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Abstract. In this paper, by constructing Lyapunov functionals, we consider the global dynamics of an SIRS epidemic

model with a wide class of nonlinear incidence rates and distributed delays
∫ h

0
p(τ)f(S(t), I(t−τ))dτ under the condition

that the total population converges to 1. By using a technical lemma which is derived from strong condition of strict
monotonicity of functions f(S, I) and f(S, I)/I with respect to S ≥ 0 and I > 0, we extend the global stability result
for an SIR epidemic model if R0 > 1, where R0 is the basic reproduction number. By using a limit system of the model,
we also show that the disease-free equilibrium is globally asymptotically stable if R0 = 1.
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1 Introduction

In order to gain insights into the mechanism of disease transmission, mathematical transmission modeling of epidemics
has rapidly developed by many authors. (see [1–24] and the references therein).

To investigate the disease spreading effect transmitted by a vector (e.g. mosquitoes, rats, etc.) after an incubation
time denoting the time during which the infectious agents develop in the vector, Takeuchi et al. [21] formulated an SIR

(Susceptible-Infected-Recovered) epidemic model with distributed delays of the form βS(t)
∫ h

0
p(τ)I(t− τ)dτ . However,

when the reproduction number is larger than 1, it was shown that the endemic equilibrium is globally asymptotically
stable only for the case that the delay h is small enough, that is, an open problem for the global stability of the endemic
equilibrium for the case h is sufficiently large was still left. Later, by focusing on the equation deformation in time
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derivative of a Lyapunov functional, McCluskey [14] proved that the endemic equilibrium is globally asymptotically stable
for any length of delay h if the basic reproduction number is larger than 1. Recently, Enatsu et al. [5] and McCluskey [16]
considered the following SIR epidemic model with a wide class of nonlinear incidence rates and distributed delays:

dS(t)

dt
= µ− µS(t)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ,

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− µR(t).

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered individuals at time t, respectively. µ > 0
is the death rate of the population, γ > 0 is the recovery rate of the infective individuals. h > 0 is a maximum time taken

to become infectious and the transmission of the infection is governed by an incidence rate
∫ h

0
p(τ)f(S(t), I(t − τ))dτ .

p(τ) denotes the fraction of vector population in which the time taken to become infectious is τ ∈ [0, h] satisfying

p ∈ C([0, h],R+0) and
∫ h

0
p(τ)dτ = 1.

By constructing suitable Lyapunov functionals, they showed that the global stability of equilibria of (1.1) is deter-
mined by the basic reproduction number when the functions f(S, I) and f(S, I)/I has monotone properties with respect
to S ≥ 0 and I > 0. The similar results have now been obtained in Huang and Takeuchi [8] for an SIR epidemic model
with the wide class of nonlinear incidence rates and a discrete delay.

On the other hand, Mena-Lorcat and Hethcote [17] considered several SIRS (Susceptible-Infected-Recovered-Susceptible)
epidemic models with a bilinear incidence rate and a standard incidence rate. The SIRS models describe the phenomena
that susceptible individuals become infectious, then removed with immunity after recovery from infection and then
susceptible again when the temporary immunity fades away. In order to investigate the effect of the immunity loss of
diseases, various kinds of SIRS epidemic models and a significant body of work concerning the stability analysis of the
steady states of the models have now been carried out (see, for example, [1, 9–12,22] and the references therein).

In addition, many authors have suggested that transmission of the infection shall have a nonlinear incidence rate.
Capasso and Serio [3] studied the cholera epidemic spread in Bari in 1973 and have given an assumption that the

incidence rate may take the nonlinear form βS(t)I(t)
1+αI(t) , which has been interpreted as a saturated incidence rate mea-

suring the crowding effect of the infective individuals (see also Xu and Ma [23]). Based on their idea, Korobeinikov
and Maini [10] and Korobeinikov [11, 12] obtained the global properties of SIR and SEIR models with a nonlinear in-
cidence rate h(S(t))g(I(t)) and SIR, SEIR and SIRS epidemic models with a more general framework of the incidence
rate f(S(t), I(t)), respectively. Thereafter, Zhou and Cui [24] have introduced a nonlinear incidence rate of the form
βS(t)I(t)(1 + αI(t)k−1) with k = 2 for an SEIV epidemic model.

