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Abstract. In this paper, we study the global dynamics of a delayed SIRS epidemic model for transmission of

disease with a class of nonlinear incidence rates of the form βS(t)
∫ h

0
f(τ)G(I(t− τ))dτ . Applying Lyapunov functional

techniques in the recent paper [Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an SIRS epidemic
model with distributed delays, accepted], we establish sufficient conditions of the rate of immunity loss for the global
asymptotic stability of an endemic equilibrium for the model. In particular, we offer a unified construction of Lyapunov
functionals for both cases of R0 ≤ 1 and R0 > 1, where R0 is the basic reproduction number.
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1 Introduction

In order to understand epidemiological patterns and control communicable diseases, we have obtained qualitative results
of stability analyses of epidemic models (see [1–23] and the references therein).

Mena Lorcat and Hethcote [15] formulated SIRS (Susceptible - Infected - Recovered - Susceptible) epidemic models,
which were initially applied to fit data for infectious diseases as regulators of laboratory population of mice.

In order to investigate the effect of the impermanent immunity of vector-borne diseases, many authors have now
carried out stability analysis of the equilibria for delayed SIRS epidemic models [16,20–23].

Recently, Nakata et al. [16] studied the following SIRS epidemic model with a bilinear incidence rate and distributed
delays, 

dS(t)

dt
= B − µS(t)− βS(t)

∫ h

0

f(τ)I(t− τ)dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)I(t− τ)dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t),

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered individuals at time t, respectively.
The positive constant B represents the birth rate of the population and the positive constant µ represents the death
rate of susceptible, infected and recovered individuals. The positive constant γ represents the recovery rate of infectives
and the nonnegative constant δ denotes the rate at which recovered individuals lose immunity and return to susceptible
class. The positive constant β is the contact rate between susceptible and infective individuals and h is a superior limit
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of incubation times. The incubation period distribution f(τ), which denotes the fraction of vector population in which

the time taken to become infectious is τ , is assumed to be continuous on [0, h] satisfying
∫ h

0
f(τ)dτ = 1 and f(τ) ≥ 0

for 0 ≤ τ ≤ h (see, e.g., [1, 2, 17]).
By applying Lyapunov functional techniques which is an extension of those in McCluskey [12, 13] and the property

that the total population of the system (1.1) converges to a positive constant, Nakata et al. [16] established that if
1 < R̃0 ≤ 1 + µ

γ , then a unique endemic equilibrium of system (1.1) is globally asymptotically stable for any δ ≥ 0,

where R̃0 = βB
µ(µ+γ) is the basic reproduction number of system (1.1). Otherwise, they offered sufficient conditions

0 ≤ δ ≤ µ
R̃0

1+
µ
γ
−1

such that the endemic equilibrium is globally asymptotically stable.

On the other hand, in modeling of those communicable diseases, nonlinear incidence rates have played a vital role in
ensuring that the model can give a reasonable qualitative description for the disease dynamics such as cholera epidemic
spread in Bari in 1973 (see, e.g., Capasso and Serio [3]).

Based on their idea, Xu and Ma [20] investigated the global dynamics for a delayed SIRS epidemic model with a

saturated incidence rate βS(t)I(t−τ)
1+αI(t−τ) and established the global stability of the disease-free equilibrium and a sufficient

condition under which the endemic equilibrium is globally asymptotically stable by applying monotone iterative tech-
niques on a limit system obtained from the fact that the total population N(t) = S(t) + I(t) + R(t) converges to a
positive constant (see Xu and Ma [20, Theorem 3.1]).

In this paper, by using the key properties of Lyapunov functional techniques in Nakata et al. [16], we establish the
global asymptotic stability of a disease-free equilibrium and sufficient conditions of the rate of immunity loss for the
global asymptotic stability of an endemic equilibrium for the following SIRS epidemic models with a class of nonlinear
incidence rates and distributed delays:

dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t),

dR(t)

dt
= γI(t)− (µ3 + δ)R(t).

(1.2)

and offer a unified construction of the Lyapunov functionals for both cases that the basic reproduction number is less
than or equal and larger than 1.

The initial condition of system (1.2) is given as follows.{
S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
ϕi(θ) ≥ 0, θ ∈ [−h, 0], ϕi(0) > 0, ϕi ∈ C([−h, 0],R+), i = 1, 2, 3.

(1.3)

For system (1.2), the positive constants µ1, µ2 and µ3 satisfying µ1 ≤ min{µ2, µ3} represent the death rate of
susceptible, infected and recovered individuals, respectively. For the incidence function G, we assume the following.

(H1) G(I) is continuous and monotone increasing on [0,+∞) with G(0) = 0.

(H2) I/G(I) is monotone increasing on (0,+∞) with lim
I→+0

(I/G(I)) = 1.

We note that G is Lipschitz continuous on [0,+∞) satisfying 0 < G(I) ≤ I for all I > 0. Under the hypotheses (H1)
and (H2), system (1.2) always has a disease-free equilibrium E0 = (S0, I0, R0), where S0 = B

µ1
and I0 = R0 = 0. In

addition, if R0 > 1, then system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗), where S∗ > 0, I∗ > 0 and
R∗ > 0 (see Lemma 2.2).

The basic reproduction number of system (1.2) becomes as follows.

R0 =
βB

µ1(µ2 + γ)
. (1.4)

1
µ2+γ denotes the average infection period and the relation that limI→+0

βS0G(I)
I = βS0 = β B

µ1
implies that β B

µ1
denotes

the number of new cases infected per unit time by one infective individual at an initial infection state. Thus, R0 denotes
the expected number of secondary infectious cases generated by one typical primary case in an entirely susceptible and
sufficiently large population.

