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Abstract. In this paper, for SIRS epidemic models with a class of nonlinear incidence rates and distributed delays

of the form βS(t)
∫ h

0
k(τ)G(I(t − τ))dτ , we establish the global asymptotic stability of the disease-free equilibrium E0

for R0 < 1, and applying new monotone techniques, we obtain sufficient conditions which ensure the global asymptotic
stability of the endemic equilibrium. The obtained results improve the result in Xu and Ma [Stability of a delayed SIRS
epidemic model with a nonlinear incidence rate, Chaos, Solitons and Fractals. 41 (2009) 2319-2325], and are very useful
for a large class of SIRS models.
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1 Introduction

A fundamental problem in epidemic models is to study the global dynamics of disease transmissions, that is, to study
the long term behavior of spread of the diseases. Various mathematical models have been proposed in the study of
population dynamics and epidemiology. The incidence of a disease is the number of new cases per unit time and has
played an important role in the literacy of mathematical modeling. Many authors have studied the dynamical behavior
of several epidemic models (see [1–18] and references therein).

Much attention has been paid to the analysis of the stability of the disease-free equilibrium and the endemic equilib-
rium of the epidemic models. Mena-Lorca and Hethcote [11] considered an SIR epidemic model with bilinear incidence
rate and no delays which takes the form βSI. Threshold was also found in Mena-Lorca and Hethcote [11] to determine
whether the disease dies out or approaches to an endemic equilibrium. Later, various kinds of SIRS epidemic models
and a significant body of work have been carried out (see, for example, [6, 8, 13,17] and references therein).

Incidence rate plays a crucial role in the modeling of epidemic dynamics. Many authors have suggested that trans-
mission of the infection shall have a nonlinear incidence rate. The bilinear incidence rate βSI and the standard incidence
rate βSI/N are frequently used in the literacy of mathematical modeling. On the other hand, Capasso and Serio [3]
have given an assumption that the incidence rate takes the nonlinear form βSI

1+αI , which has been interpreted as saturated
incidence rate. This incidence rate seems more reasonable than the bilinear incidence rate βSI in the meaning that it
includes the behavioral change and crowding effect of the infective individuals and prevents the unboundedness of the
contact rate. For the following SIRS epidemic model with a nonlinear incidence rate and time delay;

dS(t)

dt
= B − µS(t)− βS(t)

I(t− τ)

1 + αIp(t− τ)
+ δR(t),

dI(t)

dt
= βS(t)

I(t− τ)

1 + αIp(t− τ)
− (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t), t > 0,

(1.1)

*Corresponding author.
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Xu and Ma [17] for p = 1 (saturation effect), Xiao and Ruan [16] for p = 2 and Yang and Xiao [18] for p > 1 (psychological
effect), derived sufficient conditions for the global asymptotic stability of the endemic equilibrium.

In this paper, motivated by the above results and applying monotone techniques, we establish sufficient conditions
which ensure the global asymptotic stability of endemic equilibrium of the following SIRS epidemic model with a class
of nonlinear incidence rates and distributed delays. The obtained results for (1.1) improve those in Xu and Ma [17] for
p = 1 and Yang and Xiao [18] for p > 1.

dS(t)

dt
= B − µS(t)− βS(t)

∫ h

0

k(τ)G(I(t− τ))dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0

k(τ)G(I(t− τ))dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t), t > 0,

(1.2)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered individuals at time t, respectively.
B is the recruitment rate of the population, and µ is the natural death rate of the susceptible, infective and recovered
individuals, β is the transmission rate, γ is the natural recovery rate of the infective individuals, δ is the rate at which
recovered individuals lose immunity and return to the susceptible class. τ is the time taken to become infectious.
G(I(t− τ)) is a nonlinear incidence rate with a delay τ and k(τ) denotes the nonnegative incubation period distribution
(see also Takeuchi et al. [14]). We assume that G is locally Lipschitz on (0,+∞) and k is continuous on [0, h] satisfying∫ h

0
k(τ)dτ = 1. The initial conditions of system (1.2) take the form{

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
ϕi(θ) ≥ 0, θ ∈ [−h, 0], ϕi(0) > 0, ϕi ∈ C([−h, 0],R+0), i = 1, 2, 3,

(1.3)

where R+0 = {x ∈ R : x ≥ 0}. By the fundamental theory of functional differential equations that system (1.2) has a
unique solution (S(t), I(t), R(t)) satisfying initial conditions (1.3).

