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1 Introduction

Multi-group epidemic models have been studied in the literature of mathematical epidemiology to describe transmission
dynamics of various infectious diseases such as measles, mumps, gonorrhea, West-Nile virus and HIV/AIDS. A hetero-
geneous host population can be divided into several homogeneous groups according tomodes of transmission, contact
patterns, or geographic distributions, so that within-group and inter-group interactions could be modeled separately.

There are several group models, see, e.g., patch models [1,25] and as transport-related models [14,15,18] and references
therein. In 2006, Guo et al. [8] have first succeeded to establish the complete global dynamics for a multi-group SIR
model, by making use of the theory of non-negative matrices, Lyapunov functions and a subtle grouping technique in
estimating the derivatives of Lyapunov functions guided by graph theory.

However, some researchers on multi-group SIR epidemic models, commonly follow this research approach to analyze
the global stability of various multi-group SIR epidemic models. On the other hand, recently, Nakata et al. [19] and
Enatsu et al. [6] proposed a simple idea to extend Lyapunov functional techniques in McCluskey [16] for SIR epidemic
models to SIRS epidemic models, and Muroya et al. [17] succeeded to prove the global stability for a class of multi-group
SIR epidemic models without use of the grouping technique by graph theory in Guo et al. [8].

Motivated by these facts, we are interested in the global stability of the following multi-group SIRS epidemic model
which has cross patch infection between different groups:

dSk

dt
= bk − µk1Sk − Sk

( n∑
j=1

βkjIj

)
+ δRk,

dIk
dt

= Sk

( n∑
j=1

βkjIj

)
− (µk2 + γk)Ik,

dRk

dt
= γkIk − (µk3 + δk)Rk, k = 1, 2, · · · , n.

(1.1)
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Sk(t), Ik(t) and Rk(t), k = 1, 2, . . . , n denote the numbers of susceptible, infected and recovered individuals in city k at
time t, respectively. bk, k = 1, 2, . . . , n is the recruitment rate of the population, µki, i = 1, 2, 3 is the natural death rates
of susceptible, infected and recovered individuals in city k, k = 1, 2, . . . , n, and γk denotes the natural recovery rate of
the infected individuals in city k, k = 1, 2, . . . , n, respectively. Functions describing the dynamics within city k of each
population of individuals, might involve all populations of individuals that are present in each city. We suppose that
there are no between-city interactions and two cities are connected by the direct transport such as airplanes. Therefore,
for the model (1.1), the only input is the recruitment. Moreover, not only for infective individuals Ik in city k, disease
is transmitted to the susceptible individuals Sk by the incidence rate βkkSkIk with a transmission rate βkk, but also we
consider cross patch infection between different groups such that for each Ij , j ̸= k who travel from other city j into
city k, disease is transmitted by the incidence rate βkjSkIj with a transmission rate βkj .

The initial conditions of system (1.1) take the form

Sk(0) = ϕk
1 > 0, Ik(0) = ϕk

2 > 0, Rk(0) = ϕk
3 > 0, k = 1, 2, . . . , n (1.2)

By the biological meanings, we may assume that

µk1 ≤ min(µk2, µk3), k = 1, 2, . . . , n. (1.3)

Moreover, for simplicity in this paper, we assume that

the n× n matrix B = (βkj)n×n is irreducible, (1.4)

that is, an infected individual in the first group can cause infection to a susceptible individual in the second group
through an infection path. Put

R̃0 = ρ(M̃(S0)), (1.5)

where the positive n-column vector S0 = (S0
1 , S

0
2 , . . . , S

0
n)

T = (b1/µ11, b2/µ21, . . . , bn/µn1)
T and ρ(M̃(S0)) denotes a

spectral radius of the matrix M̃(S0) defined by

M̃(S0) =

(
βkjS

0
k

µk2 + γk

)
n×n

. (1.6)

Observe that if δk = 0, k = 1, 2, . . . , n, then the variables Rk, k = 1, 2, . . . , n do not appear in (1.1) and hence, in this
case, we may consider only the reduced system for Sk and Ik, k = 1, 2, . . . , n as follows.

dSk

dt
= bk − µk1Sk − Sk

( n∑
j=1

βkjIj

)
,

dIk
dt

= Sk

( n∑
j=1

βkjIj

)
− (µk2 + γk)Ik.

