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Abstract. In this paper, we propose a discrete-time SIS epidemic model which is derived from continuous-time SIS
epidemic models with immigration of infectives by the backward Euler method. For the discretized model, by applying
new Lyapunov function techniques, we establish the global asymptotic stability of the disease-free equilibrium for R0 ≤ 1
and the endemic equilibrium for R0 > 1, where R0 is the basic reproduction number of the continuous-time model. This
is just a discrete analogue of continuous SIS epidemic model with immigration of infectives.
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1 Introduction

In the literature of epidemiology, many authors have recently proposed mathematical models and studied the global
behavior of the transmission of infectious disease for the models (see also [1–16] and references therein).

Brauer and van den Driessche [1] have formulated the following continuous SIS epidemic model with immigration of
infectives: 

dS(t)

dt
= (1− p)A− βS(t)I(t)− dS(t) + γI(t),

dI(t)

dt
= pA+ βS(t)I(t)− (d+ α+ γ)I(t),

(1.1)

with the initial conditions S(0) > 0, I(0) > 0.
S(t) and I(t) denote the number of a population who are susceptible to a disease and infective members at time t,

respectively. It is assumed that all newborns are susceptible. In addition, all recruitments are into the susceptible class
at a constant rate (1− p)A > 0 and the infective class at a constant immigration rate pA > 0. The positive constant d
represents the death rates of susceptible and infectious classes, and the positive constant α represents the rate at which
the infective dies from the infection. The mass action coefficient is β > 0.

Let the basic reproduction number R0 defined by

R0 =
βA

d(d+ α+ γ)
. (1.2)

We here note that R0 is the product of the population size at the disease-free steady state with no infectives (i.e. p = 0),
the transmission coefficient and the mean infective period [1].
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For the case p = 0, system (1.1) always has a disease-free equilibrium E0 = (A/d, 0). Furthermore, if p = 0 and
R0 > 1 or 0 < p ≤ 1, then system (1.1) has a unique endemic equilibrium E∗ = (S∗, I∗), where

S∗ =
A+ γI∗

βI∗ + d
, I∗ =

σ +
√
σ2 + 4βdpA(d+ α)

2β(d+ α)
, σ = (1− p)βA− d(d+ γ + α). (1.3)

By using Bendixson-Durac criterion [6, p. 373] and Poincaré-Bendixson theorem [6, p.366], stability results of the
disease-free equilibrium E0 and the endemic equilibrium E∗ for system (1.1) has been established by Brauer and van
den Driessche [1] as follows:

Theorem A For system (1.1), if p = 0 and R0 < 1, then the disease-free equilibrium E0 is globally attractive, and
if p = 0 and R0 > 1 or 0 < p ≤ 1, then there exists a unique endemic equilibrium E∗ which is globally asymptotically
stable.

Later, for a delayed SIS epidemic model with a wide class of nonlinear incidence rates, by using the special property
limt→+∞ N(t) = 1 for the total population N(t) = S(t) + I(t) and the model can be transformed into a form of the
SIR epidemic model as in McCluskey [12], Huang and Takeuchi [7] have fully solved the global asymptotic stability of
a disease-free equilibrium and a unique endemic equilibrium by the basic reproduction number of the model.

On the other hand, there occur situations such that constructing discrete epidemic models is more appropriate
approach to understand disease transmission dynamics and to evaluate eradication policies because they permit arbitrary
time-step units, preserving the basic features of corresponding continuous-time models. Furthermore, this allows better
use of statistical data for numerical simulations due to the reason that the infection data are compiled at discrete given
time intervals. For a discrete SIS epidemic model with immigration of infectives, by means of Micken’s nonstandard
discretization method (see Mickens [14]), Jang and Elaydi [10] showed the global asymptotic stability of a disease-free
equilibrium, the local asymptotic stability of a unique endemic equilibrium and strong persistence of susceptible class
of the model. A conjecture that one may construct a Lyapunov function to show the global stability of the endemic
equilibrium for the model is also proposed. Using a discretization called “mixed type” formula in Izzo and Vecchio [8]
and Izzo et al. [9], Sekiguchi [15] obtained the permanence of a class of SIR discrete epidemic models with one delay
and SEIRS discrete epidemic models with two delays if an endemic equilibrium of each model exists. For the detailed
property for a class of discrete epidemic models, we refer to [2, 3, 8–11,15,16].