We here assume that

I/G(I) is strictly monotone increasing on (0,+∞), and lim
I→+0

(I/G(I)) = 1. (1.4)

Notice that system (1.2) is a generalized form of systems (1.1), and from the condition (1.4), one can see that G(I) ≤ I
for I > 0 and G(0) = 0. We note that G(I) = I

1+αI , α > 0 satisfies the above condition (1.4). The basic reproduction
number of system (1.2) becomes

R0 =
βB

µ(µ+ γ)
. (1.5)

One can see immediately that system (1.2) always has a disease-free equilibrium E0 = (B/µ, 0, 0). Apart from the above
equilibrium, if R0 > 1, then system (1.2) allows a unique endemic equilibrium E∗ = (S∗, I∗, R∗) satisfying the following.
Under the condition (1.4), let us define the following strictly monotone increasing function of I ≥ 0 such that

h(I) =

{ I
G(I) , if I > 0,

1, if I = 0,
(1.6)

and consider its inverse function h−1(I) of I ≥ 0. By (1.4), it holds that h(0) = 1, and hence, h−1(1) = 0. Moreover,
for any 0 ≤ I ≤ Ī, put

Ḡ(I, Ī) = max
I≤I≤Ī

G(I) =


G(Ī), if G(I) is monotone increasing on [I, Ī],

G( ˆ̄I), if there exists a maximal point ˆ̄I on [I, Ī],
G(I), if G(I) is monotone decreasing on [I, Ī],

(1.7)

and

G(I, Ī) = min
I≤I≤Ī

G(I) =


G(I), if G(I) is monotone increasing on [I, Ī],

G(Î), if there exists a minimal point Î on [I, Ī],
G(Ī), if G(I) is monotone decreasing on [I, Ī],

(1.8)

and

h̄(I, Ī) =
Ī

Ḡ(I, Ī)
, and h(I, Ī) =

I

G(I, Ī)
. (1.9)

We first obtain a similar result for R0 < 1 in Xu and Ma [17, Proof of Theorem 3.2].

Theorem 1.1. If R0 < 1, then the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable.
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We obtain the following main theorem (cf. Xu and Ma [17, Proof of Theorem 3.1]).

Theorem 1.2. Let R0 > 1. Then the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) exists. Assume that there
exist two nonnegative constants I < Ī such that

I ≤ lim inf
t→+∞

I(t) ≤ I∗ ≤ lim sup
t→∞

I(t) ≤ Ī ,

γ

µ+ δ
< 1 +

µ+ γ

β

h̄(I, Ī)− h(I, Ī)

Ī − I
,

(1.10)

and that 

I ≤ I∗ ≤ I∗ ≤ Ī∗ ≤ Ī ,

Ī∗ + µ+γ
β h̄(I∗, Ī∗) = B

µ − γ
µ+δ I

∗,

and

I∗ + µ+γ
β h(I∗, Ī∗) = B

µ − γ
µ+δ Ī

∗,

 imply I∗ = Ī∗ = I∗. (1.11)

Then, the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) is globally asymptotically stable in the interior of R3
+.

In particular, if 
I ≤ lim inf

t→+∞
I(t) ≤ I∗ ≤ lim sup

t→∞
I(t) ≤ Ī ,

γ

µ+ δ
< 1 +

µ+ γ

β

h̄(Ĩ , ¯̃I)− h(Ĩ , ¯̃I)
¯̃I − Ĩ

,

for any Ĩ < ¯̃I such that I ≤ Ĩ ≤ I∗ ≤ ¯̃I ≤ Ī ,

(1.12)

then, (1.10) and (1.11) is satisfied.