(1.7)

For system (1.7), the result of Guo et al. [8] is as follows.

Theorem A For (1.7), assume that µk1 ≤ µk2, k = 1, 2, . . . , n and (1.4) holds. Then, for R̂0 ≤ 1, the disease-free

equilibrium Ê0 = (Ŝ0
1 , 0, Ŝ

0
2 , 0, . . . , Ŝ

0
n, 0) of system (1.7) is globally asymptotically stable in Γ̂, and for R̂0 > 1, there

exists an endemic equilibrium Ê∗ = (Ŝ∗
1 , Î

∗, Ŝ∗
2 , Î

∗
2 , . . . , Ŝ

∗
n, Î

∗
n) of system (1.1) (see [5]) which is globally asymptotically

stable in Γ̂0, where Γ̂0 is the interior of the feasible region Γ̂ defined by

Γ̂ =

{
(S1, I1, S2, I2, . . . , Sn, In) ∈ R2n

+0

∣∣∣ Sk ≤ bk
µk1

, Sk + Ik ≤ bk
µk1

, k = 1, 2, . . . , n

}
,

and Rm
+0 = {(x1, . . . , xm) : xk ≥ 0, k = 1, 2, . . . ,m}. The main theorem in this paper is as follows.

Theorem 1.1. For system (1.1), assume that (1.3) and (1.4) hold. Then, for R̃0 ≤ 1, the disease-free equilibrium
E0 = (S0

1 , 0, 0, S
0
2 , 0, 0, . . . , S

0
n, 0, 0) is globally asymptotically stable in Γ, and for R̃0 > 1, system (1.1) is uniformly

persistent in Γ0 and there exists at least one endemic equilibrium E∗ = (S∗
1 , I

∗
1 , R

∗
1, S

∗
2 , I

∗
2 , R

∗
2, . . . , S

∗
n, I

∗
n, R

∗
n) in Γ0,

where Γ0 is the interior of the feasible region Γ defined by

Γ =

{
(S1, I1, R1, S2, I2, R2, . . . , Sn, In, Rn) ∈ R3n

+

∣∣∣ Sk ≤ S0
k, Sk + Ik +Rk ≤ bk

µk1
, k = 1, 2, . . . , n

}
. (1.8)

Moreover, for R̃0 > 1, if
µk1S

∗
k − δkR

∗
k ≥ 0, for any k = 1, 2, . . . , n, (1.9)

then E∗ is globally asymptotically stable in Γ0.
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The organization of this paper is as follows. In order to prove Theorem 1.1, we consider the reduced system of (1.1).
In Section 2, we offer eventual boundedness of the solutions. In Section 3, following the proof techniques in Guo et al. [8],
we similarly prove the global asymptotic stability of the disease-free equilibrium for R̃0 ≤ 1 and uniform persistence
and the existence of the endemic equilibrium E∗ of system (1.1) for R̃0 > 1 (see Proposition 3.1 and Corollary 3.1). In
Section 4, for R̃0 > 1, using Lyapunov function techniques, under the condition (1.9), we prove the global asymptotic
stability of the endemic equilibrium of (1.1).

2 Positiveness and eventual boundedness

In this section, we consider positiveness and eventual boundedness of solutions of (1.1). Let S0 = (S0
1 , S

0
2 , . . . , S

0
n)

T =
(b1/µ11, b2/µ21, . . . , bn/µn1)

T be a positive n-column vector and Nk = Sk + Ik + Rk be the total population in city
k, k = 1, 2, . . . , n. Then, we have the following lemma:

Lemma 2.1. It holds that

Sk(t) > 0, Ik(t) > 0, Rk(t) > 0, for any k = 1, 2, . . . , n and t ≥ 0, (2.1)

and under the condition (1.3),
lim sup
t→+∞

Nk(t) ≤ S0
k, k = 1, 2, . . . , n (2.2)

holds.