However, for global stability conditions of the endemic equilibrium of the delayed SIRS epidemic model, only restricted
sufficient conditions are known by literatures. For the model with a bilinear incidence rate, Nakata et al. [20] obtained a
sufficient condition which ensure the global stability of the endemic equilibrium. Vargas-De-León and Gómez-Alcaraz [22]
constructed an another Lyapunov functional for the same global stability result. For the model with nonlinear incidence
rates, Enatsu et al. [6] also obtained that the endemic equilibrium for an SIRS epidemic model with an incidence rate

of the form βS(t)
∫ h

0
p(τ)G(I(t− τ))dτ is globally stable for a small rate of immunity loss by constructing a Lyapunov

functional. By improving monotone iterative techniques in Xu and Ma [23], Muroya et al. [19] obtained sufficient
conditions which ensure the global asymptotic stability of an endemic equilibrium for an SIRS epidemic model with an
incidence rate βS(t)I(t−τ)/(1+αI(t−τ)p), where p ≥ 1 (see also Muroya et al. [18] for p = 2). In fact, by introducing a
generalized nonlinear incidence as a function of the number of infected individuals, Alexander and Moghadas [1] showed
that stability of the endemic equilibrium can change through Hopf, saddle-node and Bogdanov-Takens bifurcations.

Motivated by the above facts, in this paper, we extend global stability results in [5, 6, 8, 16] to the following SIRS
epidemic model with a wide class of the nonlinear incidence rates and distributed delays:

dS(t)

dt
= µ− µS(t)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ + δR(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t)

(1.2)

with the initial condition{
S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ),
φi(θ) ≥ 0, θ ∈ [−h, 0], φi(0) > 0, φi ∈ C([−h, 0],R+), i = 1, 2, 3.

(1.3)

δ ≥ 0 is the rate at which recovered individuals lose immunity and return to the susceptible class. We here assume that
f : R2

+0 → R+0 is a locally Lipschitz continuous function on R2
+0 satisfying f(0, I) = f(S, 0) = 0 for S, I ≥ 0 and the
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followings hold.

(H1)

{
i) f(S, I) is a strictly monotone increasing function of S ≥ 0, for any fixed I > 0,
ii) if R0 > 1, then f(S, I) is a monotone increasing function of I ≥ 0, for any fixed S ≥ 0,

(H2)

{
i) ϕ(S, I) = f(S,I)

I is a bounded and monotone decreasing function of I > 0, for any fixed S ≥ 0,
ii) K(S) ≡ limI→+0 ϕ(S, I) is a continuous and monotone increasing function on S ≥ 0,

where

R0 =
K(S0)

µ+ γ
, S0 = 1 (1.4)

is the basic reproduction number of system (1.2). R0 denotes the expected number of secondary infectious cases generated
by one typical primary case in an entirely susceptible and sufficiently large population. We note that 0 < ϕ(S, I) ≤ K(S)
holds for any S, I > 0.

It is well known by the fundamental theory of functional differential equations that the solution (S(t), I(t), R(t)) of
system (1.2) is unique and positive for all t ≥ 0.

System (1.2) always has a disease-free equilibrium E0 = (S0, 0, 0). On the other hand, under the hypotheses (H1)
and (H2), if R0 > 1, then system (1.2) also admits a unique positive equilibrium E∗ = (S∗, I∗, R∗), where S∗, I∗, R∗ > 0
(see Korobeinikov [11,12] and Lemma 2.2 below).

The main results are as follows:

Theorem 1.1. If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable.

By applying a key property of strict monotonicity of functions f(S, I) and f(S, I)/I with respect to S ≥ 0 and I > 0,
we obtain sufficient conditions which ensure the global asymptotic stability of the endemic equilibrium E∗ of system
(1.2) for R0 > 1.

Theorem 1.2. If R0 > 1, then the endemic equilibrium E∗ of system (1.2) exists uniquely and system (1.2) is perma-
nent. Moreover, if the following conditions hold:

(I) there exist positive constants C0, C1 and C2 such that for any ν1 ≤ S ≤ S0, 0 ≤ I ≤ S0, S ≤ S∗ and I ̸= I∗,

f(S, I∗)− f(S∗, I∗)

(S − S∗)I∗
≤ C0,

f(S, I)− f(S, I∗)

I − I∗
≥ C1 > 0,

I
f(S,I) −

I∗

f(S,I∗)

I − I∗
≥ C2 > 0,

(II) δ2 < 4C0C1C2(µ+ δ)(µ+ γ)
f(v1, I

∗)

I∗
,

(1.5)

then the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable, where v = v1 > 0 is a unique positive
solution of µ−K(v)− µv = 0.

Note that if f(S, I) = βSI/(1 + αI), then the incidence rate becomes saturated-type, which is of the form used in
Xu and Ma [23].

Theorem 1.2 indicates that the endemic equilibrium of system (1.2) is globally asymptotically stable when R0 > 1 for
a small rate of immunity loss δ as long as the infection rate has suitable monotone properties of function f characterized
by (H1), (H2) and the condition (1.5).

The organization of this paper is as follows. In Section 2, we offer basic results for system (1.2). In Section 3,
we establish global asymptotic stability of the disease-free equilibrium for R0 ≤ 1 and prove Theorem 1.1. In Section
4, we establish global asymptotic stability of the endemic equilibrium for R0 > 1 and prove Theorem 1.2 by means
of Lyapunov functionals to the reduced system which is derived from system (1.2). Finally, a discussion is offered in
Section 6.