If G(I) = I, then the incidence rate becomes a bilinear form, which is proposed in [23] for the case µ1 = µ3 = µ > 0,
µ2 = µ + c > 0, where c > 0 denotes the disease-related death rate and [16] for the case µ1 = µ2 = µ3 = µ > 0.
Moreover, if G(I) = I

1+αI , then the incidence rate describes saturated effects of the prevalence of infectious diseases,
which is proposed in [20] for the case µ1 = µ2 = µ3 = µ > 0.

Our main results are as follows.
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Theorem 1.1. Let R0 > 1. If

µ1S
∗ − δR∗ ≥ 0, (1.5)

then the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable. Moreover, (1.5) holds if the following
conditions are satisfied. 

0 ≤ δ < +∞, for 1 < R0 ≤ 1 + µ2

γ ,

0 ≤ δ ≤ δ :=
µ3

R0

1+
µ2
γ

− 1
, for R0 > 1 + µ2

γ . (1.6)

In particular, for the case G(I) = I, then (1.5) is equivalent to (1.6).

Theorem 1.2. If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable.

To prove Theorems 1.1 and 1.2, for E = (S, I,R) and N = S + I +R, we define

UE
δ (t) =



Sg
(

S(t)
S

)
+ Ig

(
I(t)
I

)
+ βSG(I)

∫ h

0
f(τ)

∫ t

t−τ
g
(

G(I(u))
G(I)

)
dudτ

+ δ
γS

(R(t)−R)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S

{N(t)−N+
µ2−µ1

γ (R(t)−R)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

Sg
(

S(t)
S

)
+ Ig

(
I(t)
I

)
+ βSG(I)

∫ h

0
f(τ)

∫ t

t−τ
g
(

G(I(u))
G(I)

)
dudτ

+ δ
γS

(R(t)−R)2

2 + δ
4µ1S

(N(t)−N)2

2 ,

if µ1 = µ2 = µ3,

(1.7)

where
N(t) = S(t) + I(t) +R(t), and g(x) = x− 1− lnx ≥ g(1) = 0. (1.8)

We offer a unified construction of Lyapunov functionals in the proofs of the global stability of the disease-free equilibrium
E0 for R0 ≤ 1 and the endemic equilibrium E∗ for R0 > 1, respectively as follows (see Section 4);

UE0

δ (t) := lim
E→E0

UE
δ (t), and UE∗

δ (t) := lim
E→E∗

UE
δ (t).

By using the relation

lim
x→+0

xg
(y
x

)
= y, for any fixed y > 0,

we obtain that, for N0 = S0 + I0 +R0 = S0 and N∗ = S∗ + I∗ +R∗,

UE0

δ (t) =



S0g
(

S(t)
S0

)
+ I(t) + βS0

∫ h

0
f(τ)

∫ t

t−τ
G(I(u))dudτ

+ δ
γS0

(R(t)−R0)
2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S0

{(N(t)−N0)+
µ2−µ1

γ (R(t)−R0)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

S0g
(

S(t)
S0

)
+ I(t) + βS0

∫ h

0
f(τ)

∫ t

t−τ
G(I(u))dudτ

+ δ
γS0

(R(t)−R0)
2

2 + δ
4µ1S0

(N(t)−N0)
2

2 ,

if µ1 = µ2 = µ3,

and

UE∗

δ (t) =



S∗g
(

S(t)
S∗

)
+ I∗g

(
I(t)
I∗

)
+ βS∗G(I∗)

∫ h

0
f(τ)

∫ t

t−τ
g
(

G(I(u))
G(I∗)

)
dudτ

+ δ
γS∗

(R(t)−R∗)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S∗

{(N(t)−N∗)+
µ2−µ1

γ (R(t)−R∗)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

S∗g
(

S(t)
S∗

)
+ I∗g

(
I(t)
I∗

)
+ βS∗G(I∗)

∫ h

0
f(τ)

∫ t

t−τ
g
(

G(I(u))
G(I∗)

)
dudτ

+ δ
γS∗

(R(t)−R∗)2

2 + δ
4µ1S∗

(N(t)−N∗)2

2 ,

if µ1 = µ2 = µ3.

The organization of this paper is as follows. In Section 2, some basic results are offered. In Section 3, we introduce
the essential ideas of Lyapunov functional technique in McCluskey [12]. In Section 4, we establish the global asymptotic
stability of the disease-free equilibrium E0 and the endemic equilibrium E∗ of system (1.2) for R0 ≤ 1 and R0 > 1,
respectively. Finally, we offer a conclusion in Section 5.
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2 Basic results

In this section, we state some basic results of system (1.2). Let µ̄ = max{µ2, µ3}.

Lemma 2.1. For system (1.2) with the initial condition (1.3),

lim sup
t→+∞

N(t) ≤ B

µ1
, lim inf

t→+∞
N(t) ≥ B

µ̄
, (2.1)

Proof. It follows from system (1.2) that

dN(t)

dt
= B − µ1S(t)− µ2I(t)− µ3R(t) ≤ B − µ1N(t),

from which we obtain the first equation of (2.1). Similarly, from

dN(t)

dt
≥ B − µ̄N(t), (2.2)

we obtain the second equation of (2.1). This completes the proof. □

Lemma 2.2. (Cf. Enatsu et al. [7]) If R0 > 1, then system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗)
satisfying the following equations.  B − µ1S

∗ − βS∗G(I∗) + δR∗ = 0,
βS∗G(I∗)− (µ2 + γ)I∗ = 0,
γI∗ − (µ3 + δ)R∗ = 0.