Proof. First, by (1.2), we have Sk(0) > 0, Ik(0) > 0 and Rk(0) > 0 for any k = 1, 2, . . . , n. Suppose that there exist a
positive t1 and a positive integer k1 such that Sk1(t1) = 0 and Sk(t) > 0, Ik(t) > 0, Rk(t) > 0 for any k = 1, 2, . . . , n and
0 ≤ t < t1. However, by (1.1), we have d

dtSk1(t1) ≥ bk1 > 0, which is a contradiction to the fact that Sk1(t) > 0 = Sk1(t1)
for any 0 ≤ t < t1. Similarly, suppose that there exists a positive t2 such that there exists a positive integer k2 such
that Ik2(t2) = 0 and Sk(t) > 0, Ik(t) > 0, Rk(t) > 0 for any k = 1, 2, . . . , n and 0 ≤ t < t2. But by (1.1), we have that
d
dtIk2(t2) ≥ 0, which is a contradiction to the fact that Sk2(t) > 0 = Sk2(t2) for any 0 ≤ t < t2. Similarly, we can obtain
the similar result for Rk(t). Thus, we obtain (2.1).

By (1.1) and (1.3), we have

d

dt
Nk(t) =

d

dt
{Sk(t) + Ik(t) +Rk(t)} = bk − µk1Sk(t)− µk2Ik(t)− µk3Rk(t)} ≤ bk − µk1Nk(t), k = 1, 2, . . . , n,

from which we obtain (2.2). □

3 Global stability of the disease-free equilibrium E0 for R̃0 ≤ 1

We can obtain the following proposition, whose proof is similar to that of Guo et al. [8, Proposition 3.1] (see the proof
of Proposition 3.1 in Appendix).

Proposition 3.1. (1) If R̃0 ≤ 1, then the disease-free equilibrium E0 = (S0
1 , 0, 0, S

0
2 , 0, 0, . . . , S

0
n, 0, 0) of system (1.1)

is the unique equilibrium of (1.1) and it is globally asymptotically stable in Γ.
(2) If R̃0 > 1, then E0 is unstable and system (1.1) is uniformly persistent in Γ0.

Uniform persistence of (1.1) together with uniform boundedness of solutions in Γ0 (follows from the positive invariance
of the bounded region Γ) implies the existence of an endemic equilibrium of (1.1) in Γ0 (see [20, Theorem D.3] or Bhatia
et al. [2, Theorem 2.8.6]).

Corollary 3.1. If R̃0 > 1, then (1.1) has at least one endemic equilibrium E∗ = (S∗
1 , I

∗
1 , R

∗
1, , S

∗
2 , I

∗
2 , R

∗
2, . . . , S

∗
n, I

∗
n, R

∗
3)

such that
(F̃(S∗)− Ṽ)I∗ = 0, (3.1)

where
F̃(S) = (βkjSk)n×n and Ṽ = diag(µ12 + γ1, µ22 + γ2, . . . , µn2 + γn), (3.2)

and
S = (S1, S2, . . . , Sn)

T , S∗ = (S∗
1 , S

∗
2 , . . . , S

∗
n)

T , I∗ = (I∗1 , I
∗
2 , . . . , I

∗
n)

T . (3.3)

Now, we consider a relation between the reproduction number R0 and R̃0 in (3.4) (see also [23]). Put

R0 = ρ(M(S0)), (3.4)
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where the positive n-column vector S = (S1, S2, . . . , Sn)
T and ρ(M(S0)) denotes the spectral radius of the matrix M(S0)

defined by

M(S) =

(
βkjSk

µj2 + γj

)
n×n

, (3.5)

Then, we have the following lemma (see the proof of Lemma 3.1 in Appendix):

Lemma 3.1. 
R0 < 1, if and only if, R̃0 < 1,

R0 = 1, if and only if, R̃0 = 1,

R0 > 1, if and only if, R̃0 > 1.

(3.6)

Therefore, for convenience, we may use R̃0 defined by (1.5) as a threshold parameter (see Guo et al. [8]) in place of
the basic reproduction number R0 defined by (3.4).