Corollary 1.1. For R0 > 1, if
γ < µ+ δ, (1.13)

then the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable in the interior of R3
+.

Note that a sufficient condition (1.13) for the endemic equilibrium to be globally asymptotically stable, is very simple
and useful for a large class of SIRS models (1.2).

Let R0 > 1. Then, by Theorem 1.2, the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) exists. Assume that
0 ≤ a0 ≤ I∗ ≤ b0 and G(I) is a unimodal function on [a0, b0] and Î is its maximal point of G(I) on [a0, b0], that is,
G(Î) = maxa0≤I≤b0 G(I) and G(I) is strictly monotone increasing on [a0, Î] and strictly monotone decreasing on [Î , b0].

For simplicity, we suppose that I∗ < Î and h(I) is a lower or upper convex function on [a0, b0] and for any function u(I)

of I on [a0, b0], we use that if I1 = I2 = I∗, then u(I1)−u(I2)
I1−I2

means u′(I∗).

Corollary 1.2. Let R0 > 1 and G(I) be the above unimodal function on [a0, b0] with I∗ < Î.
If

max

(
β

µ+ γ
Î +

Î

G(Î)
,

βγ

(µ+ γ)(µ+ δ)
Î

)
> R0, (1.14)

then I∗ ≤ lim supt→∞ I(t) < Î.
Moreover, assume that there exist two constants I < Ī such that

a0 ≤ I ≤ lim inf
t→+∞

I(t) ≤ I∗ ≤ lim sup
t→∞

I(t) ≤ Ī ≤ Î ,

γ

µ+ δ
< 1 +

µ+ γ

β

h(Ī)− h(I)

Ī − I
,

(1.15)

and that 
γ

µ+δ < 1 + µ+γ
β

h(I∗)−h(I)
I∗−I , if h(I) is a lower convex function on [a0, b0],

or
γ

µ+δ < 1 + µ+γ
β

h(Ī)−h(I∗)
Ī−I∗ , if h(I) is an upper convex function on [a0, b0].

(1.16)

Then, the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) is globally asymptotically stable in the interior of R3
+.
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For a particular case of G(I) that

G(I) = Gp(I) ≡
I

1 + αIp
, α > 0, p > 0, (1.17)

it holds that

h(I) = I/Gp(I) = 1 + αIp, Î =

{
1

p
√

(p−1)α
, if p > 1,

+∞, if p ≤ 1.
(1.18)

We obtain the following corollary for the case (1.17) (cf. Xu and Ma [17, Theorem 3.1]).

Corollary 1.3. Let us assume that R0 > 1 holds. If

p > 1 and max

(
β

µ+ γ
Î +

p

p− 1
,

βγ

(µ+ γ)(µ+ δ)
Î

)
> R0, (1.19)

then lim sup
t→+∞

I(t) < Î.

Moreover, assume that there exist two constants I < Ī such that

0 ≤ I ≤ lim inf
t→+∞

I(t) ≤ I∗ ≤ lim sup
t→∞

I(t) ≤ Ī < Î, (1.20)

and that 
γ

µ+δ < 1 + α(µ+γ)
β

(I∗)p−(I)p

I∗−I , if p > 1,

or
γ

µ+δ < 1 + α(µ+γ)
β

(Ī)p−(I∗)p

Ī−I∗ , if p ≤ 1.

(1.21)

Then, the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) is globally asymptotically stable in the interior of R3
+.