2 Basic results

We offer some basic results of system (1.2). The following lemmas will be used in the proofs of Theorems 1.1 and 1.2.

Lemma 2.1. The plane S(t)+ I(t)+R(t) = S0 is an invariant manifold of system (1.2), which is globally attractive in
the first octant of R3, that is,

lim
t→+∞

(S(t) + I(t) +R(t)) = S0. (2.1)

Proof. Let N(t) = S(t) + I(t) +R(t). Then it follows from system (1.2) that

dN(t)

dt
= µ− µS(t)− µI(t)− µR(t) = µ− µN(t).

Hence, we obtain limt→+∞ N(t) = S0. This completes the proof. □
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Lemma 2.2. System (1.2) always has a disease-free equilibrium E0 = (S0, 0, 0). Moreover, if R0 > 1, then system (1.2)
has a unique endemic equilibrium E∗ = (S∗, I∗, R∗) satisfying the following equations:

µ− µS∗ − f(S∗, I∗) + δR∗ = 0, f(S∗, I∗)− (µ+ γ)I∗ = 0, γI∗ − (µ+ δ)R∗ = 0. (2.2)

Proof. First, it is evident that there always exists a disease-free equilibrium E0. Second, we show that system (1.2)
has a unique endemic equilibrium E∗ = (S∗, I∗, R∗) if R0 > 1. By (2.2), at a fixed point of (S, I,R) of system (1.2), the
following equalitions hold.

µ− µS −
(
µ+ γ − γδ

µ+ δ

)
I = 0, f(S, I)− (µ+ γ)I = 0, γI − (µ+ δ)R = 0. (2.3)

Substituting the first equation of (2.3) into the second equation of (2.3), for I > 0, we consider the following equation:

H(I) :=
f(1− µ+γ− γδ

µ+δ

µ I, I)

I
− (µ+ γ) = 0.

By the hypotheses (H1) and (H2), H is strictly monotone decreasing on (0,+∞) satisfying

lim
I→+0

H(I) = K(S0)− (µ+ γ) = (µ+ γ)(R0 − 1) > 0,

which implies that there exists a unique positive solution I = I∗ such that 0 < I∗ < µ/(µ + γ − γδ
µ+δ ) < S0 = 1 such

that H(I∗) = 0. Therefore, by the first and third equations of (2.3), there exists a unique positive solution S = S∗ > 0
and R = R∗ > 0 such that µ− µS∗ − (µ+ γ − γδ

µ+δ )I
∗ = 0 and γI∗ − (µ+ δ)R∗ = 0. Hence, the proof is complete. □

3 Global stability of the disease-free equilibrium E0

In this section, we assume that R0 ≤ 1 and show the global asymptotic stability of the disease-free equilibrium E0 of
system (1.2) constructing a Lyapunov functional. From Lemma 2.1, the limit set of system (1.2) in the first octant of
R3 locates on the plane S + I + R = S0. Hence, the dynamics of system (1.2) in the first octant of R3 is equivalent to
the following system: 

dS(t)

dt
= µ− µS(t)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ + δR(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t).

dR(t)

dt
= γ(S0 − S(t)−R(t))− (µ+ δ)R(t).

(3.1)

Theorem 3.1. If R0 ≤ 1, then the disease-free equilibrium E0 of system (3.1) is globally asymptotically stable on
{(S, I,R) ∈ R3

+|S + I +R = S0}.
Proof. We consider the following Lyapunov functional:

V0(t) =

∫ S(t)

S0

(
1− K(S0)

K(s)

)
ds+ I(t) +

∫ h

0

p(τ)

∫ t

t−τ

K(S0)

K(S(u+ τ))
f(S(u+ τ), I(u))dudτ.

We then obtain

dV0(t)

dt
=

(
1− K(S0)

K(S(t))

)(
µ− µS(t)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ + δR(t)

)

+

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t)

+

∫ h

0

p(τ)

{
K(S0)

K(S(t+ τ))
f(S(t+ τ), I(t))− K(S0)

K(S(t))
f(S(t), I(t− τ))

}
dτ

=

(
1− K(S0)

K(S(t))

)
(−µ(S(t)− S0) + δR(t))−

∫ h

0

p(τ)

(
1− K(S0)

K(S(t))

)
f(S(t), I(t− τ))dτ

+

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t)

+

∫ h

0

p(τ)

{
K(S0)

K(S(t+ τ))
f(S(t+ τ), I(t))− K(S0)

K(S(t))
f(S(t), I(t− τ))

}
dτ

=

(
1− K(S0)

K(S(t))

)
(−µ(S(t)− S0) + δR(t)) +

∫ h

0

p(τ)

{
K(S0)

K(S(t+ τ))

f(S(t+ τ), I(t))

I(t)
− (µ+ γ)

}
I(t)dτ.