(2.3)

Proof. From the second and the third equations of (2.3), the following equations hold.

S∗ =
(µ2 + γ)I∗

βG(I∗)
, R∗ =

γI∗

µ3 + δ
. (2.4)

After substituting (2.4) into the first equation of (2.3), we consider the following equation:

H(I) ≡ B − µ1(µ2 + γ)I

βG(I)
− (µ2 + γ)I +

γδI

µ3 + δ
= 0.

By the hypothesis (H2), H(I) is a strictly monotone decreasing function on (0,+∞) satisfying

lim
I→+0

H(I) = B − µ1(µ2 + γ)

β
= B

(
1− 1

R0

)
> 0,

and H(I) < 0 holds for all I ≥ B/{µ2+γ(1− δ
µ3+δ )}. Hence, there exists a unique positive I∗ > 0 such that H(I∗) = 0.

By (2.4), we obtain the conclusion of this theorem. □

First, we prepare the following basic lemma.

Lemma 2.3. (Cf. Enatsu et al. [5]) Assume that I(s) ≤ I∗ for any s such that t− h ≤ s < t. If I(t) < I(s) for any s
such that t−h ≤ s < t then S(t) ≤ S∗. Inversely, if S(t) > S∗, then there exists an st ∈ [t−h, t) such that I(t) ≥ I(st).

Proof. Assume that I(t) < I(s) ≤ I∗ holds for any s such that t− h ≤ s < t. Then, by the monotonicity of I
G(I) in the

hypothesis (H2), we have

I ′(t) = βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t)

≥
∫ h

0

f(τ) {βS(t)G(I(t− τ))− (µ2 + γ)I(t− τ)} dτ

=

∫ h

0

f(τ)

{
βS(t)

G(I(t− τ))

I(t− τ)
− (µ2 + γ)

}
I(t− τ)dτ

≥
∫ h

0

f(τ)

{
βS(t)

G(I∗)

I∗
− (µ2 + γ)

}
I(t− τ)dτ

= β
G(I∗)

I∗
(S(t)− S∗)

∫ h

0

f(τ)I(t− τ)dτ.

Then, by I ′(t) ≤ 0, we hence obtain S(t) ≤ S∗. The remaining part of the proof is evident. □

By applying Lemma 2.3, we now offer a simplified proof for the permanence of system (1.2) than that of Wang [18]
(see also Xu and Ma [20]).
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Lemma 2.4. If R0 > 1, then for any solution of system (1.2) with initial condition (1.3), it holds that
lim inf
t→+∞

S(t) ≥ v1 :=
B

µ1 + βG(B/µ1)
> 0,

lim inf
t→+∞

I(t) ≥ v2(q) := qG(I∗)e−(µ2+γ)ρ(q) > 0,

lim inf
t→+∞

R(t) ≥ v3(q) :=
γ

µ3 + δ
v2(q) > 0,

where for any 0 < q < 1, ρ(q) > 0 is a constant such that

S∗ < S△ :=
B

r
(1− e−rρ(q)), and r = µ1 + βqG(I∗). (2.5)

Proof. Let (S(t), I(t), R(t)) be any solution of system (1.2) with initial condition (1.3). By Lemma 2.1, we have
lim supt→+∞ I(t) ≤ B/µ1. Hence, for ϵ > 0 sufficiently small, there is a T1 > 0 such that I(t) < B/µ1 + ϵ for t > T1.
Then, by the first equation of (1.2), we derive

dS(t)

dt
≥ B − {µ1 + βG(B/µ1 + ϵ)}S(t),

which implies

lim inf
t→+∞

S(t) ≥ B

µ1 + βG(B/µ1 + ϵ)
. (2.6)

Since (2.6) holds for arbitrary ϵ > 0, we get lim inft→+∞ S(t) = v1.
We now show that lim inft→+∞ I(t) ≥ v2(q) for any 0 < q < 1. It follows from (2.3) that S∗ = B+δR∗

µ1+βG(I∗) <
B

µ1+βqG(I∗) = B
r for any 0 < q < 1. Thus, there exists a positive constant ρ(q) such that (2.5) holds. We claim that it

is not possible that for any solution of system (1.2), there exists a nonnegative constant t0 such that I(t) ≤ qG(I∗) for
all t ≥ t0. Suppose on the contrary that there exists a nonnegative constant t0 such that I(t) ≤ qG(I∗) for all t ≥ t0.
Then, by the hypothesis (H1), G(I(t)) ≤ qG(I∗) holds for all t ≥ t0. This yields

dS(t)

dt
≥ B − (µ1 + βqG(I∗))S(t) = B − rS(t) for all t ≥ t0 + h,

which yields

S(t) ≥ e−r(t−t0)

(
S(t0) +B

∫ t

t0

er(θ−t0)dθ

)
≥ B

r
(1− e−r(t−t0))

for any t ≥ t0 + h. Therefore, we have

S(t) ≥ B

r
(1− e−rρ(q)) = S△ > S∗ (2.7)

for any t ≥ t0 + h + ρ(q). By the second part of Lemma 2.3, we obtain I ′(t) ≥ 0 and for any t ≥ t0 + h + ρ(q), there
exists an st ∈ [t− h, t) such that I(t) ≥ I(st). For a positive constant Î = mint0+ρ(q)≤s≤t0+h+ρ(q) I(s), we then have

I(t) ≥ Î for any t ≥ t0 + h+ ρ(q). (2.8)

We here consider the following functional.