Note that for p = 1, G(I) is monotone increasing on [0, lim supt→∞ I(t)] and the condition (1.21) becomes {α(µ+γ)+
β}(µ+ δ)−βγ > 0 which greatly improves the condition α(µ+ γ)(µ+ δ)−β(µ+ γ+ δ) > 0 in Xu and Ma [17, Theorem
3.1] (see also Section 4). Moreover, the result in Corollary 1.3 is a partial answer to the open problem proposed in Huo
and Ma [5] and Yang and Xiao [18] such that for 1 ≤ p ≤ 2, the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2)
with (1.17) is globally asymptotically stable in the interior of R3

+. In particular, all the examples for R0 > 1 in Huo
and Ma [5, Fig.3] satisfy (1.21), and the examples for R0 > 1 in Yang and Xiao [18, Figures 3.6-3.8] that there exists a
positive τ0 such that the endemic equilibrium E∗ of (1.2) can undergo a Hopf bifurcation as τ > τ0, and a periodic orbit
appears in the small neighborhood of the endemic equilibrium E∗ under some conditions which do not satisfy (1.21).

The organization of this paper is as follows. In Section 2, we offer some basic results for system (1.2) and prove
the local asymptotic stability of the disease-free equilibrium and prove Theorem 1.1. In Section 3, we first show the
existence of the positive equilibrium of system (1.2) and prove the permanence of system (1.2). In Section 4, using
monotone techniques similar to Xu and Ma [17], we prove Theorem 1.2 and Corollaries 1.1-1.3. To illustrate our results,
we offer numerical examples in Section 5. Finally, a short conclusion is offered in Section 6.

2 Basic results

We now state some basic results of system (1.2). Let N(t) = S(t) + I(t) +R(t).

Lemma 2.1. For system (1.2) with the initial condition (1.3),

lim
t→+∞

(S(t) + I(t) +R(t)) =
B

µ
. (2.1)

Proof. It follows from system (1.2) that

dN(t)

dt
= B − µS(t)− µI(t)− µR(t) = B − µN(t).

Hence, we obtain that limt→+∞ N(t) = B/µ. This completes the proof. □

We now give the following lemmas concerning the local asymptotic stability of the disease-free equilibrium E0 of system
(1.2).
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Lemma 2.2. If R0 < 1, then the disease-free equilibrium E0 of system (1.2) is locally asymptotically stable. Further-
more, the disease-free equilibrium E0 is unstable if R0 > 1.

Proof. By limI→+0(I/G(I)) = 1 in (1.4), the characteristic equation of system (1.2) at the disease-free equilibrium E0

is of the form:

(λ+ µ)

{
λ+ (µ+ γ)

(
1−R0

∫ h

0

k(τ) exp(−λτ)dτ

)}
(λ+ µ+ δ) = 0. (2.2)

It is clear that λ = −µ,−(µ + δ) are always roots of (2.2). All other roots of (2.2) are determined by the following
equation:

λ+ (µ+ γ)

(
1−R0

∫ h

0

k(τ) exp(−λτ)dτ

)
= 0. (2.3)

We note that λ = 0 is not a root of (2.3). When τ = 0, (2.3) becomes as follows.

λ+ (µ+ γ)(1−R0) = 0. (2.4)

If R0 < 1, then one can see immediately that (2.4) has a negative real root. Therefore, the disease-free equilibrium E0

of system (1.2) is locally asymptotically stable when τ = 0. Suppose that λ = iω, ω > 0 is a root of (2.3), separating
real and imaginary parts, then we derive that

(µ+ γ)

(
1−R0

∫ h

0

k(τ) cosωτdτ

)
= 0, ω +R0(µ+ γ)

∫ h

0

k(τ) sinωτdτ = 0. (2.5)

From the first equation of (2.5), we see that

(µ+ γ)

(
1−R0

∫ h

0

k(τ) cosωτdτ

)
≥ (µ+ γ)(1−R0) > 0,

for all ω > 0, which is a contradiction. It follows that the real parts of all the eigenvalues of the characteristic equation
(2.2) are negative for all τ ≥ 0. Therefore, if R0 < 1, then the disease-free equilibrium E0 of system (1.2) is locally
asymptotically stable for all τ ≥ 0. Now, we put

