If
Ry < 1, then the disease-free equilibrium E° of the system ([L2)) is globally asymptotically stable.

The organization of this paper is as follows. In Section B we offer some basic results. In Section [B] we obtain the
permanence of the system ([2)) for Ry > 1. In Section Hl, we prove Theorem [[Jl Finally, a conclusion is offered in
Section [B

2 Basic results

In this section, we introduce basic results for the system (L2]).

Lemma 2.1. Let (S(n),I(n), R(n)) be the solution of the system [[L2)) with the initial conditions (L3). Then S(n) > 0,
I(n) >0, R(n) >0 hold for all n > 0, and [2) is equivalent to the following iteration system.:

—B, +1/B2 +4AC 2C
In+1) =—" 2;1" - e
B, +1/B2 +4AC,

~vI(n+1) 4+ R(n)

Rint+ 1) =—3777%
ORn+1)+B+S(n)  oyI(n+1)+ (1 +uz+0)(B+S(n)) +0R(n)
S+1) = BIn+1)+1+u (1 +puz +6)(BI(n+1)+ 14 ) =01 21)



where

= B{(L+ p2 +7)(1 + ps +6) — o7},
By, = {1+ p1) (L + p2 +7) — B(B + S(n) + 1(n)) H(1 + p3 + 0) — BOR(n),
Cp = (1+ p1)(1 + ps + 8)I(n).

Proof. It is evident that the first equation of ([[L2]) is equivalent to the third equation of ([ZI]) and the third equation
of (L2 is equivalent to the second equation of (ZI]). The second equation of [[2) is equivalent to

T4+ pe+v)I(n+1)—I(n)=Sn+1I(n+1)

_ﬂ{éwl(n +1)+ (1 +us+8)(B+Sn))+6R(n)}H(n+1)
N (14 pus+0)(BI(n+1)+1+ 1)

)

(
which is equivalent to a quadratic equation P(z) = 0 with x = I(n + 1), where

P(x) =1+ p2 +7)(1 + p3 +6)(Br + 1 + pa)x — B{oyr + (1 + p3 + 0)(B + S(n)) + dR(n) o — I(n)(1 + p3 +6)(Br + 1 + 1)
=B{+ p2 + 7)1+ ps +6) — v}a® + [{(1+ p) (1 + p2 +7) — BB+ S(n) + 1(n)}(1 4 ps + 6) — BOR(n)]x
— (L +p1)( + ps +0)I(n)
=Az? + Bz — Ch.

For S(n) > 0, I(n) > 0 and R(n) > 0, it is evident that I(n+1) defined by the first equation of 1)) is a unique positive
solution of P(z) = 0.

Assume that there exists a nonnegative integer ng such that S(n) > 0, I(n) > 0 and R(n) >0, n =0,1,...,n9. By
the first equation of Z1I), we have I(ng+1) > 0. By the second and the third equations of [Z1I), we have R(ng+1) > 0
and S(ng + 1) > 0. Hence, by induction, the solution (S(n),I(n), R(n)) is unique satisfying S(n) > 0, I(n) > 0 and
R(n) > 0 for all n > 0. Thus, [L2) is equivalent to [ZII). This completes the proof of this lemma. O

Lemma 2.2. For the system ([[L2) with the initial conditions [L3)), it holds that

B
limsup N(n) < —, (2.2)
n—-+oo H1

where N(n) = S(n) + I(n) + R(n).
Proof. From the system ([2), it follows that

N(n+1)=N(n)=B—mSn+1) —pl(n+1) — psR(n + 1)
=B —uN(n+1)— (2 —p1)I(n+1) — (3 — p1)R(n + 1)
<B - N(n+1). (2.3)

Suppose that N(n + 1) is eventually monotone decreasing for n > 0. Then, there exists lim, 1o, N(n+1) = N* >0
and by letting n — 400, we have 0 < B — u1 N*, from which we obtain [22)).
Next, we suppose that N(n -+ 1) is not eventually monotone decreasing for n > 0. Then, there exists a sequence
{n};2 such that
N(n;+1) > N(ny), l_l)igloo N(n+1) = limiupN(n +1).
From @Z3) at n = n;, we have
0<N(n+1)—N(n) <B—puN(ng +1).