W (t) = I(t) + β

∫ h

0

f(τ)

∫ t

t−τ

S(u+ τ)G(I(u))dudτ.

For t ≥ t0 + h+ ρ(q), we have

dW (t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t) + β

∫ h

0

f(τ){S(t+ τ)G(I(t))− S(t)G(I(t− τ))}dτ

= β

∫ h

0

f(τ)S(t+ τ)G(I(t))dτ − (µ2 + γ)I(t)

=

{
βS△G(I(t))

I(t)
− (µ2 + γ)

}
I(t)

>

{
βS△G(I∗)

I∗
− (µ2 + γ)

}
I(t)

> β(S△ − S∗)
G(I∗)

I∗
Î > 0,
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which implies limt→+∞ W (t) = +∞. However, by Lemma 2.1, it holds that lim supt→+∞ W (t) ≤ B
µ1

+β B
µ1
G( B

µ1
) < +∞.

This is a contradiction. Hence, the claim is proved.
By the claim, we are left to consider two cases. First, I(t) ≥ qG(I∗) for all t sufficiently large. Second, I(t) oscillates

about qG(I∗) for all t sufficiently large. If the first case holds, then we get the conclusion of the proof. If the second
case holds, then we can choose t1 and t2 (t1 < t2) sufficiently large such that

I(t1) = I(t2) = qG(I∗), and I(t) < qG(I∗)

for t1 < t < t2. Since
dI(t)
dt ≥ −(µ2 + γ)I(t) for t ≥ t1, we have

I(t) ≥ I(t1)e
−(µ2+γ)(t−t1) ≥ qG(I∗)e−(µ2+γ)(t−t1)

for any t ≥ t1. Therefore, we obtain
I(t) ≥ qG(I∗)e−(µ2+γ)ρ(q) = v2(q)

for t1 ≤ t ≤ t1 + ρ(q). If t2 ≥ t1 + ρ(q), then by applying the similar discussion to (2.7) and (2.8) in place of t0 by t1, we
obtain I(t) ≥ v2(q) for t1 + ρ(q) ≤ t ≤ t2. Hence, we prove I(t) ≥ v2(q) for t1 ≤ t ≤ t2. Since the interval t1 ≤ t ≤ t2
is arbitrarily chosen, we conclude that I(t) ≥ v2(q) for all sufficiently large. Since q is also arbitrarily chosen, Thus, we
obtain lim inft→+∞ I(t) ≥ v2(q), which implies lim inft→+∞ R(t) ≥ v3(q). This completes the proof. □

By Lemmas 2.1 and 2.4, we obtain the permanence of system (1.2) for R0 > 1.

3 Lyapunov functional techniques for a delayed SIR epidemic model

In this section, we consider the case δ = 0 for system (1.2). Then system (1.2) becomes an SIR epidemic model with a
class of nonlinear incidence rates and distributed delays as follows.

dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ,

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t),

dR(t)

dt
= γI(t)− µ3R(t).

(3.1)

We consider the following Lyapunov functionals. UE0

0 (t) = S0g
(

S(t)
S0

)
+ I(t) + βS0

∫ h

0
f(τ)

∫ t

t−τ
G(I(u))dudτ,

UE∗

0 (t) = S∗g
(

S(t)
S∗

)
+ I∗g

(
I(t)
I∗

)
+ βS∗G(I∗)

∫ h

0
f(τ)

∫ t

t−τ
g
(

G(I(u))
G(I∗)

)
dudτ.

(3.2)

We introduce essential ideas of the global stability of the endemic equilibrium E∗ of (3.1) for R0 > 1 in McCluskey [12].
For a fixed 0 ≤ τ ≤ h, we put

xt =
S(t)

S∗ , yt =
I(t)

I∗
, ỹt =

G(I(t))

G(I∗)
, ỹt,τ =

G(I(t− τ))

G(I∗)
.

Then, we obtain

d

dt

{
g

(
S(t)

S∗

)}
=

(
1

S∗ − 1

S(t)

){
B − µ1S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ

}
=

S(t)− S∗

S∗S(t)

{
B − µ1S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ

}
. (3.3)

Substituting B = µ1S
∗ + βS∗G(I∗) in (3.3),

d

dt

{
g

(
S(t)

S∗

)}
=

S(t)− S∗

S∗S(t)

{
(µ1S

∗ + βS∗G(I∗))− µ1S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ

}
=

S(t)− S∗

S∗S(t)

{
−µ1(S(t)− S∗) + β

∫ h

0

f(τ)(S∗G(I∗)− S(t)G(I(t− τ)))dτ

}
= −µ1

(
1− S∗

S(t)

)(
S(t)

S∗ − 1

)
+ βG(I∗)

∫ h

0

f(τ)

(
1− S∗

S(t)

)(
1− S(t)

S∗
G(I(t− τ))

G(I∗)

)
dτ

= −µ1

(
1− 1

xt

)
(xt − 1) + βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt

)
(1− xtỹt,τ ) dτ. (3.4)
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Similar to the above discussion, by the relation µ2 + γ = βS∗G(I∗)
I∗ , we have

d

dt

{
g

(
I(t)

I∗

)}
=

I(t)− I∗

I∗I(t)

{
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t)

}
=

I(t)− I∗

I∗I(t)

{
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − βS∗G(I∗)

I∗
I(t)

}
= βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− I∗

I(t)

)(
S(t)

S∗
G(I(t− τ))

G(I∗)
− I(t)

I∗

)
dτ

= βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− 1

yt

)
(xtỹt,τ − yt)dτ. (3.5)

Finally, we obtain

d

dt

{∫ h

0

f(τ)

∫ t

t−τ

g

(
G(I(u))

G(I∗)

)
dudτ

}
=

∫ h

0

f(τ)(g(ỹt)− g(ỹt,τ ))dτ.