T (λ) = λ+ (µ+ γ)

(
1−R0

∫ h

0

k(τ) exp (−λτ)dτ

)
. (2.6)

If R0 > 1, then it is seen that T (0) = (µ+ γ)(1− R0) < 0 and limλ→+∞ T (λ) = +∞ holds for λ ∈ R. Therefore, (2.2)
has at least one positive real root. Hence, if R0 > 1, then the disease-free equilibrium E0 is unstable. This completes
the proof. □

Proof of Theorem 1.1. From (2.1) in Lemma 2.1, for any ϵ > 0, there is a constant T0 ≥ 0 such that

S(t) ≤ B

µ
+ ϵ for t ≥ T0.

Consider the following nonnegative function W (t) defined by

W (t) = I(t) + U(t), t ≥ T0, for t ≥ T0, (2.7)

where

U(t) = β

∫ h

0

k(τ)

∫ t

t−τ

S(u+ τ)G(I(u))dudτ, t ≥ T0.

Since for t ≥ T0,

U ′(t) = β

∫ h

0

k(τ) {S(t+ τ)G(I(t))− S(t)G(I(t− τ))} dτ,
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we have that for t ≥ T0,

W ′(t) =

{
βS(t)

∫ h

0

k(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

}

+β

∫ h

0

k(τ) {S(t+ τ)G(I(t))− S(t)G(I(t− τ))} dτ

= β

∫ h

0

k(τ)S(t+ τ)dτG(I(t))− (µ+ γ)I(t)

≤ β

∫ h

0

k(τ)

(
B

µ
+ ϵ

)
dτG(I(t))− (µ+ γ)I(t)

=

{
βB

µ
− (µ+ γ)

I(t)

G(I(t))

}
G(I(t)) + βϵG(I(t)).

Since ϵ > 0 is arbitrary, we obtain that if R0 < 1, then βB
µ − (µ+ γ) < 0 and by (1.4), we have that I

G(I) > 1 for I > 0,

and

W ′(t) ≤
{
βB

µ
− (µ+ γ)

I(t)

G(I(t))

}
G(I(t)) (2.8)

≤
{
βB

µ
− (µ+ γ)

}
G(I(t)) ≤ 0. (2.9)

Then, the nonnegative function W (t) is strictly monotone decreasing and there exists a nonnegative constant Ŵ such
that limt→+∞ W (t) = Ŵ . By (2.9), we conclude that limt→+∞ G(I(t)) = limt→+∞ I(t) = 0 and Ŵ = 0 hold. Thus, by
(1.2), limt→+∞ S(t) = B/µ and limt→+∞ R(t) = 0 hold for R0 < 1. It follows from Lemma 2.2 and Lyapunov-LaSalle
asymptotic stability theorem that the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable if
R0 < 1. □

3 Permanence for R0 > 1

3.1 Existence and uniqueness of the endemic equilibrium E∗ of system (1.2) for R0 > 1

By the condition (1.4), we also obtain the following basic lemma which ensures the existence and uniqueness of the
endemic equilibrium E∗ of system (1.2) for R0 > 1.

Lemma 3.1. If R0 > 1, then system (1.2) has a unique endemic equilibrium E∗ satisfying B − µS∗ − βS∗G(I∗) + δR∗ = 0,
βS∗G(I∗)− (µ+ γ)I∗ = 0,
γI∗ − (µ+ δ)R∗ = 0.

(3.1)

Proof. At a fixed point (S, I,R) of system (1.2), the following equations hold.
B − µS −

(
µ+ γ − γδ

µ+ δ

)
I = 0,

βSG(I)− (µ+ γ)I = 0,
γI − (µ+ δ)R = 0.

(3.2)

Substituting the second equation of (3.2) into the first equation of (3.2), we consider the following equation:

H(I) := B − µ(µ+ γ)I

βG(I)
− µ(µ+ γ + δ)

µ+ δ
I = 0.