4 Global stability of the endemic equilibrium E∗ for R̃0 > 1

In this section, we assume R̃0 > 1, and we prove that an endemic equilibrium of (1.1) is globally asymptotically stable in
Γ0. By Corrollary 3.1, there exists an endemic equilibrium E∗ = (S∗

1 , I
∗
1 , R

∗
1, S

∗
2 , I

∗
2 , R

∗
2, . . . , S

∗
n, I

∗
n, R

∗
n) ∈ Γ0 such that

bk = µk1S
∗
k +

n∑
j=1

βkjS
∗
kI

∗
j − δkR

∗
k,

(µk2 + γk)I
∗
k =

n∑
j=1

βkjS
∗
kI

∗
j ,

γkI
∗
k − (µk3 + δk)R

∗
k = 0, k = 1, 2, . . . , n.

(4.1)

We rewrite (1.1) as 

dSk

dt
= bk − µk1Sk −

n∑
j=1

βkjSkIj + δkRk,

dIk
dt

=
n∑

j=1

βkjSkIj − (µk2 + γk)Ik,

dRk

dt
= γkIk − (µk3 + δk)Rk, k = 1, 2 . . . , n.

(4.2)

Now, for some positive constants v1, v2, · · · , vn, let us consider

U1 =
n∑

k=1

vk

{
S∗
kg

(
Sk

S∗
k

)
+ I∗kg

(
Ik
I∗k

)}
, g(x) = x− 1− lnx ≥ g(1) = 0, for any x > 0. (4.3)

Differentiating U1, we have

dU1(t)

dt
=

n∑
k=1

vk

{(
1− S∗

k

Sk

)
dSk

dt
+

(
1− I∗k

Ik

)
dIk
dt

}
.

Put

xk =
Sk

S∗
k

, yk =
Ik
I∗k

, zk =
Rk

R∗
k

, k = 1, 2, . . . , n. (4.4)

Lemma 4.1. Assume the conditions (1.4) and R̃0 > 1. Then,

dU1(t)

dt
=

n∑
k=1

vk

{
−µk1S

∗
k

(
1− 1

xk

)
(xk − 1) + δkR

∗
k

(
1− 1

xk

)
(zk − 1)

}

−
n∑

k=1

vk

n∑
j=1

βkjS
∗
kI

∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}
+

n∑
k=1

{ n∑
j=1

vjβjkS
∗
j − vk(µk2 + γk)

}
I∗kg(yk). (4.5)
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Proof. By (4.1) and (4.2), we have

dSk

dt
= bk − µk1Sk −

n∑
j=1

βkjSkIj + δRk

= −µk(Sk − S∗
k)−

n∑
j=1

βkj(SkIj − S∗
kI

∗
j ) + δk(Rk −R∗

k)

= −µkS
∗
k(xk − 1)−

n∑
j=1

βkjS
∗
kI

∗
j (xkyj − 1) + δkR

∗
k(zk − 1),

and

dIk
dt

=

n∑
j=1

βkjSkIj − (µk2 + γk)Ik =

n∑
j=1

βkjS
∗
kI

∗
j xkyj − (µk2 + γk)I

∗
kyk =

n∑
j=1

βkjS
∗
kI

∗
j (xkyj − yk).

Then,

dU1(t)

dt
=

n∑
k=1

vk

[(
1− 1

xk

){
−µk1S

∗
k(xk − 1)−

n∑
j=1

βkjS
∗
kI

∗
j (xkyj − 1) + δkR

∗
k(zk − 1)

}

+

(
1− 1

yk

) n∑
j=1

βkjS
∗
kI

∗
j (xkyj − yk)

]

=
n∑

k=1

vk

[
−µk1S

∗
k

(
1− 1

xk

)
(xk − 1) + δkR

∗
k

(
1− 1

xk

)
(zk − 1)

]

+

n∑
k=1

vk

[ n∑
j=1

βkjS
∗
kI

∗
j

{(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

}]
. (4.6)

Next, for the last equation of (4.6), we have(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk) =

(
1− 1

xk
− xkyj + yj

)
+

(
xkyj −

xkyj
yk

− yk + 1

)
= 2− 1

xk
+ yj −

xkyj
yk

− yk

= −g

(
1

xk

)
− g

(
xkyj
yk

)
+ g(yj)− g(yk).