The following lemma plays an important role to apply techniques of equation deformation in McCluskey [12] to the
global stability analysis for the endemic equilibria of system (1.2).

Lemma 3.1. If R0 > 1, then it holds that(
1− 1

xt

)
(1− xtỹt,τ ) +

(
1− 1

yt

)
(xtỹt,τ − yt) = −g

(
1

xt

)
− g

(
xtỹt,τ
yt

)
− (g(yt)− g(ỹt,τ )). (3.6)

Proof. We have(
1− 1

xt

)
(1− xtỹt,τ ) +

(
1− 1

yt

)
(xtỹt,τ − yt) =

(
1− 1

xt
− xtỹt,τ + ỹt

)
+

(
xtỹt,τ − xtỹt,τ

yt
− yt + 1

)
= 2− 1

xt
+ ỹt,τ − xtỹt,τ

yt
− yt

= −g

(
1

xt

)
− g

(
xtỹt,τ
yt

)
− (g(yt)− g(ỹt,τ )).

This completes the proof. □

By Lemma 3.1, the time derivative of UE∗

0 (t) along the solution of system (3.1) becomes as follows.

dUE∗

0 (t)

dt
= −µ1S

∗ (xt − 1)2

xt
− βS∗G(I∗)

∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)
+ (g(yt)− g(ỹt))

}
dτ.

In order to show
dUE∗

0 (t)
dt ≤ 0, we need the following lemma.

Lemma 3.2. If R0 > 1, then for all t ≥ 0,

g(yt)− g(ỹt) ≥
G(I(t))−G(I∗)

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
≥ 0.

Proof. First, we have ỹt − 1 = G(I(t))−G(I∗)
G(I∗) and

yt − ỹt =
I(t)

I∗
− G(I(t))

G(I∗)
=

G(I(t))

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
.

Since g′(x) = 1− 1
x = x−1

x and g′′(x) = 1
x2 > 0 for all x > 0, by the hypotheses (H1) and (H2), we obtain

g(yt)− g(ỹt) ≥
ỹt − 1

ỹt
(yt − ỹt) =

G(I(t))−G(I∗)

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
≥ 0.

Thus, we get the conclusion of this lemma. □

By Lemma 3.2, we obtain
dUE∗

0 (t)
dt ≤ 0. From the permanence result in Lemmas 2.1 and 2.4, by applying LaSalle

invariance principle [11, Corollary 5.2], the endemic equilibrium E∗ of system (3.1) is globally asymptotically stable.
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Similar to the case R0 > 1, for R0 ≤ 1, we obtain

d

dt

{
g

(
S(t)

S0

)}
=

S(t)− S0

S0S(t)

{
−µ1(S(t)− S0)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ

}
. (3.7)

Then, we have

dUE0

0 (t)

dt
= −µ1

(S(t)− S0)2

S(t)
− β(S(t)− S0)

∫ h

0

f(τ)G(I(t− τ))dτ

+βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ2 + γ)I(t) + βS0

∫ h

0

f(τ) {G(I(t))−G(I(t− τ))} dτ

= −µ1
(S(t)− S0)2

S(t)
+
{
βS0G(I(t))− (µ2 + γ)I(t)

}
= −µ1

(S(t)− S0)2

S(t)
+ (µ2 + γ)

(
R0

G(I(t))

I(t)
− 1

)
I(t)

≤ −µ1
(S(t)− S0)2

S(t)
+ (µ2 + γ)(R0 − 1)I(t) ≤ 0.

By applying Lyapunov-LaSalle asymptotic stability theorem [11, Theorem 5.3], the disease-free equilibrium E0 of system
(3.1) is globally asymptotically stable. Summarizing the above discussion, we obtain the following result.

Corollary 3.1. (See McCluskey [12,13]) The following statement holds true.

(I) If R0 ≤ 1, then the disease-free equilibrium E0 of system (3.1) is globally asymptotically stable.

(II) If R0 > 1, then the endemic equilibrium E∗ of system (3.1) is globally asymptotically stable.

The results in Corollary 3.1 plays an important role to extend the global stability results for the case δ = 0 to those
for the case δ ≥ 0. Recently, the similar global stability results for delayed SIR epidemic models with a wider class
of nonlinear incidence rates are obtained in [6, 8, 9, 14]. We note that the differentiability of the incidence function as
imposed in [8, 9, 14] is no longer needed. In addition, the inequality estimation in Lemma 3.2 is also extended in the
Lyapunov functional techniques for a delayed SIRS model with a nonseparable incidence rate in Enatsu et al. [7].

4 Proofs of Theorems 1.1 and 1.2

In this section, by applying Lyapunov functional techniques for the SIR epidemic model (3.1) in Section 3, we prove
Theorems 1.1 and 1.2.

First, we consider the case R0 > 1 and prove Theorem 1.1. In addition to the notations in (3.3), we put

zt =
R(t)

R∗ , nt =
N(t)

N∗ .

The following lemma also plays an important role as in Nakata et al. [16].

Lemma 4.1. Let R0 > 1. Then it holds that(
1− 1

xt

)
(zt − 1)− (zt − 1)(xt − 1) =

(
1− 1

xt

)
(1− xt)(zt − 1) = − (xt − 1)2

xt
(zt − 1). (4.1)

Lemma 4.2. Let R0 > 1. Then (1.5) holds if (1.6) holds. In particular, for the case G(I) = I, then (1.5) is equivalent
to (1.6).