By letting | — 400, we obtain 0 < B — p;limsup,,_,, ., N(n + 1), that is, limsup,, ,,  N(n +1) < B/p;. This
completes the proof. O
3 Permanence for Ry > 1

Throughout this section, we assume Ry > 1. Now we prove the permanence of the system ([[2)) for Ry > 1. Applying
techniques in Enatsu et al. Bl Lemma 4.1], we prepare the following basic lemmas:

Lemma 3.1. If I(n+1) < I(n), then S(n+ 1) < S*. Inversely, if S(n+ 1) > S*, then I(n + 1) > I(n).



Proof. Assume that I(n + 1) < I(n). By the second equation of [I2), we have
In+1)—I(n)=6S(n+DIn+1)— (uo +¥)I(n+1)=6(S(n+1)—S)I(n+1). (3.1)

Since I(n + 1) > 0 holds for all n > 0, we obtain S(n + 1) < S*. Inversely, assume that S(n + 1) > S*. Then, it is
evident that I(n + 1) > I(n) holds true. O
We now offer a simplified proof for permanence of the system (2] than that of Wang [I3] (see also Xu and Ma [I4]).

Lemma 3.2. For any solution of the system ([L2) with the initial conditions [L3)), it holds that

B
lﬁgirgS(n) > vy = i T BB >0,
1 lo(q)
lﬁgligf)f(n) > vy = <1+M2+’Y> ql* >0, (3:2)
HngfR(”) > vy 1= g 51}2 >0,
where 0 < g < % and lo(q) > 0 is a sufficiently large integer such that
lo
S* < 84 ::i{l—(ljrq> (Q)}, rq = p1 + Baql”. (3.3)

Proof. Let (S(t),I(t), R(t)) be a solution of the system (2 with the initial conditions ([3]). By Lemma 2] we have
limsup,, ., I(n) < % and S* < %. For € > 0 sufficiently small, there exists a N; = Ny (g) > 0 such that I(n) < %4—5
for n > Nj. Then, by the first equation of (I2), we derive

Stn+1)—S(n) > B — {m +5(i +5>}S(n+ 1),

which yields

B
liminf S(n) > .
M Il S ) > BB 19

Since (@4)) holds for arbitrary e > 0, we obtain liminf,,_, 4. S(n) > v1. By the following relation:

BBAI* — ndR* = BBI* — d——I*

p3 +6
gl 5 )
= + Ry — I
> pua(p2 +7)(Ro — 1)I" >0,
we have
., B+éR" B B . B
puF B BBl -y, BOE Oy + gl

%. Thus, there exists a positive integer lo(q) such that (B3] holds.

We first prove the claim that it is not possible that for any solution of [L2]), there exists a nonnegative constant ng
such that I(n 4 1) < ¢I* for all n > ng. Suppose on the contrary that there exist a solution of (2] and a nonnegative
integer ng such that I(n + 1) < ¢I* for all n > ny. We then obtain

for any 0 < g <

S(n+1)—S(n)>B— (1 +P¢l*)S(n+1) =B —rS(n+1), forn>mn,

which yields

1 n+1—(no+1) B n—mno 1 l
S 1) > S 1
(1) 2 (1+Tq> (oo + )+1+Tq;<1+rq>

B 1 n+1—(no+1)
> {1—(1+ ) }, for any n > nyg.
Tq Tq

Therefore, we have

B 1 lo(q)
S(n+1)>{1— ( ) }:SA>S*7 for any n > ng + lo(q). (3.5)
Tq 147,



By the second part of Lemma Bl we obtain I(n + 1) — I(n) > 0 for any n > ng + lp(¢). This yields
I(n+1) > I(no +1lo(q)) for any n > ng +lo(q). (3.6)
We then have

I(n+1)—1I(n)

BS(n+1)I(n+1) = (p2 +7)I(n+1)

{BS(n+1) = (p2 +H(n+1)

{BS% = (p2 + 1)} (n+1)

B(S? = §*)I(no +1o(g)) > 0, for any n > no + lo(q),

vV Vv

which implies that lim,, .4 I(n) = +o0o. However, by Lemma 1] it holds that limsup,_, I(n) < :%, which leads
to a contradiction. Hence, the claim is proved.
By the claim, we are left to consider the following two possibilities;

(i) I(n) > qI* for all n sufficiently large,
(ii) I(n) oscillates about ¢gI* for all n sufficiently large.