However, in those cases, how to choose the discrete schemes which preserves the global asymptotic stability for the
endemic equilibrium of corresponding continous-time models was still unsolved.

For a delayed SIR epidemic model, applying a variation of backward Euler discretization, Enatsu et al. [4] firstly
solved this problem and established the complete global stability results by a discrete time analogue of a Lyapunov
functional proposed by McCluskey [12]. Enatsu et al. [5] also have obtained the similar results for a discrete SIR
epidemic model with a variation of backward Euler discretization which has a separable nonlinear incidence rate.

Motivated by the above results, in this paper, to preserve key properties of Lyapunov functional techniques in Enatsu
et al. [4] for discretization, we apply the backward Euler method to the following iteration system;

Sn+1 =
(1− p)A+ Sn + γIn+1

1 + d+ βIn+1
, In+1 =

−B̃n +
√
B̃2

n + 4ÃC̃n

2Ã
=

2C̃n

B̃n +
√

B̃2
n + 4ÃC̃n

, n = 0, 1, 2, · · · , (1.4)

with the initial conditions
S0 > 0, and I0 > 0, (1.5)

where
Ã = β(1 + d+ α), B̃n = (1 + d)(1 + d+ α+ γ)− β(A+ Sn + In), C̃n = (1 + d)(pA+ In). (1.6)

For the initial conditions (1.5), let (Sn, In) (n > 0) be the solutions of system (1.4). Then Sn > 0, In > 0 holds for any
n > 0 (see Lemma 2.1). Moreover, (1.4) is equivalent to the following discrete SIS epidemic model:{

Sn+1 − Sn = (1− p)A− βSn+1In+1 − dSn+1 + γIn+1,
In+1 − In = pA+ βSn+1In+1 − (d+ α+ γ)In+1, and In+1 > 0,

(1.7)

which is derived from system (1.1) by applying the backward Euler method.
Note that for any positive solution (Sn, In), there exist just two solutions (Sn+1, In+1) of (1.7) without the condition

In+1 > 0, one is In+1 < 0 and the other is In+1 > 0. Therefore, for any positive solution (Sn, In), we need the restriction
In+1 > 0 to consider only the positive solution (Sn+1, In+1) in (1.7).

Similar to the case of continuous system (1.1), for the case p = 0, system (1.7) always has a disease-free equilibrium
E0 = (A/d, 0). Furthermore, if p = 0 and R0 > 1, or 0 < p ≤ 1, then system (1.7) has a unique endemic equilibrium
E∗ = (S∗, I∗) which is defined by (1.3).
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Remark 1.1. To prove the positivity of Sn and In for n > 0 and apply key properties of Lyapunov functional techniques
in Enatsu et al. [4], we need to use the backward Euler discretization instead of the forward Euler discretization which
is a different discretization from that in Jang and Elaydi [10].

Using the same threshold R0 = βA
d(d+α+γ) and 0 ≤ p ≤ 1, we establish that the following global stability result:

Theorem 1.1. For the case p = 0 in system (1.7), there exists a unique disease-free equilibrium E0 which is globally
asymptotically stable, if and only if, R0 ≤ 1. For the case p = 0 and R0 > 1, or 0 < p ≤ 1 in system (1.7), then there
exists a unique endemic equilibrium E∗ which is globally asymptotically stable.

Remark 1.2. Theorem 1.1 for system (1.7) is just a discrete analogue of Theorem A for system (1.1).

The key ideas of our Lyapunov function techniques are as follows (see also Section 3).