Proof. From (2.3), I∗ satisfies the following equation.

β{µ3(µ2 + γ) + µ2δ}
µ3 + δ

I∗ + µ1(µ2 + γ)
I∗

G(I∗)
= βB. (4.2)

From the hypothesis (H2), we have

I∗ =
µ3 + δ

β{µ3(µ2 + γ) + µ2δ}

{
βB − µ1(µ2 + γ)

I∗

G(I∗)

}
≤ µ3 + δ

β{µ3(µ2 + γ) + µ2δ}
{βB − µ1(µ2 + γ)}

=
µ1(µ2 + γ)(µ3 + δ)

β{µ3(µ2 + γ) + µ2δ}
(R0 − 1) . (4.3)
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Therefore, from (1.6) and (4.3), we obtain

µ1S
∗ − δR∗ = µ1

(µ2 + γ)(µ3 + δ)R∗

βγG(I∗)
(µ2 + γ)(µ3 + δ)− δR∗

=
R∗

βγG(I∗)
{µ1(µ2 + γ)(µ3 + δ)− βγδG(I∗)}

≥ R∗

βγG(I∗)
{µ1(µ2 + γ)(µ3 + δ)− βγδI∗}

≥ R∗

βγG(I∗)

{
µ1(µ2 + γ)(µ3 + δ)− γδ

µ1(µ2 + γ)(µ3 + δ)

µ3(µ2 + γ) + µ2δ
(R0 − 1)

}
=

R∗

βγG(I∗)

[
µ1(µ2 + γ)2(µ3 + δ)

µ3(µ2 + γ) + µ2δ

{
µ3 − δ

(
R0

1 + µ2

γ

− 1

)}]
≥ 0.

From the above discussion, it is obvious that (1.5) is equivalent to (1.6) for G(I) = I. This completes the proof. □

Proof of Theorem 1.1. We consider the following Lyapunov functional.

UE∗

δ (t) =


UE∗

0 (t) + δ
γS∗

(R(t)−R∗)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S∗

{(N(t)−N∗)+
µ2−µ1

γ (R(t)−R∗)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

UE∗

0 (t) + δ
γS∗

(R(t)−R∗)2

2 + δ
4µ1S∗

(N(t)−N∗)2

2 ,

if µ1 = µ2 = µ3,

where UE∗

0 (t) is defined in (3.2). First, by Lemma 3.1, the time derivative of UE∗

0 (t) along the solution of system (1.2)
becomes as follows.

dUE∗

0 (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(
1− 1

xt

)
(zt − 1)−

∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)
+ g(yt)− g(ỹt)

}
dτ. (4.4)

Second, by I(t) = N(t)− S(t)−R(t), calculating the time derivatives of δ
γS∗

(R(t)−R∗)2

2 gives

d

dt

{
δ

γS∗
(R(t)−R∗)2

2

}
=

δ

γS∗ (R(t)−R∗) {γI(t)− (µ3 + δ)R(t)}

=
δ

γS∗ (R(t)−R∗) {γ (N(t)− S(t)−R(t))− (µ3 + δ)R(t)}

=
δ

γS∗ (R(t)−R∗) {γ(N(t)−N∗)− γ(S(t)− S∗)− (µ3 + γ + δ)(R(t)−R∗)}

=
δR∗N∗

S∗ (zt − 1)(nt − 1)− δR∗(zt − 1)(xt − 1)− δ(µ3 + γ + δ)(R∗)2

γS∗ (zt − 1)2. (4.5)
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For the first case either µ1 < µ2 or µ1 < µ3, by S(t) = N(t)− I(t)−R(t), we obtain

d

dt

{{(N(t)−N∗) + µ2−µ1

γ (R(t)−R∗)}2

2

}
=

{
(N(t)−N∗) +

µ2 − µ1

γ
(R(t)−R∗)

}{
B − µ1S(t)− µ2I(t)− µ3R(t)− µ2 − µ1

γ
(γI(t)− µ3R(t))

}
=

{
(N(t)−N∗) +

µ2 − µ1

γ
(R(t)−R∗)

}
×
{
B − µ1(N(t)− I(t)−R(t))− µ2I(t)− µ3R(t)− µ2 − µ1

γ
(γI(t)− µ3R(t))

}
=

{
(N(t)−N∗) +

µ2 − µ1

γ
(R(t)−R∗)

}
×
{
B − µ1N(t)− (µ2 − µ1)I(t)− (µ3 − µ1)R(t)− µ2 − µ1

γ
(γI(t)− (µ3 + δ)R(t))

}
=

{
(N(t)−N∗) +

µ2 − µ1

γ
(R(t)−R∗)

}[
B − µ1N(t)−

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ
R(t)

}]
=

{
(N(t)−N∗) +

µ2 − µ1

γ
(R(t)−R∗)

}
×
[
−µ1(N(t)−N∗)−

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ

}
(R(t)−R∗)

]
.