If the first case holds, then we get the conclusion of the proof. We now show that if the second case holds, then I(n) > vy
for all n sufficiently large. Let ng < ny4 be sufficiently large such that

I(nsg—1), I(ng+1) >qI", and I(n) <ql* for any nzg <n < ny.

By the second equation of ([L2), we have I(n+ 1) — I(n) > —(u2 +v)I(n + 1), that is, I(n + 1) > 1-&-;1%4—7](”) for any

n > ng. It follows that -
1 n+l—ng 1 n+l—ng
In+1) > —— I(ns) > ——m— I*
( )(1+M2+”Y) (3)<1+M2+’7) I

for any n > ng. Therefore, we obtain

1

lo(q)
—_ I* = vy, for any nz < n < ng+lg(q). 3.7
1+/~t2+7) q 2 yn3 <n<n3+l(q) (3.7)

I(n+1)> (

If ng > nz+1p(q), then by applying the similar discussion to B3] and B4 in place of ng by ns, we obtain I(n) > vy for
ns + lp(q) <n < n4. Hence, I(n) > vg holds for ng < n < ny. Since the interval ny < n < ns can be arbitrarily chosen,
I(n) > vy holds for all n sufficiently large. Thus, we have liminf; | I(t) > vg, which yields liminf; | R(t) > vs.
The proof is complete. O

By Lemmas Bl and B2l we obtain the permanence of system (L2) for Ry > 1.
4 Global stability
In this section, we prove Theorem [[L1l

4.1 Global stability of the endemic equilibrium E* for Ry > 1
In this subsection, we prove the first part of Theorem [Tl Put N* = S* + I* + R* and

S5(n) I(n) R(n) N(n)
n = s Yn = y An — ) n = Tare ° 4.1
T T T TR T N 1)
Proof of the first part of Theorem [I.1T1 We consider the following sequence:
S(n)—S*)? * I(n 5§ (R(n)—R*)?
((2)5* )+Ig<%)+'y?(()2 )
I 5y {(N(n)—N*)+22L (R(n)—R")}*
* {vas1+az1(p1+uz+0)}S* 2 )

Us* (n) = q if either p1 < po or < ps, (4.2)
S(n)—S5*)3 « (I(n 5 (R(n)—R*)? 5§ (N(n)—N*)?
((Q)S*)_F_fg<%)+w(()2 )+4ms*(()2 )’
if = po = pa,




(S(n+1)—8*)%
25

(S(n)— S )2

where a1 = g — p1, a1 = pig — g and g(x) =2 — 1 —Inx > g(1) = 0. First, we calculate

(S(n+1) =5 (S(n) - S)?

25" 25"
=5 (S(n+ 1) +5(n) — 25")(S(n +1) — S(n)
:<S(”S‘: D_ 1) (S(n-+1) = 8(n) ~ 55 (S +1) — S(n))?

<(HE - 1) s ) - s)

_<S(ns—: 1 1){3 — 1 S(n+1)—pBS(n+1)I(n+1)+6R(n+1)}
_<S(”Sj D _ 1){_m(5(n +1) = §%) + B(S*T* = S(n + DI(n+ 1)) + 6(R(n + 1) — R*)}

=(@nt1 — D{=p1S" (xns1 — 1) + BT (1 — 2y 1Ynt1) + OR (21 — 1)}
= - MlS*(l‘n-‘rl - 1)2 + 65*1*(xn+1 - 1)(1 - xn-i—lyn-i-l) + 6R*(xn+1 - 1)(zn+1 - 1)'

Second, we calculate I* {g(ﬂ) - (}—)} By applying the following inequality (cf. Enatsu et al. []):

) o (1Y) s ) ot

\
—

we obtain

. I(n+1)—I(n) I(n+1) - I(n)
<I< IS )

In+1)

>ﬁ5n+1 (n+1)= (2 +v)I(n+1))
)ﬁSn+1 (n+1)—pS*I(n+1))

(

=BS*1 ( ) (Tn+1Yn+1 — Ynt1)
Yn+1

=BS5S I"*(Yyn+1 — 1)(Tnt1 — 1).