By the hypothesis (H2), H is strictly monotone decreasing on (0,+∞) satisfying

lim
I→+0

H(I) = B − µ(µ+ γ)

β
= B

(
1− 1

R0

)
> 0

and H(I) < 0 holds for all I > B(µ+δ)
µ(µ+γ+δ) . Hence, there exists a unique I∗ > 0 such that H(I∗) = 0. By (3.2), we obtain

S∗ = (µ+γ)I∗

βG(I∗) > 0 and R∗ = γI∗

µ+δ > 0. Therefore, system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗). □
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3.2 Permanence for R0 > 1

First, we prepare the following basic lemma.

Lemma 3.2. Assume that I(s) ≤ I∗ for any s such that t− h ≤ s < t. If I(t) < I(s) for any s such that t− h ≤ s < t
then S(t) ≤ S∗. Inversely, if either I ′(t) > 0 or S(t) > S∗ holds, then there exists an st ∈ [t−h, t) such that I(t) ≥ I(st).

Proof. Assume that I(t) < I(s) ≤ I∗ for any s such that t− h ≤ s < t. Then, I ′(t) ≤ 0 and by the second equation of
(1.2) and the monotonicity of I

G(I) for I > 0, we have that

I ′(t) = βS(t)

∫ h

0

k(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

≥
∫ h

0

k(τ) {βS(t)G(I(t− τ))− (µ+ γ)I(t− τ)} dτ

=

∫ h

0

k(τ)

{
βS(t)

G(I(t− τ))

I(t− τ)
− (µ+ γ)

}
I(t− τ)dτ

≥
∫ h

0

k(τ)

{
βS(t)

G(I∗)

I∗
− (µ+ γ)

}
I(t− τ)dτ

= β(S(t)− S∗)
G(I∗)

I∗

∫ h

0

k(τ)I(t− τ)dτ. (3.3)

Thus we obtain S(t) < S∗. Inversely, assume that I(s) ≤ I∗ for any s such that t− h ≤ s < t and S(t) > S∗. Then, it
is evident that there exists an st ∈ [t− h, t) such that I(t) ≥ I(st). □

Now, by applying Lemma 3.2, we offer a simplified proof for the permanence of system (1.2) than that of Wang [15] (see
also Xu and Ma [17]).

Lemma 3.3. If R0 > 1, then for any solution of system (1.2) with initial conditions (1.3), it holds that

lim inf
t→+∞

S(t) ≥ v1 :=
B

µ+ β(B/µ)
> 0, lim inf

t→+∞
I(t) ≥ v2 := qG(I∗)e−(µ+γ)ρ(q) > 0, lim inf

t→+∞
R(t) ≥ v3 :=

γ

µ+ δ
v2(q),

where 0 < q0 = βBG(I∗)−µδR∗

βBG(I∗)(B+δR∗) < 1 and for any 0 < q < q0, ρ(q) > 0 is a constant such that

S∗ < S△ :=
B

r
(1− e−rρ(q)), and r = µ+ βqG(I∗). (3.4)

Proof. Let (S(t), I(t), R(t)) be any solution of system (1.2) with initial conditions (1.3). By Lemma 2.1, it holds that

lim sup
t→+∞

I(t) ≤ B

µ
.

For ϵ > 0 sufficiently small, there is a T1 > 0 such that I(t) < B/µ+ ϵ for t > T1. Then, by G(I(t)) ≤ I(t) and the first
equation of (1.2), we derive that

S′(t) ≥ B − {µ+ β(B/µ+ ϵ)}S(t),

which implies that

lim inf
t→+∞

S(t) ≥ B

µ+ β(B/µ+ ϵ)
.