(i) By letting Nn := Sn + In, we rewrite system (1.7) as follows.{
In+1 − In = pA+ β(Nn+1 − In+1)In+1 − (d+ α+ γ)In+1, In+1 > 0,
Nn+1 −Nn = A− dNn+1 − αIn+1.

(ii) Let N = S + I, N0 = A
d , N∗ = S∗ + I∗, and define

U(n) =
I

β
g

(
In
I

)
+

1

αN

(Nn −N)2

2
, (1.8)

where g(x) = x− 1− lnx ≥ g(1) = 0 defined on x > 0. By the relation

lim
x→+0

xg
(y
x

)
= y for each y > 0,

we offer a unified construction of discrete time analogue of Lyapunov functions U0(n) and U∗(n) in the proof of
global stability of the disease-free equilibrium and the endemic equilibrium as follows, respectively;

U0(n) = lim
I→+0, N→N0

U(n) =
1

β
In +

1

αN0

(Nn −N0)2

2
,

and

U∗(n) = lim
I→I∗, N→N∗

U(n) =
I∗

β
g

(
In
I∗

)
+

1

αN∗
(Nn −N∗)2

2
.

(iii) Assume that p = 0 and R0 > 1 or 0 < p ≤ 1. In order to prove the second part of Theorem 1.1, by using a key
idea in Enatsu et al. [4], we use the following relation.

− ln
In+1

In
= ln

{
1−

(
1− In

In+1

)}
≤ −

(
1− In

In+1

)
= −In+1 − In

In+1
.

Adding

I∗
(
Nn+1

N∗ − 1

)(
In+1

I∗
− 1

)
in I∗

βN∗

{
g
(

In+1

I∗

)
− g

(
In
I∗

)}
to

−dN∗

α

(
1− Nn+1

N∗

)2

− I∗
(
Nn+1

N∗ − 1

)(
In+1

I∗
− 1

)
in 1

αN∗

{
(Nn+1−N∗)2

2 − (Nn−N∗)2

2

}
, we obtain U∗(n + 1) − U∗(n) ≤ 0 with equality if and only if In+1 = I∗ and

Nn+1 = N∗.

(iv) Assume that p = 0 and R0 ≤ 1. In order to prove the second part of Theorem 1.1, along with the similar discussion
in (i)-(iii), we have U0(n+ 1)− U0(n) ≤ 0 with equality if and only if In+1 = 0 and Nn+1 = N0.

The organization of this paper is as follows. In Section 2, we offer some basic results for system (1.7). In particular,
by Lemma 2.4, we offer a simplified proof for the permanence of system (1.7) for p = 0 and R0 > 1, or 0 < p ≤ 1 (cf.
Sekiguchi [15]). The first part of Theorem 1.1 concerning the global asymptotic stability of the disease-free equilibrium
for p = 0 and R0 ≤ 1 and the second part of Theorem 1.1 concerning the permanence and the global stability of the
endemic equilibrium for p = 0 and R0 > 1 or 0 < p ≤ 1 are given in Section 3. Finally, we offer conclusion in Section 4.
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2 Basic properties

In this section, we introduce basic lemmas as follows.

Lemma 2.1. Let (Sn, In) be the solutions of system (1.7) with the initial conditions (1.5). Then Sn > 0, In > 0 for all
n > 0.

Proof. Assume that there exists a nonnegative integer n0 ≥ 0 such that Sn, In > 0, n = 0, 1, · · · , n0. Then, for Sn > 0
and In > 0, In+1 is a unique positive solution of the following quadratic equation:

P (x) = {(1 + d+ α+ γ)x− (pA+ In)} (1 + d+ βx)− β {(1− p)A+ Sn + γx}x
= β(1 + d+ α)x2 + {(1 + d)(1 + d+ α+ γ)− β(A+ Sn + In)}x− (1 + d)(pA+ In), (2.1)

Hence, by the first equation of (1.4), we have Sn0+1 > 0, and by the second equation of (1.4), we have In0+1 > 0. By
induction, we prove this lemma. □

Lemma 2.2. Any solution (Sn, In) of system (1.7) satisfies

lim sup
n→+∞

(Sn + In) ≤ S0 = A/d. (2.2)

Proof. Let Nn = Sn + In. From system (1.7), we have that

Nn+1 −Nn = A− d(Sn+1 + In+1)− αIn+1 ≤ A− dNn+1 − αIn+1,

from which we have

lim sup
n→+∞

Nn ≤ S0 =
A

d
.