Thus,

n∑
k=1

vk

[ n∑
j=1

βkjS
∗
kI

∗
j

{(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

}]

= −
n∑

k=1

vk

n∑
j=1

[
βkjS

∗
kI

∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}]
+

n∑
k=1

vk

n∑
j=1

βkjS
∗
kI

∗
j {g(yj)− g(yk)}, (4.7)

and by (4.1), we have

n∑
k=1

vk

n∑
j=1

βkjS
∗
kI

∗
j {g(yj)− g(yk)} =

n∑
k=1

vk

n∑
j=1

βkjS
∗
kI

∗
j g(yj)−

n∑
k=1

vk

n∑
j=1

βkjS
∗
kI

∗
j g(yk)

=

n∑
j=1

vj

n∑
k=1

βjkS
∗
j I

∗
kg(yk)−

n∑
k=1

vk(µk2 + γk)I
∗
kg(yk)

=
n∑

k=1

{ n∑
j=1

vjβjkS
∗
j − vk(µk2 + γk)

}
I∗kg(yk). (4.8)

Hence, from (4.6)-(4.8), one can obtain this lemma. □
Moreover, let us consider the following condition:

n∑
k=1

{ n∑
j=1

vjβjkS
∗
j − vk(µk2 + γk)

}
I∗kg(yk) = 0. (4.9)

Then, we have the following lemma:
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Lemma 4.2. The following system

n∑
j=1

vjβjkS
∗
j = vk(µk2 + γk), k = 1, 2, . . . , n, (4.10)

has a positive solution (v1, v2, . . . , vn) defined by

(v1, v2, · · · , vn) = (C11, C22, . . . , Cnn), (4.11)

where
β̃kj = βkjS

∗
kI

∗
j , 1 ≤ k, j ≤ n, (4.12)

and

B̃ =



∑
j ̸=1

β̃1j −β̃21 · · · −β̃n1

−β̃12

∑
j ̸=2

β̃2j · · · −β̃n2

...
...

. . .
...

−β̃1n −β̃2n · · ·
∑
j ̸=n

β̃nj


, (4.13)

and Ckk denotes the cofactor of the k-th diagonal entry of B̃, 1 ≤ k ≤ n.

Proof. Consider a basis for the solution space of the linear system

B̃v = 0, (4.14)

which can be written as (4.11) (see for example, Berman and Plemmons [3]). By the irreducibility of B, we know that
(β̃kj)n×n is irreducible and vk = Ckk > 0, k = 1, 2, . . . , n. Then, by (4.14), we have that


β̃11 β̃21 · · · β̃n1

β̃12 β̃22 · · · β̃n2

...
...

. . .
...

β̃1n β̃2n · · · β̃nn




v1
v2
...
vn

 =



( n∑
j=1

β̃1j

)
v1( n∑

j=1

β̃2j

)
v2

...( n∑
j=1

β̃nj

)
vn


,

from which we have
n∑

j=1

vj β̃jk = vk

n∑
j=1

β̃kj , k = 1, 2, . . . , n,

which is equivalent to

n∑
j=1

vjβjkS
∗
j I

∗
k = vk

n∑
j=1

βkjS
∗
kI

∗
j = vk(µk2 + γk)I

∗
k , k = 1, 2, . . . , n.

Hence, by I∗k > 0, we obtain that (4.10) has a positive solution (v1, v2, . . . , vn) defined by (4.11). □
We offer a key inequality in [19] to obtain our main result in this section.

Lemma 4.3. (
1− 1

xk

)
(zk − 1) + (zk − 1)(1− xk) =

(
1− 1

xk

)
(1− xk)(zk − 1) = − (xk − 1)2

xk
(zk − 1). (4.15)

Now, for some positive constants c̃k, k = 1, 2, . . . , n, consider

Ñk = Sk + Ik + c̃kRk, Ñ∗
k = S∗

k + I∗k + c̃kR
∗
k, and ñk =

Ñk

Ñ∗
k

, k = 1, 2, . . . , n.
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Then, {
Nk −N∗

k = (Ñk − Ñ∗
k )− (c̃k − 1)(Rk −R∗

k),

Ik − I∗k = (Nk −N∗
k )− (Sk − S∗

k)− (Rk −R∗
k) = (Ñk − Ñ∗

k )− (Sk − S∗
k)− c̃k(Rk −R∗

k).
(4.16)