Since the above inequality holds for arbitrary ϵ > 0 sufficiently small, it follows that lim inft→+∞ S(t) ≥ B
µ+β(B/µ) = v1

holds. Since by (3.1), H(I∗) = 0 and R0 > 1, it holds that βG(I∗) = µ(µ + γ)I∗ + (µ+δ){βB−µ(µ+γ)}
µ(µ+γ+δ) > µ(µ + γ)I∗ >

µγ δ
µ+δ I

∗ = µδR∗, there exists a 0 < q0 = βBG(I∗)−µδR∗

βG(I∗)(B+δR∗) < 1 and for any 0 < q < q0, we have that S∗ = B+δR∗

µ+βG(I∗) <
β

µ+βqG(I∗) =
B
r . Thus, there exists a positive constant ρ(q) such that (3.4) holds.

We first prove the claim that it is not possible that for any solution (S(t), I(t), R(t)) of system (1.2), there exists a
nonnegative constant t0 such that I(t) ≤ qG(I∗) for all t ≥ t0. Suppose to the contrary that there exists a nonnegative
constant t0 such that I(t) ≤ qG(I∗) for all t ≥ t0. Then, by G(I) ≤ I for I > 0, we have that I(t) ≤ I∗ for any t ≥ t0
and G(I(t− τ)) ≤ I(t− τ) ≤ I∗ for t ≥ t0 + h and 0 ≤ τ ≤ h, and from system (1.2), one can obtain that

S′(t) ≥ B − (µ+ βqG(I∗))S(t) = B − rS(t), for t ≥ t0 + h,
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which yields that

S(t) ≥ exp(−r(t− t0))

[
S(t0) +B

∫ t

t0

exp(r(θ − t0))dθ

]
≥ B

r
{1− exp(−r(t− t0))}, for any t ≥ t0 + h,

Therefore, we have

S(t) ≥ B

r
{1− exp(−rρ(q))} = S△ > S∗, for any t ≥ t0 + h+ ρ(q). (3.5)

By the second part of Lemma 3.2, we obtain that for any t ≥ t0 + h + ρ(q), there exists an st ∈ [t − h, t) such that
I(t) ≥ I(st). Therefore, for a positive constant Î = mint0+ρ(q)≤s≤t0+h+ρ(q) I(s), we obtain

I(t) ≥ Î for any t ≥ t0 + h+ ρ(q). (3.6)

Moreover, by I(t) ≤ qG(I∗) ≤ qI∗ ≤ I∗ for any t ≥ t0 + ρ(q), we have G(I(t)) ≥ G(I∗)
I∗ I(t) ≥ G(I∗)

I∗ Î > 0 for any
t ≥ t0 + ρ(q) and for the nonnegative functional W (t) defined by

W (t) = I(t) + β

∫ h

0

k(τ)

∫ t

t−τ

S(u+ τ)G(I(u))dudτ, (3.7)

we have that

W ′(t) = βS(t)

∫ h

0

k(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

+β

∫ h

0

k(τ){S(t+ τ)G(I(t))− S(t)G(I(t− τ))}

= β

∫ h

0

k(τ)S(t+ τ)G(I(t))− (µ+ γ)I(t)

= {β
∫ h

0

k(τ)S(t+ τ)
G(I(t))

I(t)
− (µ+ γ)}I(t)

> {βS△G(I∗)

I∗
− (µ+ γ)}I(t)

> β{S△ − S∗}G(I∗)

I∗
Î > 0, for any t ≥ t0 + h+ ρ(q),

which implies that limt→+∞ W (t) = +∞. However, by (3.7) and Lemma 2.1, there are a positive constant t̄0 ≥
t0 + h+ ρ(q) and W̄ such that W (t) ≤ W̄ for any t ≥ t̄0, which leads to a contradiction. Hence, the claim is proved.

By the claim, we are left to consider two possibilities. First, I(t) ≥ qG(I∗) for all t sufficiently large. Second, I(t)
oscillates about qG(I∗) for all t sufficiently large.

We now show that I(t) ≥ v2(q) for all t sufficiently large. If the first condition that I(t) ≥ qG(I∗) holds for
all sufficiently large, then we get the conclusion of this lemma. Suppose that I(t) oscillates about qG(I∗) for all t
sufficiently large, that is, there exist sufficiently large t1 < t2 such that

I(t1) = I(t2) = qG(I∗), and I(t) < qG(I∗) for any t1 < t < t2.