Second, we have

(R(n+1) = R*)*  (R(n) = R*)
2 2

By the third equation of system ([2)), we get

(R(n+1)—R")?  (R(n) — R*)?
2 2

Moreover, by I(n+1) = N(n+1) — S(n+1) — R(n+ 1), we obtain

(R(n+1) — R*)*>  (R(n) — R*)
2 2
<(R(n+1) = RO){yI(n+1) = (n3 + 0)R(n + 1)}
=(R(n+1) =R ){y(N(n+1) =S(n+1) = R(n+1)) = (u3 + ) R(n + 1)}
=(R(n+1) = R){y(N(n+1) = N*) =y(S(n+1) = 5%) = (us + v+ 0)(R(n + 1) — R")}

< (R(n+1) = RO I(n+1) = (u3 + 6)R(n+ 1)}

=YR*N*(zp1 = D(wps1 — 1) = YR*S* (21 — )(@nt1 — 1) = (us + 7 + 0)(R*)* (2011 — 1)°.

(4.5)



For the first case either pu; < po or py < ps, we have

{(N(n+1) = N") +2(R(n+1) - R} {(N(n) - N*) + <2 (R(n) - B")}

2 2
_ ! {(N(n +1) + N(n) — 2N*) + %(Rm +1)+ R(n) — 2R*)}

2

X {(N(n +1)—N(n))+ T(R(n +1)— R(n))} .
By N(n+1)+ N(n) — 2N* = 2(N(n+1) — N*) — (N(n+1) — N(n)) and R(n +1) + R(n) — 2R* = 2(R(n+1) — R*) —
(R(n+1) — R(n)), we have

s {(N(n 1) 4 N(n) = 2N7) + (R0 -+ 1)+ R(n) 23*)} {(N(n 1) = N(w) + (R + 1) - R(n))}

= {(N(TL+ 1) = N*)+ T(R(nJr 1) — R*)} {(N(n+ 1) = N(n)) + T(R(nJr 1) R(n))}

{(N(n +1)—N(n))+ T(R(n +1)— R(n))}

DN | =

< {(N(n F1) - N+ %(R(n r1)— R*)} {(N(n +1) = N(n)) + %(R(n r1)— R(n))} .

Therefore, we get

{(N(n+1) = N*)+ 22(R(n+1) - R)}*  {(N(n) - N*) + 22(R(n) — R")}?

2 2
< {(N(n+ 1) — N*) + %(R(m 1) —R*)}

6
X{B — MlN(n + 1) — agll(n + 1) — OéglR(TL + 1) + Oz21[<n + 1) — OW‘YMR(H + 1)}

{(N(n +1) = N*) + %(R(n +1)— R*)} [B N +1) - {a31 + W} R(n + 1)]

- {(N(n +1) = N*) + %(R(n +1)— R*)} {m(N(n +1) = N*) - {agl + W}(R(m 1)— R*)]

. o + puz+0 . o
= — Hl(N )2(wn+1 — 1)2 — {0131 + 21(,&1 7,&3 )}N R (wn+1 — 1)(Zn+1 — 1)

« « + 46
_om {% N 21(/:» )

We note that the following relation holds.

} (B (2 — 1) (4.6)

(1 = D = Zpr1ynt1) + Wnr1 — D(@nr1 — 1) = = (@np1 — D(Tnt1Ynt1 — Yns1)
=~ Yn+1(Tnt1 — 1)2
<0, (47)

Combining (@3), @4), (3), [@4) and 1), we obtain

Ugg* (n + 1) - UzSE* (n) <—wS* (xn-&-l - 1)2 — BS* I ypt1(Tny1 — 1)2 +yS* R (w41 — 1)(zn+l - 1)

OR*N*
+— (zn+1 — D(wpy1 — 1) = yR*S™ (241 — 1)(Tng1 — 1)
6(ps +~ 4 0)(R*)? 2 p16y(N*)? 2
— Zna1 — 1) — Wpa1 — 1
A errvwrarey ey el
_ON'R? dag1 {yas1 + ao1(ps + ) }(R*)?

(Wnt1 = 1)(2n41 — 1) — (2nt1 — 1)2

S* YHyas: + o1 (1 + psz +6)}S*
6y (N*)?

{yasi + az1(p1 + pz +6)1S*

 [dagi{vaz + agi(us +8)}(R*)*  d(us + v+ ) (R*)?

{yas: + az1 (1 + ps + 6)}S* ~vS*

= S*<M1 + 5I*yn+1)(mn+l - 1)2 -

(wn+1 - 1)2

(Znt1 — 1% (4.8)

7



For the second case 1 = po = ps, by N* = B/uy, we obtain
S(N(n+1) — N*)2 _ O(N(n) — N*)?