Hence, the proof is complete. □

Lemma 2.3. Assume that p = 0 and R0 > 1. If In+1 < In, then Sn+1 < S∗. Inversely, if Sn+1 ≥ S∗, then In+1 ≥ In.

Proof. By the second equation of (1.7), we have

In+1 =
In − In+1

d+ α+ γ
+

Sn+1

S∗ In+1.

Therefore, if In+1 < In, then we have

In+1 >
Sn+1

S∗ In+1,

from which we obtain Sn+1 < S∗. The remained part of this lemma is evident. □
By Lemma 2.3, we obtain the following lemma which implies the permanence of system (1.7).

Lemma 2.4. The following statements hold true.

(i) Let 0 < p ≤ 1. Then, for any solution (Sn, In) of system (1.7), it holds that

0 <
(1− p)A

1 + d+ βA/d
≤ lim inf

n→+∞
Sn ≤ lim sup

n→+∞
Sn ≤ (1− p)A+ (1 + γ)A/d

1 + d
,

0 < Î ≤ lim inf
n→+∞

In ≤ lim sup
n→+∞

In ≤ Î ,

where 
Î =

2C

B +

√
B

2
+ 4ÃC

, Î =
2C

B +

√
B2 + 4ÃC

,

Ã = β(1 + d+ α),
B = (1 + d)(1 + d+ α+ γ)− β(A+A/d), B = (1 + d)(1 + d+ α+ γ)− βA,
C = (1 + d)pA, C = (1 + d)(pA+A/d).

(2.3)

(ii) Let p = 0 and R0 > 1. Then, for any solution (Sn, In) of system (1.7), it holds that

0 <
A

1 + d+ βA
d

≤ lim inf
n→+∞

Sn ≤ lim sup
n→+∞

Sn ≤ A+ (1 + γ)A/d

1 + d
, (2.4)

0 <

(
1

1 + (d+ α+ γ)

)l0

qI∗ ≤ lim inf
n→+∞

In ≤ lim sup
n→+∞

In ≤ Î , (2.5)

where 0 < q < 1 and l0 ≥ 1 satisfy S∗ < S△ := A
k {1− ( 1

1+k )
l0} for k = d+ βqI∗.
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Proof. Since for p(x) = x+
√
x2 + c with c > 0, it holds that p′(x) = 1+ x√

x2+c
> 0, the function p(x) is an increasing

function of x on (0 ≤ x < +∞). By (1.4) and (2.2), we obtain the conclusion of (i) in this lemma. □
From the proof of (i), it suffices to show that lim infn→+∞ In ≥ ( 1

1+(d+α+γ) )
l0qI∗ holds. For any 0 < q < 1, by (1.3),

one can see that S∗ = A
d+βI∗ < A

d+βqI∗ . We first prove the claim that any solution (Sn, In) of system (1.7) does not have
the following property: there exists a nonnegative integer n1 such that In ≤ qI∗ for all n ≥ n1. Suppose on the contrary
that there exist a nonnegative integer n1 such that In ≤ qI∗ for all n ≥ n1. From system (1.7), one can obtain that

Sn+1 ≥ Sn

1 + k
+

A

1 + k
for all n ≥ n1,

which yields that

Sn+1 ≥
(

1

1 + k

)n+1−n1

Sn +
A

1 + k

n−n1∑
l=0

(
1

1 + k

)l

≥ A

1 + k

1− ( 1
1+k )

n+1−n1

1− 1
1+k

≥ A

k

{
1−

(
1

1 + k

)n+1−n1
}

for all n ≥ n1. Therefore, we have that

Sn+1 ≥ A

k

{
1−

(
1

1 + k

)l0}
= S△ > S∗ for all n ≥ n1 + l0 − 1. (2.6)