Since by (1.1),

dRk

dt
= γkIk − (µk3 + δk)Rk

= γk(Ik − I∗k)− (µk3 + δk)(Rk −R∗
k),

= γk{(Ñk − Ñ∗
k )− (Sk − S∗

k)− c̃k(Rk −R∗
k)} − (µk3 + δk)(Rk −R∗

k),

= γk(Ñk − Ñ∗
k )− γk(Sk − S∗

k)− (γk c̃k + µk3 + δk)(Rk −R∗
k),

and hence,

d

dt

(
(Rk −R∗

k)
2

2

)
= (Rk −R∗

k)
dRk

dt

= (Rk −R∗
k){γk(Ñk − Ñ∗

k )− γk(Sk − S∗
k)− (γk c̃k + µk3 + δk)(Rk −R∗

k)}
= γkR

∗
kÑ

∗
k (zk − 1)(ñk − 1)− γkR

∗
kS

∗
k(zk − 1)(xk − 1)− (γk c̃k + µk3 + δk)(R

∗
k)

2(zk − 1)2. (4.17)

Moreover, it holds that

dÑk

dt
= b− µk1Sk − {(µk2 + γk)− c̃kγk}Ik − {c̃k(µk3 + δk)− δk}Rk

= −µk1(Sk − S∗
k)− {(µk2 + γk)− c̃kγk}(Ik − I∗k)− {c̃k(µk3 + δk)− δk}(Rk −R∗

k),

= −µk1(Ñk − Ñ∗
k )− {(µk2 + γk − µk1)− µk1 − c̃kγk}(Ik − I∗k)− {c̃k(µk3 + δk)− (µk1 + δk)}(Rk −R∗

k).

Therefore, if we choose c̃k and ε̃k as

c̃k =
µk2 − µk1

γk
+ 1 ≥ 1, ε̃k = c̃k(µk3 + δk)− (µk1 + δk) ≥ µk3 − µk1 ≥ 0, k = 1, 2, . . . , n, (4.18)

then
dÑk

dt
= −µk1(Ñk − Ñ∗

k )− ε̃k(Rk −R∗
k), (4.19)

and hence,

d

dt

(
(Ñk − Ñ∗

k )
2

2

)
= (Ñk − Ñ∗

k )
dÑk

dt

= (Ñk − Ñ∗
k ){−µk1(Ñk − Ñ∗

k )− ε̃k(Rk −R∗
k)}

= −µk1(N
∗
k )

2(ñk − 1)2 − ε̃kÑkR
∗
k(ñk − 1)(zk − 1). (4.20)

As a result, one can easily obtain the following lemma:

Lemma 4.4. Under the condition (1.3),

d

dt

(
(Rk −R∗

k)
2

2

)
= −γkR

∗
kS

∗
k(zk − 1)(xk − 1)− (γk c̃k + µk3 + δk)(R

∗
k)

2(zk − 1)2 + γkR
∗
kÑ

∗
k (zk − 1)(ñk − 1). (4.21)

Moreover, if we choose c̃k and ε̃k as (4.18), then

d

dt

(
(Ñk − Ñ∗

k )
2

2

)
= −µk1(N

∗
k )

2(ñk − 1)2 − ε̃kÑkR
∗
k(ñk − 1)(zk − 1). (4.22)

In paticular, if µk1 = µk2 = µk3 = µ for k = 1, 2, . . . , n, then c̃k = 1, ε̃k = 0 and Ñk = Nk for k = 1, 2, . . . , n. Hence,
(4.22) holds. For N∗

k = S∗
k + I∗k +R∗

k and Wk defined by

Wk =
(Rk −R∗

k)
2

2
+

1

µ

{
γk

2(µ+ γk + δk)

}2
(Nk −N∗

k )
2

2
, (4.23)

it holds that

dWk(t)

dt
= −(µ+ γk + δk)

{
R∗

k(zk − 1)− γkN
∗
k

2(µ+ γk + δk)
(nk − 1)