4



Noting that δR(t)(1− K(S0)
K(S(t)) ) ≤ 0 on the plane {(S, I,R) ∈ R3

+|S + I +R = S0}, we obtain

dV0(t)

dt
≤ −µ

(
1− K(S0)

K(S(t))

)
(S(t)− S0) +

∫ h

0

p(τ)

{
K(S0)

K(S(t+ τ))
K(S(t+ τ))− (µ+ γ)

}
I(t)dτ

= −µ

(
1− K(S0)

K(S(t))

)
(S(t)− S0) + (µ+ γ)(R0 − 1)I(t).

Thus, it holds that dV0(t)
dt ≤ 0 with equality if S(t) = S0. Hence, we have limt→+∞ S(t) = S0, which implies from system

(3.1) that limt→+∞ I(t) = 0 and limt→+∞ R(t) = 0 hold. By an extension of Lyapunov-LaSalle asymptotic stability
theorem (see also Kuang [13, Theorem 5.3]), the disease-free equilibrium E0 of system (3.1) is globally asymptotically
stable. This completes the proof. □

Proof of Theorem 1.1. From Theorem 3.1, we immediately obtain the conclusion of this theorem. □

4 Global stability of the endemic equilibrium E∗ for R0 > 1

In this section, we establish the global asymptotic stability of the endemic equilibrium E∗ of system (1.2) for R0 > 1 by
using a lower bound of the susceptible individuals S(t) for large t.

First, we obtain the following theorem, which indicates that the disease eventually persists in the host population
when R0 > 1.

Theorem 4.1. If R0 > 1, then for any solution of system (1.2), it holds that

lim inf
t→+∞

S(t) ≥ v1, lim inf
t→+∞

I(t) ≥ v2 := qI∗ exp (−(µ+ γ)ρh), lim inf
t→+∞

R(t) ≥ v3 :=
γv2
µ+ δ

,

where v1 > 0 satisfies µ−K(v1)− µv1 = 0 and 0 < q < 1 and ρ ≥ 1 satisfy

S∗ <
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µρh

)
, 0 < q <

µ

(K(S0) + εS)I∗
. (4.1)

Proof. Let (S(t), I(t), R(t)) be a solution of system (1.2) with initial condition (1.3). By Lemma 2.1, it follows that
lim supt→+∞ I(t) ≤ 1, which implies from the first equation of system (1.2) and the hypothesis (H2) that, for any εI > 0,
there is an integer TI ≥ 0 such that

dS(t)

dt
≥ µ−

∫ h

0

p(τ)
f(S(t), I(t− τ))

I(t− τ)
I(t− τ)dτ − µS(t)

≥ µ−K(S(t))

∫ h

0

p(τ)I(t− τ)dτ − µS(t)

= µ−K(S(t))(1 + εI)− µS(t), (4.2)

for t ≥ TI + h. Let us now consider the following auxiliary equation:

dS(t)

dt
= µ−K(S(t))− µS(t).

Then one can obtain that limt→+∞ S(t) = v1 > 0. Since (4.2) holds for arbitrary εI > 0 sufficiently small, it follows
that lim inft→+∞ S(t) ≥ v1 > 0.

We now prove that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. Suppose to the contrary that there
exists a sufficiently large t1 ≥ TS such that I(t) ≤ qI∗ holds for all t ≥ t1. Then, similar to the above discussion, we
have that for any t ≥ t1 + h,

dS(t)

dt
≥ µ−

∫ h

0

p(τ)ϕ(S(t), I(t− τ))I(t− τ)dτ − µS(t) ≥ µ− (K(S0) + εS)qI
∗ − µS(t),

which yields for t ≥ t1 + h,

S(t) ≥ S(t1 + h)e−µ(t−t1−h) + e−µt

∫ t

t1+h

eµs(µ− (K(S0) + εS)qI
∗)ds

= S(t1 + h)e−µ(t−t1−h) +
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µ(t−t1−h)

)
. (4.3)
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Hence, it follows from (4.3) that for t ≥ t1 + h+ ρh,

S(t) >
µ− (K(S0) + εS)qI

∗

µ

(
1− e−µρh

)
= S△ > S∗. (4.4)

Now, we define the following functional:

V (t) = I(t) +

∫ h

0

p(τ)

∫ t+τ

t

f(S(u), I(u− τ))dudτ. (4.5)

Calculating the derivative of V (t) along the solution of system (1.2) gives as follows:

dV (t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t) +

∫ h

0

p(τ) {f(S(t+ τ), I(t))− f(S(t), I(t− τ))} dτ

=

∫ h

0

p(τ)f(S(t+ τ), I(t))dτ − (µ+ γ)I(t). (4.6)