< — N* -
1S 15 SIn 5 (N(n+1) = N*)(B—u1N(n+1))
_ 5 *\2
=— 4S*(N(nJrl)—N )
S(N* 2
- (45*) (W1 —1)% (4.9)

Combining (@3), @4), (3), @) and @3), we have

U (n+1) = U (n) < = 8™ (@ns1 = 1)* = BS Ty (1 — 1)

OR*N*
+yS* R (Tp+1 — 1) (2041 — 1) + T(Zn+1 — D(wpq1 —1)
" o (s + v+ 6)(R*)?
= YR*S" (zn1 — ) (@nt1 — 1) — L 15* S0 (2nt1—1)°
S(N* 2
- (47‘9*)(wn+1 - 1)2
=— S (Tng1 — 1)? = B T Yy (w1 — 1)°
S(R*)? dR*N* §(N*)2
— (S*) (Zn41 — 1)2 + o (zn+1 — D)(wpy1 — 1) — (45*) (Wpt1 — 1)2
S(R* 2
= S s+ 6) a1
5 N* 2
= — (/,L]S* + ﬁS*I*yn+l>($n+1 — 1)2 — § {R*(Zn+1 — 1) — 7(’wn+1 — 1)}
S(R* 2
- (WS*) (3 + 6) (zn41 — 1) (4.10)

From (@) and @I0), for the both cases, we obtain UF" (n+1)—~UF" (n) < 0 for all n > 0. Therefore, lim,,_, 1o (UF" (n+
1)—UEF" (n)) = 0, from which we obtain lim,, .« S(n+1) = S*, lim, 4« R(n+1) = R* and lim,,_, ;oo N(n+1) = N*.

This yields lim,, o0 I(n+1) = I*. Since UF" (n) > %—I—I*g(%)—i—%w for alln > 0, E* is uniformly

stable. Hence, E* is globally asymptotically stable. The proof is complete. O

4.2 Global stability of the disease-free equilibrium E° for R, <1

In this subsection, we prove the second part of Theorem [[LT]

Proof of the second part of Theorem [[.T] We consider the following sequence:

(S8(n)—5°)2 s R(n)? Sy {(N(n)=N°)+22LR(n)}*
250 + I(n) + 7502 + {vasi+az1(p1+ps+0)}S° 2 . ’
if either w1 <pe or py < pa,

0
U(sE (n) = 0\2
S(n)—5°)2 R(n)? N(n)—N
( (nz)SU ) + I(n) + WgU (2) + 4ufSO ( 2 ) )

it = po = ps,

where N9 = S° = B/p;. Similar to the proof of the first part of Theorem [l we first calculate (S("EQJSO)Q - (S("Q)ggso)Q )

n _ Q0)2 n) — §9)2 n
(S( +21S>0 S92 (S( ;SOS> §<S<Sj1>_1)<s<n+1>—s<n>>

S+l) 1) {B—p1S(n+1)-pSn+1)I(n+1)+dR(n+1)}

:(S(n—&—l) - 1){—u1(5(n +1)= 8% —BS(n+1)I(n+1)+5R(n+1)}

SO
—— (S(n +;()) -89 BS(n+1)I(n+ 1)(5(7“‘53'1) — 1>
+6R(n + 1)(S(ngl) - 1). (4.11)



Second, by I(n+1) =N(n+1) —S(n+1) — R(n + 1), we have

R(n+1)2  R(n)?
2 2

IA

R(n+1)(R(n+1) — R(n))

Rn+1){vI(n+1)—(u3+d)R(n+1)}

R(n+1){y(N(n+1) = Sn+1) - R(n+1)) — (u3 + d)R(n+ 1)}

=R(n+1){y(N(n+1) = N°) =(S(n+1) = §%) = (u3 +~ + 8)R(n+ 1)}
=yR(n+1)(N(n+1) = N°) —=yR(n+1)(S(n+1) = %) — (us + v + ) R(n + 1)>.  (4.12)

For the first case either gy < po or p1 < pz, by N(n+ 1)+ N(n) —2N° =2(N(n+1) — N°) — (N(n+1) — N(n)) and
R(n+1)+ R(n) =2R(n+1) — (R(n+ 1) — R(n)), we have