}2

+ γkR
∗
kS

∗
k(zk − 1)(1− xk) (4.24)
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Otherwise, ε̃ > 0 and for Wk defined by

Wk =
(Rk −R∗

k)
2

2
+

γk
ε̃

(Ñk − k̃∗)2

2
, (4.25)

it holds that

dWk(t)

dt
= −γkR

∗
kS

∗
k(zk − 1)(xk − 1)− (γk c̃k + µk3 + δk)(R

∗
k)

2(zk − 1)2 − γkµk1

ε̃
(N∗

k )
2(ñk − 1)2. (4.26)

Next, consider

U = U1 + U2, and U2 =

n∑
k=1

vk
δk

γkS∗
k

Wk. (4.27)

Then, by Lemmas 4.1-4.4, one can easily obtain the following lemma:

Lemma 4.5. Assume the conditions (1.4) and R̃0 > 1. Then,

dU(t)

dt
= −

n∑
k=1

vk{µk1S
∗
k + δR∗

k(zt − 1)}
(
1− 1

xk

)
(xk − 1)−

n∑
k=1

vk

n∑
j=1

[
βkjS

∗
kI

∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}]

+
n∑

k=1

{ n∑
j=1

vjβjkS
∗
j − vk(µk2 + γk)

}
I∗kg(yk)−

n∑
k=1

vk
δk

γkS∗
k

Wk0, (4.28)

where

Wk0 =


(µ+ γk + δk)

{
R∗

k(zk − 1)− γkN
∗
k

2(µ+ γk + δk)
(nk − 1)

}2

, if µk1 = µk2 = µk3 = µ,

−(γk c̃k + µk3 + δk)(R
∗
k)

2(zk − 1)2 − γkµk1

ε̃
(N∗

k )
2(ñk − 1)2, otherwise.

(4.29)

Proof of Theorem 1.1. If R̃0 ≤ 1, then by Proposition 3.1, we can obtain the first part R̃0 ≤ 1 of Theorem 1.1. We
now consider the case R̃0 > 1. Then, by Proposition 3.1, system (1.1) is uniformly persistent in Γ0, and by Corollary
3.1, there exists at least one endemic equilibrium E∗ = (S∗

1 , I
∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n).

By Lemma 4.2, we have that there exists a positive n column vector v = (v1, v2, . . . , vn) such that (4.10) holds. Let
v = (v1, v2, . . . , vn) be chosen as in (4.10) and suppose that (1.9) hold. Then, for (4.28), it holds (4.9) and

µk1S
∗
k + δR∗

k(zt − 1) ≥ µk1S
∗
k − δR∗

k ≥ 0,

and hence, we obtain dU(t)
dt ≤ 0. Moreover, dU(t)

dt = 0 if and only if

xk = 1, yk = 1, and zk = 1 for any t > 0, j = 1, 2, . . . , n, k = 1, 2, . . . , n. (4.30)

Therefore, the only compact invariant subset where dU(t)
dt = 0 is the singleton {E∗}. By Proposition 3.1 and a similar

argument as in Section 3, E∗ is globally asymptotically stable in Γ0, if R̃0 > 1. Hence, the proof is complete. □
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Appendix

Proof of Proposition 3.1. Let S = (S1, S2, · · · , Sn)
T and S0 = (S0

1 , S
0
2 , · · · , S0

n)
T , and put

M̃(S) =

(
βkjSk

µk + γk

)
n×n

. (A.1)

Since in Γ, it holds that 0 ≤ Sk ≤ S0
k for 1 ≤ k ≤ n and Ø ≤ M̃(S) ≤ M̃(S0). Since B is irreducible, we know M̃(S)

and M̃(S0) are irreducible. Therefore, ρ(M̃(S)) < ρ(M̃(S0)), provided S ̸= S0 (see, for example, [24, Lemma 2.3]).
If R̃0 = ρ(M̃(S0)) ≤ 1, then for S ̸= S0, by the above, ρ(M̃(S)) < 1, and

M̃(S)I = I

has only the trivial solution I = 0. Thus, E0 is then only equilibrium of system (1.1) in Γ if R̃0 ≤ 1.
Let (ω1, ω2, . . . , ωn) be a left eigenvector of M̃(S0) corresponding to ρ(M̃(S0)), i.e.,

(ω1, ω2, . . . , ωn)ρ(M̃(S0)) = (ω1, ω2, . . . , ωn)M̃(S0).