For t ≥ t1 + h+ ρh, it follows from (4.4) and the relation µ+ γ = ϕ(S∗, I∗) that

dV (t)

dt
=

∫ h

0

p(τ) {ϕ(S(t+ τ), I(t))− (µ+ γ)} I(t)dτ

>

∫ h

0

p(τ) {ϕ(S(t+ τ), I∗)− ϕ(S∗, I∗) + ϕ(S∗, I∗)− (µ+ γ)} I(t)dτ

=

∫ h

0

p(τ){ϕ(S(t+ τ), I∗)− ϕ(S∗, I∗)}I(t)dτ

≥ {ϕ(S△, I∗)− ϕ(S∗, I∗)}I(t). (4.7)

Setting i = minθ∈[−h,0] I(θ + t1 + ρh+ 2h), we claim that I(t) ≥ i for all t ≥ t1 + h+ ρh. Otherwise, if there is a T ≥ 0

such that I(t) ≥ i for t1 + h+ ρh ≤ t ≤ t1 + 2h+ ρh+ T , I(t1 + 2h+ ρh+ T ) = i and dI(t)
dt |t=t1+2h+ρh+T ≤ 0, it follows

from the second equation of system (1.2), the conditions (H1) and (H2) that for t2 = t1 + 2h+ ρh+ T ,

dI(t)

dt

∣∣∣
t=t2

=

∫ h

0

p(τ)f(S(t2), I(t2 − τ))dτ − (µ+ γ)I(t2)

=

∫ h

0

p(τ)ϕ(S(t2), I(t2 − τ))I(t2 − τ)dτ − (µ+ γ)I(t2)

>

∫ h

0

p(τ)ϕ(S(t2), I
∗)I(t2 − τ)dτ − (µ+ γ)I(t2)

≥ {ϕ(S(t2), I∗)− (µ+ γ)} I(t2)
≥

{
ϕ(S△, I∗)− (µ+ γ)

}
i

> {ϕ(S∗, I∗)− (µ+ γ)} i = 0.

This is a contradiction. Therefore I(t) ≥ i for all t ≥ t1 + h+ ρh. It follows from (4.7) that

dV (t)

dt
> {ϕ(S△, I∗)− ϕ(S∗, I∗)}i > 0, for t ≥ t1 + 2h+ ρh,

which implies that limt→+∞ V (t) = +∞. However, it holds from (2.1) and (4.5) that lim supt→+∞ V (t) < +∞. Hence
the claim holds.

Thus, we proved that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. Now, we are left to consider the
following two possibilities: {

(i) I(t) ≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.

If the first case holds, then we immediately get the conclusion of the proof. If the second case holds, we show that
I(t) ≥ qI∗ exp (−(µ+ γ)ρh) for all t sufficiently large. Let t3 < t4 be sufficiently large such that

I(t3) = I(t4) = qI∗, I(t) < qI∗, t3 < t < t4.

If t4 − t3 ≤ ρh, then it follows from the second equation of system (1.2) that dI(t)
dt > −(µ+ γ)I(t), that is,

I(t) > I(t3) exp (−(µ+ γ)(t− t3)) ≥ qI∗ exp (−(µ+ γ)ρh) = v2.
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If t4 − t3 > ρh, we obtain from the second equation of system (1.2) that I(t) ≥ v2 for t3 ≤ t ≤ t3 + ρh. We now claim
that I(t) ≥ v2 for all t3 + ρh ≤ t ≤ t4. Otherwise, there is a T ∗ > 0 such that I(t) ≥ v2 for t3 ≤ t ≤ t3 + ρh+ T ∗ < t4,

I(t3 + ρh + T ∗) = v2 and dI(t)
dt |t=t3+ρh+T∗ ≤ 0. On the other hand, for t0 = t3 + ρh + T ∗, it follows from the second

equation of system (1.2) and the relation ϕ(S(t0), I(t0)) > ϕ(S(t0), I
∗) ≥ ϕ(S△, I∗) > ϕ(S∗, I∗) that

dI(t)

dt

∣∣∣
t=t0

=

∫ h

0

p(τ)f(S(t0), I(t0 − τ))dτ − (µ+ γ)I(t0)

=

∫ h

0

p(τ)ϕ(S(t0), I(t0 − τ))I(t0 − τ)dτ − (µ+ γ)I(t0)

≥ {ϕ(S(t0), I∗)− (µ+ γ)} I(t0)
≥

{
ϕ(S△, I∗)− (µ+ γ)

}
I(t0)