Then, by the second part of Lemma 2.3, we obtain that there exists a positive constant î such that In ≥ î for any
n ≥ n1 + l0 − 1. Hence, one can see that

In+1 − In = βSn+1In+1 − (d+ α+ γ)In+1

> {βS△ − (d+ α+ γ)}In+1

> {βS△ − (d+ α+ γ)}̂i for all n ≥ n1 + l0 − 1,

which implies by βS△ − (d+ α+ γ) = β(S△ − S∗) > 0, that limn→+∞ In = +∞. However, by Lemma 2.2, this leads a
contradiction. Hence, the claim is proved.

By the claim, we are left to consider two possibilities. First, In ≥ qI∗ holds for all n sufficiently large. Second, In
oscillates about qI∗ for all n sufficiently large. We now show that In ≥ ( 1

1+(d+α+γ) )
l0qI∗ for all n sufficiently large for

the both cases. If the first case that In ≥ qI∗ holds for all sufficiently large, then we immediately get the conclusion of
the proof. For the second case that In oscillates about qI∗ for all sufficiently large, let n2 < n3 be sufficiently large such
that

In2 , In3 ≥ qI∗, and In < qI∗ for all n2 < n < n3.

Then, by the second equation of system (1.7), we have that

In+1 − In ≥ −(d+ α+ γ)In+1, that is, In+1 ≥ 1

1 + (d+ α+ γ)
In

for all n ≥ n2, from which we have that

In+1 ≥

(
1

1 + (d+ α+ γ)

)n+1−n2

In2 ≥

(
1

1 + (d+ α+ γ)

)n+1−n2

qI∗

for all n ≥ n2. Therefore, we obtain that

In+1 ≥

(
1

1 + (d+ α+ γ)

)l0

qI∗ (2.7)

for all n2 ≤ n ≤ n2 + l0 − 1. If n3 ≥ n2 + l0, then by applying the similar discussion to (2.6), we obtain In+1 ≥
( 1
1+(d+α+γ) )

l0qI∗ for n2 + l0 ≤ n ≤ n3. Hence, we prove that In+1 ≥ ( 1
1+(d+α+γ) )

l0qI∗ for n2 ≤ n ≤ n3. Since the

interval n2 ≤ n ≤ n3 is arbitrarily chosen, we conclude that In+1 ≥ ( 1
1+(d+α+γ) )

l0qI∗ for all n sufficiently large for the

second case and obtain the conclusion of (ii) in this lemma. This completes the proof. □

3 Global stability

In this section, by applying Lyapunov function techniques, we prove Theorem 1.1. By the relation Sn = Nn−In, system
(1.7) is equivalent to the following system:{

In+1 − In = pA+ β(Nn+1 − In+1)In+1 − (d+ α+ γ)In+1, In+1 > 0,
Nn+1 −Nn = A− dNn+1 − αIn+1,

(3.1)

5



with the initial conditions I0 > 0 and N0 > 0. If p = 0, then system (3.1) always has a disease-free equilibrium
Ẽ0 = (0, N0), N0 = A

d and if p = 0 and R0 > 1, or 0 < p ≤ 1, then system (3.1) has a unique endemic equilibrium

Ẽ∗ = (I∗, N∗). Therefore, in order to prove Theorem 1.1, it suffices to show the global stability of the disease-free
equilibrium Ẽ0 for p = 0 and R0 ≤ 1 (see Section 3.2) and the global stability of the endemic equilibrium Ẽ∗ for p = 0
and R0 > 1, or 0 < p ≤ 1 (see Section 3.1).

3.1 The case p = 0 and R0 > 1, or 0 < p ≤ 1

In this subsection, we prove the second part of Theorem 1.1.