Since M̃(S0) is irreducible, we know ωk > 0 for k = 1, 2, . . . , n. Set

L = (ω1, ω2, . . . , ωn)


µ1 + γ 0 · · · 0

0 µ2 + γ2 · · · 0
...

...
. . .

...
0 0 · · · µn + γn


−1 

I1
I2
...
In

 .

Differentiations gives
L′ = (ω1, ω2, . . . , ωn)[M̃(S)I− I] ≤ (ω1, ω2, . . . , ωn)[M̃(S0)I− I]

= {ρ(M̃(S0))− 1}(ω1, ω2, . . . , ωn)I ≤ 0, if R̃0 ≤ 1.

If R̃0 = ρ(M̃(S0)) < 1, then L′ = 0 ⇐⇒ I = 0. If R̃0 = 1, then L′ = 0 implies

(ω1, ω2, . . . , ωn)M̃(S)I = (ω1, ω2, . . . , ωn)I. (A.2)

If S ̸= S0, then
(ω1, ω2, . . . , ωn)M̃(S) < (ω1, ω2, . . . , ωn)M̃(S0) = (ω1, ω2, . . . , ωn).

Thus, (A.2) has only the trivial solution I = 0. Therefore, L′ = 0 ⇐⇒ I = 0 or S = S0 provided R̃0 ≤ 1. It can be
verified that the only compact invariant subset of the set , where L′ = 0 is the singleton {E0}. By LaSalle’s Invariance
Principle (see [10]), E0 is globally asymptotically stable in Γ if R̃0 ≤ 1.

If R̃0 = ρ(M̃(S0)) > 1 and I ̸= 0, we know that

(ω1, ω2, . . . , ωn)M̃(S0)− (ω1, ω2, . . . , ωn) = {ρ(M̃(S0))− 1}(ω1, ω2, . . . , ωn) > 0.

and thus L′ = (ω1, ω2, . . . , ωn)[M̃(S)I−I] > 0 in a neighborhood of E0 in Γ0, by continuity. This implies E0 is unstable.
Using a uniform persistence result from Freedman et al. [7] and a similar argument as in the proof of Li et al. [11,

Proposition 3.3], we can show that, when R̃0 > 1, the instability of E0 implies the uniform persistence of (1.1). This
completes the proof of Proposition 3.1. □

Proof of Lemma 3.1. Since

S∗
k

( n∑
j=1

βkjI
∗
j

)
− (µk + γk)I

∗
k = 0, k = 1, 2, . . . , n, (A.3)

we have
(

βkjS
∗
k

µj + γj

)
n×n

((µ1 + γ1)I
∗
1 , (µ2 + γ2)I

∗
2 , . . . , (µn + γn)I

∗
n)

T = ((µ1 + γ1)I
∗
1 , (µ2 + γ2)I

∗
2 , . . . , (µn + γn)I

∗
n)

T ,(
βkjS

∗
k

µk + γk

)
n×n

(I∗1 , I
∗
2 , . . . , I

∗
n)

T = (I∗1 , I
∗
2 , . . . , I

∗
n)

T ,

(A.4)
from which we obtain

ρ

((
βkjS

∗
k

µj + γj

)
n×n

)
= ρ

((
βkjS

∗
k

µk + γk

)
n×n

)
= 1, (A.5)
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that is,
ρ(M(S∗)) = ρ(M̃(S∗)) = 1, (A.6)

where for S = (S1, S2, . . . , Sn) and F̃ and Ṽ defined by (3.2), we set

M(S) = F̃(S)Ṽ−1 =

(
βkjSk

µj + γj

)
n×n

and M̃(S) = Ṽ−1F̃(S) =

(
βkjSk

µk + γk

)
n×n

. (A.7)

Hence by (1.5), (3.4), Lemma 2.1 and the above discussions in the first part of proof of Proposition 3.1 on irreducible
non-negative matrices theory (see for example, Varga [24, Chapter 2]), we can easily obtain (3.6). □
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