> {ϕ(S∗, I∗)− (µ+ γ)} I(t0) = 0,

which is a contradiction. Hence I(t) ≥ qI∗ exp (−(µ+ γ)ρh) = v2 for t3 ≤ t ≤ t4. Since the interval [t3, t4] is arbitrarily
chosen, we conclude that I(t) ≥ v2 for all t sufficiently large for the second case. Thus, we obtain lim inft→+∞ I(t) ≥ v2.
From the above discussion, one can see that lim inft→+∞ R(t) ≥ v3. Hence, this completes the proof. □

By Lemma 2.2, system (4.11) has a unique endemic equilibrium Ẽ∗ ≡ (S∗, I∗) if R0 > 1. We put xt =
S(t)

S∗ , x̃t =
f(S(t), I∗)

f(S∗, I∗)
, yt =

I(t)

I∗
, ỹt,τ =

f(S(t+ τ), I(t))

f(S(t+ τ), I∗)
,

g(x) = x− 1− lnx ≥ g(1) = 0, for x > 0.
(4.8)

for a fixed 0 ≤ τ ≤ h. The following lemma plays a key role to obtain Theorem 1.2.

Lemma 4.1. For all t ≥ 0 and 0 ≤ τ ≤ h, it holds that

(1− xt)

(
1− 1

x̃t

)
≤ −C0

f(S(t), I∗)

S∗I∗

(
1− 1

x̃t

)2

(4.9)

and

g(yt)− g(ỹt,τ ) ≥ C1C2I
∗(yt − 1)2, (4.10)

with equality if and only if xt = 1 and yt = ỹt,τ = 1, respectively.

Proof. First, by the condition (I) of (1.5), we obtain

(1− xt)

(
1− 1

x̃t

)
=

(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
= − 1

S∗ (S(t)− S∗)

(
1− f(S∗, I∗)

f(S(t), I∗)

)
≤ − C0

S∗I∗
(f(S(t), I∗)− f(S∗, I∗))

(
1− f(S∗, I∗)

f(S(t), I∗)

)
= −C0

f(S(t), I∗)

S∗I∗

(
1− 1

x̃t

)2

.

Second, by the definitions of yt and ỹt,τ , we have ỹt,τ − 1 = f(S(t+τ),I(t))−f(S(t+τ),I∗)
f(S(t+τ),I∗) and

yt − ỹt,τ =
I(t)

I∗
− f(S(t+ τ), I(t))

f(S(t+ τ), I∗)
=

I(t)

f(S(t+ τ), I∗)
{ϕ(S(t+ τ), I∗)− ϕ(S(t+ τ), I(t))} .

Then, it follows from (H1) and (H2) that

g(yt)− g(ỹt,τ ) = yt − ỹt,τ − ln
yt
ỹt,τ

= yt − ỹt,τ − yt
ỹt,τ

+ 1 +
yt
ỹt,τ

− 1− ln
yt
ỹt,τ

=
1

ỹt,τ
(ỹt,τ − 1)(yt − ỹt,τ ) + g

(
yt
ỹt,τ

)
≥ ỹt,τ − 1

ỹt,τ
(yt − ỹt,τ )

=
1

I∗

(
I(t)

f(S(t+ τ), I(t))
− I∗

f(S(t+ τ), I∗)

)(
f(S(t+ τ), I(t))− f(S(t+ τ), I∗)

)
≥ C1C2

I∗
(I(t)− I∗)2

= C1C2I
∗(yt − 1)2,
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with equality if and only if yt = ỹt,τ = 1. Hence, we get the conclusion. □
Now, we are in a position to prove the global asymptotic stability of the endemic equilibrium E∗ of system (1.2) for

R0 > 1.

Proof of Theorem 1.2. From Lemma 2.1, the limit set of system (1.2) in the first octant of R3 locates on the plane
S + I +R = S0. Hence, the dynamics of system (1.2) in the first octant of R3 is equivalent to the following system:

dS(t)

dt
= (µ+ δ)− (µ+ δ)S(t)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − δI(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t).

(4.11)

We consider the following Lyapunov functional (cf. [5, 7, 14, 15]):

V∗(t) = U(t) + U+(t), (4.12)

where

U(t) =

∫ S(t)

S∗

(
1− f(S∗, I∗)

f(τ, I∗)

)
dτ + I∗g

(
I(t)

I∗

)
, U+(t) = f(S∗, I∗)

∫ h

0

p(τ)

∫ t

t−τ

g

(
f(S(u+ τ), I(u)

f(S(u+ τ), I∗)

)
dudτ.

The time derivative of dU(t)
dt along the solution of system (4.11) satisfies as follows:

dU(t)

dt
=

(
1− f(S∗, I∗)

f(S(t), I∗)

){
(µ+ δ)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ δ)S(t)− δI(t)

}
+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ γ)I(t)

)
.