Proof of the second part of Theorem 1.1. For the endemic equilibrium Ẽ∗ of system (3.1), we consider the following
discrete time analogue of Lyapunov function:

U∗(n) =
I∗

βN∗U
∗
1 (n) +

1

αN∗U
∗
2 (n), (3.2)

with

U∗
1 (n) = g

(
In
I∗

)
, and U∗

2 (n) =
1

2
(Nn −N∗)2, (3.3)

where g(x) = x− 1− lnx ≥ g(1) = 0 defined on x > 0. From the equilibrium condition of (3.1), we have

d+ α+ γ =
pA

I∗
+ β(N∗ − I∗). (3.4)

By using a key idea in Enatsu et al. [4], we use the following relation.

− ln
In+1

In
= ln

{
1−

(
1− In

In+1

)}
≤ −

(
1− In

In+1

)
= −In+1 − In

In+1
. (3.5)

From (3.5), we obtain

U∗
1 (n+ 1)− U∗

1 (n) =
In+1 − In

I∗
− ln

In+1

In

≤ In+1 − In
I∗

− In+1 − In
In+1

=
1

I∗
In+1 − I∗

In+1
(In+1 − In)

=
1

I∗

(
1− I∗

In+1

)
{pA+ βSn+1In+1 − (d+ α+ γ)In+1} .

By using the relation (3.4), we have

U∗
1 (n+ 1)− U∗

1 (n) ≤ 1

I∗

(
1− I∗

In+1

){
pA+ β(Nn+1 − In+1)In+1 −

(
pA

I∗
+ β(N∗ − I∗)

)
In+1

}
=

1

I∗

(
1− I∗

In+1

){
pA

(
1− In+1

I∗

)
− βIn+1(In+1 − I∗) + βIn+1(Nn+1 −N∗)

}
=

pA

I∗

(
1− I∗

In+1

)(
1− In+1

I∗

)
− βI∗

(
In+1

I∗
− 1

)2

+ βN∗
(
In+1

I∗
− 1

)(
Nn+1

N∗ − 1

)
.

Moreover, it holds that

U∗
2 (n+ 1)− U∗

2 (n) =
1

2
(Nn+1 +Nn − 2N∗) (Nn+1 −Nn)

= (Nn+1 −N∗) (Nn+1 −Nn)−
1

2
(Nn+1 −Nn)

2

≤ (Nn+1 −N∗) (Nn+1 −Nn)

= (Nn+1 −N∗) {A− dNn+1 − αIn+1}
= (Nn+1 −N∗) {−d(Nn+1 −N∗)− α(In+1 − I∗)}
= −d (Nn+1 −N∗)

2 − α (Nn+1 −N∗) (In+1 − I∗)

= −d(N∗)2
(
1− Nn+1

N∗

)2

− αN∗I∗
(
Nn+1

N∗ − 1

)(
In+1

I∗
− 1

)
.
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Therefore, we have

U∗(n+ 1)− U∗(n) ≤ pA

βN∗

(
1− I∗

In+1

)(
1− In+1

I∗

)
− (I∗)2

N∗

(
In+1

I∗
− 1

)2

+ I∗
(
Nn+1

N∗ − 1

)(
In+1

I∗
− 1

)
−dN∗

α

(
1− Nn+1

N∗

)2

− I∗
(
Nn+1

N∗ − 1

)(
In+1

I∗
− 1

)
=

pA

βN∗

(
1− I∗

In+1

)(
1− In+1

I∗

)
− (I∗)2

N∗

(
In+1

I∗
− 1

)2

− dN∗

α

(
1− Nn+1

N∗

)2

≤ 0

for all n ≥ 0. Since U∗(n) ≥ 0 is monotone decreasing sequence, there is a limit limn→+∞ U∗(n) ≥ 0. Then, we
have limn→+∞(U∗(n + 1) − U∗(n)) = 0, which implies that limn→+∞ In+1 = I∗ and limn→+∞ Nn+1 = N∗. Since
U∗(n) ≤ U∗(0) for all n ≥ 0, Ẽ∗ is uniformly stable. Hence, Ẽ∗ is globally asymptotically stable. □

3.2 The case p = 0 and R0 ≤ 1

In this section, we prove the first part of Theorem 1.1.