{(N(n+1) =N+ 22 R(n+1)}*  {(N(n) - N°) + 22 R(n)}*

2 2
<{ ¥t - 50 + 22 RGn41)

§
X{B —,ulN(n—l— 1) — 04211(714— 1) —aglR(n—i— 1) —‘rOleI(?’L—‘F 1) - 0421(/1:;’)"‘)R<n+ 1)}

= {(N(n+ 1)— N+ %R(n—i— 1)} |:—ﬂ1(N(n+ 1) - N% — {a31 + W}R(n—i— 1)}

= (N(n+1)— N%?% - {0431 4 onln :“3 +5)}(N(n+ 1) = NYR(n+1)

—Cﬁl{agl—FW}R(n—Fl)Q. (4.13)

Combining (IT)), (Z12)) and {I3), we obtain

0 0 n — 502 n _ q0)2
UE (n+1) - UE () < — 1 & +;2) S prn+ 1)L +;2) )

H167y 02
1)—N
~ {yas: + oo (1 +ps + 5)}50( (n+1) )

[ dag{yas: + azi(us +6)} Sz +v+96)]

- + R(n+1)?
| Y{vas: + ao1(p + ps +6) 150 750 | (1)
(S(n+1)— 89?2 P10y 0y2
=— (1 +08I(n+1 - +1)—-N
(/’Ll 6 (TL )) SO {’YOCSl + as; (//Ll =+ s ¥ (S)}SO( (TL ) )
_ [ dagr{vasi + azi(us +9)} O(ps 4+ + 5) R(n+ 1) ) (4.14)

LY {vas: + o1 (p + ps +6) 15O 750
For the second case y; = g = pg, by N° = B/u1, we obtain

S(N(n+1) — N°2  §(N(n) — NO)2

_ < _ NO _
441150 50 oo N D = NOB = mN(n 1)
§

Combining (I1)), (12) and (@IH), we have

(S(n+1)— 89?2 (S(n+1)— 89?2

UE (n+1) = UL (n) < — m 56 —BI(n+1) 5
- %R(n +1)% + ;OR(n +1)(N(n+1) — NY) — %(N(n +1) — N9)?
- (a4 RO+ 1)
— (1 + BI(n+ 1))(S(n+;())_ SF SC,SO(R(nJr 1) - N(”JF;)_NOY
- i(ug +8)R(n+1)% (4.16)

7SO



From [@LI4) and (IG), for the both cases, we obtain U(;EO (n+1)— U§EO (n) < 0 for all n > 0. Therefore, we have
lim, 4 oo (UE" (n4+1)=UE’ (n)) = 0. This yields limy, 4 o S(n+1) = S, lim,,_ oo R(n+1) = 0 and lim,, . ; oo N(n+1) =
NY, from which we obtain lim,,_ 4 I(n + 1) = 0. Since U(;EO (n) > % +1(n)+ %R(S)Q for all n > 0, EY is
uniformly stable. Hence, E° is globally asymptotically stable. The proof is complete. O

5 Conclusions

In this paper, for the first-order difference equations (L2)), we show that the disease-free equilibrium E° is globally
asymptotically stable if Ry < 1 and the endemic equilibrium E* is globally asymptotically stable if Ry > 1. Theorem
[T implies that the backward Euler discretization preserves the global stability of the equilibria of the corresponding
continuous SIRS epidemic model.

In order to apply key properties of Lyapunov’s direct method to the stability analysis for the model, we use the
backward Euler method with the positiveness condition I(n + 1) > 0 for n = 0,1,.... In particular, for E = (S,1, R)
and N =S5+ I + R, we define

(S(n) 5)? I(n) 5 (R(n)—R)*

-4 g ( ) + P s —

4 5y {(N(n)—N)+“2L(R(n)—R)}?
{vasi+azi (p1+p3+0)}S 2 )

Uy’ (n) = if either puq < pe or w1 < ps, (5.1)
S(n)—5)?2 I(n 5 (R(n)—R)? 5 (N(n)—N)?
((2)s)+19(¥)+~75(()2 )""4”13(()2 ),
it = po = ps,

and present a unified construction of a discrete-time analogue of Lyapunov functions in the proof of the global stability
of the disease-free equilibrium E° for Ry < 1 and the endemic equilibrium E* for Ry > 1 of system ([2), respectively
as follows;