Rearranging µ+ δ = (µ+ δ)S∗ + f(S∗, I∗) + δI∗ and µ+ γ = f(S∗,I∗)
I∗ gives

dU(t)

dt
=

(
1− f(S∗, I∗)

f(S(t), I∗)

){
(µ+ δ)(S∗ − S(t)) +

(
f(S∗, I∗)−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ

)}
+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − f(S∗, I∗)
I(t)

I∗

)
+ δ

(
1− f(S∗, I∗)

f(S(t), I∗)

)
(I∗ − I(t))

= (µ+ δ)S∗
(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

(
1− f(S∗, I∗)

f(S(t), I∗)

)∫ h

0

p(τ)

(
1− f(S(t), I(t− τ))

f(S∗, I∗)

)
dτ

+f(S∗, I∗)

(
1− I∗

I(t)

)∫ h

0

p(τ)

(
f(S(t), I(t− τ))

f(S∗, I∗)
− I(t)

I∗

)
dτ + δ

(
1− f(S∗, I∗)

f(S(t), I∗)

)
(I∗ − I(t))

= (µ+ δ)S∗
(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

∫ h

0

p(τ)

{(
2− f(S∗, I∗)

f(S(t), I∗)
− I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)
+

(
f(S(t), I(t− τ))

f(S(t), I∗)
− I(t)

I∗

)}
dτ

+δ

(
1− f(S∗, I∗)

f(S(t), I∗)

)
(I∗ − I(t))

= (µ+ δ)S∗
(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

∫ h

0

p(τ)

{
−g

(
f(S∗, I∗)

f(S(t), I∗)

)
− g

(
I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)
+ g

(
f(S(t), I(t− τ))

f(S(t), I∗)

)
− g

(
I(t)

I∗

)}
dτ

+δ

(
1− f(S∗, I∗)

f(S(t), I∗)

)
(I∗ − I(t)).

Second, calculating dU+(t)
dt gives as follows.

dU+(t)

dt
= f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g

(
f(S(t), I(t− τ))

f(S(t), I∗)

)}
dτ.
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Finally, we obtain

dV∗(t)

dt
= (µ+ δ)S∗

(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

∫ h

0

p(τ)

{
−g

(
f(S∗, I∗)

f(S(t), I∗)

)
− g

(
I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)
+ g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g

(
I(t)

I∗

)}
dτ

+δ

(
1− f(S∗, I∗)

f(S(t), I∗)

)
(I∗ − I(t))

= (µ+ δ)S∗ (1− xt)

(
1− 1

x̃t

)
− δI∗

(
1− 1

x̃t

)
(yt − 1)

−f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
1

x̃t

)
+ g

(
x̃tỹt−τ,τ

yt

)
+ g (yt)− g (ỹt,τ )

}
dτ. (4.13)

By applying (4.9), (4.10) and the relation g( 1
x̃t
) + g(

x̃tỹt−τ,τ

yt
) ≥ 0, it holds that

dV∗(t)

dt
≤ −C0

f(S(t), I∗)

I∗
(µ+ δ)

(
1− 1

x̃t

)2

− δI∗
(
1− 1

x̃t

)
(yt − 1)− C1C2f(S

∗, I∗)I∗(yt − 1)2.

Using the relation f(S∗, I∗) = (µ+ γ)I∗, we have

dV∗(t)

dt
≤ −

{
C0

f(S(t), I∗)

I∗
(µ+ δ)

(
1− 1

x̃t

)2

+ δI∗
(
1− 1

x̃t

)
(yt − 1) + C1C2(µ+ γ)(I∗)2(yt − 1)2

}
.

By Theorem 4.1, for any 0 < ε < v1, there exists a Tε > 0 such that S(t) > v1 − ε for any t > Tε. From the condition
(II), we may restrict this ε > 0 sufficiently small such that

δ2 − 4C0C1C2(µ+ δ)(µ+ γ)
f(v1 − ε, I∗)

I∗
< 0.

Then, we have

(δI∗)2 − 4

{
C0

f(S(t), I∗)

I∗
(µ+ δ)

}{
C1C2(µ+ γ)(I∗)2

}
< (I∗)2

{
δ2 − 4C0C1C2(µ+ δ)(µ+ γ)

f(v1 − ε, I∗)

I∗

}
< 0,

from which we obtain that dV∗(t)
dt ≤ 0 holds for all t > Tε with equality if and only if S(t) = S∗ and I(t) = I∗. Thus, by

an extention of LaSalle’s invariant principle (see also Kuang [13, Corollary 5.2]), E∗ is globally asymptotically stable.
Hence, the proof is complete. □

5 Applications

In this section, we illustrate some examples in order to validate the feasibility of our global stability results with respect
to the rate of immunity lost δ. We consider the following SIRS epideimc model with a discrete delay:

dS(t)

dt
= µ− µS(t)− β

S(t)

1 + αSS(t)

I(t− τ)

1 + αII(t− τ)
+ δR(t),

dI(t)

dt
= β

S(t)

1 + αSS(t)

I(t− τ)

1 + αII(t− τ)
− (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t), τ > 0.