Proof of the first part of Theorem 1.1. For the disease-free equilibrium Ẽ0 of system (3.1), we consider the following
discrete time analogue of Lyapunov function:

U0(n) =
1

βN0
In +

1

αN0
U0
1 (n), (3.6)

with

U0
1 (n) =

1

2
(Nn −N0)2. (3.7)

Then, from In+1 − In = β(Nn+1 − In+1)In+1 − (d+ α+ γ)In+1 and

U0
1 (n+ 1)− U0

1 (n) =
1

2

(
Nn+1 +Nn − 2N0

)
(Nn+1 −Nn)

=
(
Nn+1 −N0

)
(Nn+1 −Nn)−

1

2
(Nn+1 −Nn)

2

≤
(
Nn+1 −N0

)
(Nn+1 −Nn)

=
(
Nn+1 −N0

) {
−d(Nn+1 −N0)− αIn+1

}
= −d

(
Nn+1 −N0

)2 − α
(
Nn+1 −N0

)
In+1

= −d(N0)2
(
1− Nn+1

N0

)2

− αIn+1

(
Nn+1 −N0

)
,

we have

U0(n+ 1)− U0(n) ≤ 1

N0
(Nn+1 − In+1)In+1 −

d+ α+ γ

βN0
In+1 −

dN0

α

(
1− Nn+1

N0

)2

− In+1

(
Nn+1

N0
− 1

)
= −

I2n+1

N0
+

(
1− d+ α+ γ

βN0

)
In+1 −

dN0

α

(
1− Nn+1

N0

)2

= −
I2n+1

N0
+

(
1− 1

R0

)
In+1 −

dN0

α

(
1− Nn+1

N0

)2

≤ 0

for all n ≥ 0. Since U0(n) ≥ 0 is monotone decreasing sequence, there is a limit limn→+∞ U0(n) ≥ 0. Then,
limn→+∞(U0(n + 1) − U0(n)) = 0, from which we obtain that limn→+∞ In+1 = 0 and limn→+∞ Nn+1 = N0. Since
U0(n) ≤ U0(0) for all n ≥ 0, Ẽ0 is uniformly stable. Hence, Ẽ0 is globally asymptotically stable. □

4 Conclusion

Recently, it was still unsolved how to choose the discrete schemes which preserves the global asymptotic stability for the
endemic equilibrium of corresponding continuous models. By applying a discrete time analogue of a Lyapunov functional
proposed by McCluskey [12], Enatsu et al. [4] established the complete analysis of global stability of equilibria for a
discrete SIR epidemic model with a variation of the backward Euler discretization. On the other hand, for a continuous
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delayed SIS epidemic model which has the special property limt→+∞ N(t) = 1 for the total population N(t) = S(t)+I(t)
and can be transformed into a form of a delayed SIR epidemic model as in McCluskey [12], Huang and Takeuchi [7]
have fully solved the global asymptotic stability of a disease-free equilibrium and a unique endemic equilibrium by the
basic reproduction number of the model.

In this paper, in order to preserve key properties of Lyapunov functional techniques in Enatsu et al. [4] for discretiza-
tion, we use the backward Euler method on a continuous SIS epidemic model with immigration of infectives in Brauer
and van den Driessche [1]. Moreover, by means of a unified construction of discretized Lyapunov functions U0(n) and
U∗(n), we establish the global stability of the disease-free equilibrium E0 when R0 ≤ 1 and the endemic equilibrium E∗

when R0 > 1 for the discrete SIS epidemic model (1.7), respectively. This is just a discrete analogue of continuous SIS
epidemic model with immigration of infectives.
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