U (n) := lim UF dUE (n):= lim UF(n).
5 (n) ELH]}: 5 (n), and Us™ (n) L Vs (n)
Based on the idea in Enatsu et al. [ Section 1] that lim,_, o zg (%) = y holds for each y > 0, we construct suitable

Lyapunov sequences and the term I*g(%ﬁ)) in UF" (n) corresponds to the term I(n) in UZ’(n). Making use of the
relation, the global stability of two equilibria of (2] is fully determined by a threshold parameter Ry.
In fact, by applying variation of the backward FEuler method, we consider the following difference equations:

m

S(n+1)=S(n)=B—mS(n+1)—pS(n+1)Y_ I(n—j)+0dR(n+1),

=0
Iln+1)—I(n)=pSn+1 ZI — (2 +)I(n+1), (5:2)
=0
R(n—l—l)—R(n):'yI(n—Fl)J (us +0)R(n+1), n=0,1,...
with the initial conditions S(0) = ¢1(0) > 0, I(j) = ¢2(j) > 0 for j = —m, ..., 0 with ¢(0) > 0 and R(0) = ¢3(0) > 0

The equations ([B.2)) have a unique positive solution (S(n),I(n), R(n))

For the case § = 0, by applying a discrete-time analogue of Lyapunov functional techniques in McCluskey [, Enatsu
et al. ] has obtained the complete global stability results that the disease-free equilibrium E° of ([E2) is globally
asymptotically stable if and only if Ry < 1 and the endemic equilibrium E* of (B2)) is globally asymptotically stable if
and only if Ry > 1. Furthermore, their result is applied to the global stability analysis of difference equations for SIR
epidemic models with a class of nonlinear incidence rates in Enatsu et al. [2].

In addition, by applying Lyapunov functional techniques on the corresponding continuous-time SIRS epidemic model
in Enatsu et al. [], we can obtain the similar result and we still need the additional condition p1.5* —dR* > 0 on eusuring
the global stability of E* for Ry > 1. In contrast, we show that the backward Euler method preserves the complete
global stability of the equilibria E° and E* under the positiveness conditions on I.

Acknowledgements

The authors wish to express their gratitude to a handling editor and anonymous referees for their helpful comments
and valuable suggestions which improve the quality of this paper. The authors’ work was supported in part by JSPS
Fellows, No. 237213 of Japan Society for the Promotion of Science to the first author and by Scientific Research (c),
No. 24540219 of Japan Society for the Promotion of Science to the second author.

10



References

1]

2]

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a discrete SIS epidemic model with immigration of
infectives, J. Diff. Equ. Appl. 18 (2012) 1913-1924.

Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic
models with a class of nonlinear incidence rates, J. Diff. Fqu. Appl. 18 (2012) 1163-118]1.

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR epidemic models, Math. Biosci.
Engi. 7 (2010) 347-361.

Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed
SIRS epidemic model of nonlinear incidence rates and distributed delays, Nonlinear Anal. RWA 13 (2012) 2120-
2133.

G. Izzo and A. Vecchio, A discrete time version for models of population dynamics in the presence of an infection,
J. Comput. Appl. Math. 210 (2007) 210-221.

G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics in the presence of an
infection, Discrete Dyn. Nat. Soc. 2009, Art. ID 143019, 15 pp doi:10.1155/2009/143019.

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol. 69
(2007) 1871-1886.

C.C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonlinear
Anal. RWA 11 (2010) 55-59.

J. Mena-Lorca and H.W. Hethcote, Dynamic models of infectious diseases as regulators of population size, J. Math.
Biol. 30 (1992) 693-716.

Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays,
Disc. Conti. Dyn. Sys. Supplement (2011) 1119-1128.

M. Sekiguchi and E. Ishiwata, Global dynamics of a discretized SIRS epidemic model with time delay, J. Math.
Anal. Appl. 371 (2010) 195-202.

C. Vargas-De-Leén, Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with
variable population size, Foro-Red-Mat: Revista Electrénica de Contenido Matemético 26 (2009).

W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett. 15 (2002) 423-428.

R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos, Solitons and
Fractals 41 (2009) 2319-2325.

Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological
models, Dis. Conti. Dyn. Sys. B 13 (2010) 195-211.

T. Zhang and Z. Teng, Global behavior and permanence of SIRS epidemic model with time delay, Nonlinear Anal.
RWA 9 (2008) 1409-1424.

11