= −µ1(N
∗)2(nt − 1)2 −

{
(µ3 − µ1) +

(µ2 − µ1)(µ1 + µ3 + δ)

γ

}
N∗R∗(nt − 1)(zt − 1)

−µ2 − µ1

γ

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ

}
(R∗)2(zt − 1)2. (4.6)

Combining (4.4), (4.5) and (4.6), we have

dUE∗

δ (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(
1− 1

xt

)
(zt − 1)

+
δR∗N∗

S∗ (zt − 1)(nt − 1)− δR∗(zt − 1)(xt − 1)− δ(µ3 + γ + δ)(R∗)2

γS∗ (zt − 1)2

− µ1δγ(N
∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (nt − 1)2 − δN∗R∗

S∗ (nt − 1)(zt − 1)

−δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (zt − 1)2

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)
+ g(yt)− g(ỹt)

}
dτ. (4.7)

By the condition (1.5) and Lemma 4.1, we have

dUE∗

δ (t)

dt
= −(µ1S

∗ + δ(R(t)−R∗))
(xt − 1)2

xt

− µ1δγ(N
∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (nt − 1)2

−
{
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ +
δ(µ3 + γ + δ)(R∗)2

γS∗

}
(zt − 1)2

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)
+ g(yt)− g(ỹt)

}
dτ

≤ − µ1δγ(N
∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (nt − 1)2

−
{
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ +
δ(µ3 + γ + δ)(R∗)2

γS∗

}
(zt − 1)2

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)}
dτ. (4.8)
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For the second case µ1 = µ2 = µ3, by S∗ + I∗ +R∗ = B/µ1, we obtain

d

dt

{
δ

4µ1S∗
(N(t)−N∗)2

2

}
=

δ

4µ1S∗ (N(t)−N∗)(B − µ1N(t)) = − δ

4S∗ (N(t)−N∗)2. (4.9)

Combining (4.4), (4.5) and (4.9), we have

dUE∗

δ (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(
1− 1

xt

)
(zt − 1)− δR∗(zt − 1) (xt − 1)

−δ(R∗)2

S∗ (zt − 1)2 +
δR∗N∗

S∗ (zt − 1)(nt − 1)− δ(N∗)2

4S∗ (nt − 1)2

−βS∗G(I∗)

∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtyt,τ
yt

)
+ g (yt)− g (ỹt)

}
dτ − δ(R∗)2

γS∗ (µ+ δ)(zt − 1)2.

By the condition (1.5) and Lemma 4.1, we obtain

dUE∗

δ (t)

dt
=− (µ1S

∗ + δ(R(t)−R∗))
(xt − 1)2

xt
− δ

S∗

{
R∗(zt − 1)− N∗

2
(nt − 1)

}2

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)
+ g(yt)− g(ỹt)

}
dτ − δ(R∗)2

γS∗ (µ+ δ)(zt − 1)2

≤− δ

S∗

{
R∗(zt − 1)− N∗

2
(nt − 1)

}2

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt,τ
yt

)}
dτ − δ(R∗)2

γS∗ (µ+ δ)(zt − 1)2.

(4.10)

From (4.8) and (4.10), for the both cases, we obtain dUE∗
(t)

dt ≤ 0 for all t > 0 with equality if and only if S(t) = S∗,
R(t) = R∗. This implies limt→+∞ S(t) = S∗, limt→+∞ R(t) = R∗, that is limt→+∞ I(t) = I∗ holds. By an extension of
LaSalle invariance principle (see also Kuang [11, Corollary 5.2]), the endemic equilibrium E∗ is globally asymptotically
stable. This completes the proof. □

Proof of Theorem 1.2. We consider the following Lyapunov functional.

UE0

δ (t) =


UE0

0 (t) + δ
γS0

(R(t)−R0)
2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S0

{(N(t)−N0)+
µ2−µ1

γ (R(t)−R0)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

UE0

0 (t) + δ
γS0

(R(t)−R0)
2

2 + δ
4µ1S0

(N(t)−N0)
2

2 ,

if µ1 = µ2 = µ3,

where UE0

0 (t) is defined in (3.2). First, the time derivative of UE0

0 (t) along the solution of system (1.2) becomes

dUE0

0 (t)

dt
= −µ1

(S(t)− S0)2

S(t)
+ (µ2 + γ)

(
R0

G(I(t))

I(t)
− 1

)
I(t) + δ

(
1− S0

S(t)

)
(R(t)−R0). (4.11)

Second, calculating the time derivatives of δ
γS0

(R(t)−R0)2

2 gives

d

dt

{
δ

γS0

(R(t)−R0)2

2

}
=

δ

γS0
(R(t)−R0)

{
γI(t)− (µ3 + δ)(R(t)−R0)

}
=

δ

γS0
(R(t)−R0)

{
γ (N(t)− S(t)−R(t))− (µ3 + δ)(R(t)−R0)

}
=

δ

γS0
(R(t)−R0)

{
γ(N(t)−N0)− γ(S(t)− S0)− (µ3 + γ + δ)(R(t)−R0)

}
=

δ

S0
R(t)(N(t)−N0)− δ(R(t)−R0)

(
S(t)

S0
− 1

)
− δ(µ3 + γ + δ)

γS0
(R(t)−R0)2.(4.12)
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For the first case either µ1 < µ2 or µ1 < µ3, similar to (4.6), we obtain

d

dt

{{(N(t)−N0) + µ2−µ1

γ

(
R(t)−R0

)
}2

2

}
=

{
(N(t)−N0) +

µ2 − µ1

γ

(
R(t)−R0

)}{
B − µ1S(t)− µ2I(t)− µ3R(t)− µ2 − µ1

γ
(γI(t)− µ3R(t))

}
=

{
(N(t)−N0) +

µ2 − µ1

γ

(
R(t)−R0

)}
×
{
B − µ1(N(t)− I(t)−R(t))− µ2I(t)− µ3R(t)− µ2 − µ1

γ
(γI(t)− µ3R(t))

}
=

{
(N(t)−N0) +

µ2 − µ1

γ

(
R(t)−R0

)}
×
{
B − µ1N(t)− (µ2 − µ1)I(t)− (µ3 − µ1)R(t)− µ2 − µ1

γ
(γI(t)− (µ3 + δ)R(t))