(5.1)

β > 0 denotes the infection force of disease. Here, 1
1+αSS(t) and 1

1+αII(t−τ) measures the inhibition effects from

the behavioral change of the susceptible individuals and infective individuals, respectively. Let us assume that αS ≥ 0
and αI ≥ 0 hold. For the case αS = αI = 0, the incidence rate becomes a form which is proposed in Vargas-De-León
and Gómez-Alcaraz [22] and for the case αS = 0, the incidence rate becomes a form which is proposed in Xu and
Ma [23]. We hereafter assume that αI > 0 holds. From (1.4), the basic reproduction number of system (5.1) becomes
R0 = β

(µ+γ)(1+αS) .

Applying Theorems 1.1 and 1.2, we establish the following result (cf. McCluskey [14, Section 5]):
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Figure 1: The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.02 and δ = 0.07, we
have R0 = 0.606 · · · < 1 and E0 = (1, 0, 0).

Corollary 5.1. If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable. If
R0 > 1, then the endemic equilibrium E∗ of system (5.1) exists uniquely and system (5.1) is permanent. Moreover, the
endemic equilibrium E∗ of system (5.1) is globally asymptotically stable if

δ2 < 4C̃0C̃1C̃2(µ+ δ)(µ+ γ)
βṽ1

(1 + αS ṽ1)(1 + αII∗)
,

C̃0 =
(1 + αS ṽ1)(1 + αII

∗)

β
≤ (1 + αSS

∗)(1 + αII
∗)

β
,

C̃1 =
β

(1 + αS ṽ1)(1 + αI)2
≤ β

(1 + αS ṽ1)(1 + αI)(1 + αII∗)
,

C̃2 =
(1 + αS)αI

β
,

(5.2)

where v = ṽ1 is a unique positive solution of µ− βv
(1+αSv) − µv = 0.

For system (5.1), under the conditions

τ = 0.1, αS = αI = 0.1, γ = 0.01 and µ = 0.02, (5.3)

we consider two cases of β = 0.02 and β = 0.06. First, we consider the case β = 0.02. Then, we obtain R0 = 0.606 · · · ≤ 1.
By Theorem 1.1, the disease-free equilibrium E0 of system (5.1) is globally asymptotically stable for any δ ≥ 0.

Second, we consider the case β = 0.06. Then, we obtain R0 = 1.818 · · · > 1 and ṽ1 = 0.512 · · · . For this case, since the
condition (5.2) becomes 0 ≤ δ < δ∗ := 0.013 · · · , the endemic equilibrium E∗ of system (5.1) is globally asymptotically
stable for any 0 ≤ δ < δ∗. From a biological point of view, for a small loss of immunity rate, the prevalence of the
disease can settle to an endemic steady state independently of the initial conditions.

Figures 1 and 2 indicate that the disease-free equilibrium E0 and the endemic equilibrium E∗ of system (5.1) are
globally asymptotically stable for the first and the second cases with δ = 0.07 and δ = 0.007, respectively.

On the other hand, Figure 3 indicates that the endemic equilibrium E∗ of system (5.1) is also globally asymptotically
stable even if the condition (5.2) in Corollary 5.1 fail for the second case with δ = 0.07 ≥ δ∗ for R0 > 1. There is still
an open problem to determine the global asymptotic stability of the endemic equilibrium of system (5.1) for δ ≥ δ∗.

6 Discussion

In this paper, for an SIRS epidemic model with a wide class of nonlinear incidence rates and distributed delays∫ h

0
p(τ)f(S(t), I(t − τ))dτ , we established the global asymptotic stability of the disease-free equilibrium E0 for R0 ≤ 1

and the endemic equilibrium E∗ for R0 > 1. By using a limit system of the model, a proof that the disease-free equi-
librium is globally asymptotically stable for R0 = 1 is also given. In particular, without imposing any restriction on
the size of a maximum latent period h, the global asymptotic stability of the endemic equilibrium E∗ is established
for a small loss of immunity rate δ. By means of strict monotonicity of functions f(S, I) and f(S, I)/I with respect to
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Figure 2: The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.06 and δ = 0.007 < δ∗,
we have R0 = 1.818 · · · > 1 and E∗ = (0.544 · · · , 0.332 · · · , 0.123 · · · ).
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Figure 3: The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.06 and δ = 0.07 ≥ δ∗,
we have R0 = 1.818 · · · > 1 and E∗ = (0.548 · · · , 0.406 · · · , 0.045 · · · ).

S ≥ 0 and I > 0, we obtain Lemma 4.1 which plays an important role to establish the condition (1.5) such that V∗ is a
Lyapunov functional. Hence, our result is an extension to the global stability result for an SIR epidemic model.
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