}
=

{
(N(t)−N0) +

µ2 − µ1

γ

(
R(t)−R0

)}[
B − µ1N(t)−

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ
R(t)

}]
=

{
(N(t)−N0) +

µ2 − µ1

γ

(
R(t)−R0

)}
×
[
−µ1(N(t)−N0)−

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ

}
(R(t)−R0)

]
= −µ1(N(t)−N0)2 −

{
(µ3 − µ1) +

(µ2 − µ1)(µ1 + µ3 + δ)

γ

}
(N(t)−N0)

(
R(t)−R0

)
−µ2 − µ1

γ

{
(µ3 − µ1) +

(µ2 − µ1)(µ3 + δ)

γ

}(
R(t)−R0

)2
. (4.13)

Combining (4.11), (4.12) and (4.13), we have

dUE0

δ (t)

dt
= −µ1

(S(t)− S0)2

S(t)
+ (µ2 + γ)

(
R0

G(I(t))

I(t)
− 1

)
I(t) + δ

(
1− S0

S(t)

)
(R(t)−R0)

+
δ

S0
(R(t)−R0)(N(t)−N0)− δ(R(t)−R0)

(
S(t)

S0
− 1

)
− δ(µ3 + γ + δ)

γS0
(R(t)−R0)2

− µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0
(N(t)−N0)2 − δ

S0
(N(t)−N0)(R(t)−R0)

−δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}
γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0

(R(t)−R0)2.

Similar to Lemma 4.1, we use the following equation (see [16]).(
1− S0

S(t)

)
(R(t)−R0)− (R(t)−R0)

(
S(t)

S0
− 1

)
=

(
1− S0

S(t)

)(
1− S(t)

S0

)
(R(t)−R0) = − (S(t)− S0)2

S0S(t)
R(t) ≤ 0.

Then we obtain

dUE0

δ (t)

dt
= −(µ1S

0 + δR(t))
(S(t)− S0)2

S0S(t)
+ (µ2 + γ)

(
R0

G(I(t))

I(t)
− 1

)
I(t)

− µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (N(t)−N0)2

−δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}
γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0

(R(t)−R0)2

≤ −(µ1S
0 + δR(t))

(S(t)− S0)2

S0S(t)
+ (µ2 + γ)(R0 − 1)I(t)

− µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗ (N(t)−N0)2

−δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}
γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0

(R(t)−R0)2.

12



For the second case µ1 = µ2 = µ3, similar to (4.9), we obtain

d

dt

{
δ

4µ1S0

(N(t)−N0)2

2

}
= − δ

4S0
(N(t)−N0)2. (4.14)

By (4.14), we obtain

dUE0

δ (t)

dt
= −(µ1S

0 + δR(t))
(S(t)− S0)2

S0S(t)
+ (µ2 + γ)

(
R0

G(I(t))

I(t)
− 1

)
I(t)

− δ

S0
R(t)2 +

δ

S0
R(t)(N(t)−N0)− δ

4S0
(N(t)−N0)2 − δ(µ3 + δ)

γS0
R(t)2

≤ −(µ1S
0 + δR(t))

(S(t)− S0)2

S0S(t)
+ (µ2 + γ)(R0 − 1)I(t)

− δ

S0

{
R(t)− (N(t)−N0)

2

}2

− δ(µ3 + δ)

γS0
R(t)2. (4.15)

From (4.14) and (4.15), for the both cases, we obtain
dUE0

δ (t)
dt ≤ 0 for all t > 0 with equality if and only if S(t) = S0,

R(t) = R0 and N(t) = N0. Therefore, we have limt→+∞ S(t) = S0, limt→+∞ R(t) = R0 and limt→+∞ N(t) = N0, which
imply that limt→+∞ I(t) = I0 holds. By an extension of LaSalle invariance principle (see also Kuang [11, Corollary
5.2]), the disease-free equilibrium E0 is globally asymptotically stable. From Lemma 4.2, the proof is complete. □

5 Conclusion

To investigate global behavior of disease prevalence has played a vital role to predict the dynamics of the disease
transmission in the long run and take more efficient control measures such as vaccination for immunization in the
communicable diseases.

In this paper, by applying deformation techniques of the time deriavtive of Lyapunov functionals in Nakata et al. [16]

(see Lemma 4.1) and constructing a Lyapunov functional UE0

δ (resp. UE∗

δ ) for R0 ≤ 1 (resp. R0 > 1), we established the
global asymptotic stability of the disease-free equilibrium E0 (resp. the endemic equilibrium E∗) of an SIRS epidemic
model with a class of nonlinear incidence rates and distributed delays for R0 ≤ 1 (resp. R0 > 1).

Our model incorporates the assumption that the death rates of susceptible, infective and recovered individuals is
different each other and the monotone properties of G(I) and I/G(I) in (H1) and (H2) are satisfied when considering
a class of nonlinear incidence rates which describes saturation effects observed in the literature of epidemiology [3].
Theorems 1.1 and 1.2 show that, if R0 ≤ 1, then the diseases transmission with impermanent immunity will eventually
disappear, and if R0 > 1, then the diseases will be permanent. Furthermore, without imposing any restriction on the
size of a latent period h, if the basic reproduction number R0 lies in an interval (1, 1 + µ2/γ], then the disease will
equilibrate at an endemic steady state for any rate of immunity loss δ and otherwise, we establish the maximal rate of
immunity loss δ which guarantees the global stability of the endemic steady state.
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