Then, by the second equation of system (1.2), we have that

I(t) ≥ −(µ+ γ)I(t), that is, I(t) ≥ I(t1)e
−(µ+γ)(t−t1), for any t ≥ t1,

from which, we have that for any t ≥ t1,

I(t) ≥ I(t1)e
−(µ+γ)(t−t1) ≥ qG(I∗)e−(µ+γ)(t−t1).

Therefore, we obtain
I(t) ≥ qG(I∗)e−(µ+γ)ρ(q) = v2(q), for any t1 ≤ t ≤ t1 + ρ(q). (3.8)

If t2 ≥ t1+ρ(q), then by applying a similar discussion to (3.5) and (3.6) in place of t0 by t1, we obtain that I(t) ≥ v2(q) for
t1 + ρ(q) ≤ t ≤ t2. Hence, we prove that I(t) ≥ v2(q) for t1 ≤ t ≤ t2. Since the interval t1 ≤ t ≤ t2 is arbitrarily chosen,
we conclude that I(t) ≥ v2(q) for all sufficiently large for the second case. Thus, we obtain lim inft→+∞ I(t) ≥ v2(q),
from which we have lim inft→+∞ R(t) ≥ v3(q). This completes the proof. □

By Lemmas 2.1 and 3.3, we obtain the permanence of system (1.2) for R0 > 1.
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4 Monotone iterative techniques to SIRS models

In this section, for R0 > 1, we improve the monotone iterative technique offered by Xu and Ma [17, Theorem 3.1] for
system (1.2).

Now, by (1.2) and Lemma 3.3, we may put
lim inf
t→+∞

S(t) = Ŝ ≥ v1, lim inf
t→+∞

I(t) = Î ≥ v2, lim inf
t→+∞

R(t) = R̂ ≥ v3,

lim sup
t→+∞

S(t) = ˆ̄S ≤ B

µ
, lim sup

t→+∞
I(t) = ˆ̄I ≤ B

µ
, lim sup

t→+∞
R(t) = ˆ̄R ≤ B

µ
.

(4.1)

By Lemma 2.1, hereafter, we may restrict our attention to the case that S(t) + I(t) +R(t) = B
µ for all t sufficiently

large. Then, we have the following lemma.

Lemma 4.1.
B

µ
− Î − ˆ̄R > 0, and

B

µ
− ˆ̄I − R̂ > 0. (4.2)

Proof. Suppose that B
µ − ˆ̄I − R̂ ≤ 0. Then, by (4.1), there is a sequence {tn}∞n=1 such that limn→+∞ I(tn) =

ˆ̄I. Since

lim infn→+∞ R(tn) ≥ R̂, we have that

0 < lim sup
n→+∞

S(tn) ≤
B

µ
− lim inf

n→+∞
I(tn)− lim inf

n→+∞
R(tn) ≤

B

µ
− ˆ̄I − R̂ ≤ 0,

which is a contradiction. Thus, we have B
µ − ˆ̄I − R̂ > 0. Similarly, we can prove that B

µ − Î − ˆ̄R > 0. □

Lemma 4.2. 
0 ≥ B − µŜ − βŜḠ(Î , ˆ̄I) + δ(Bµ − Ŝ − ˆ̄I),

0 ≥ β(Bµ − Î − ˆ̄R)G(Î , ˆ̄I)− (µ+ γ)Î ,

0 ≥ γÎ − (µ+ δ)R̂,

(4.3)

and 
0 ≤ B − µ ˆ̄S − β ˆ̄SG(Î , ˆ̄I) + δ(Bµ − ˆ̄S − Î),

0 ≤ β(Bµ − ˆ̄I − R̂)Ḡ(Î , ˆ̄I)− (µ+ γ) ˆ̄I,

0 ≤ γ ˆ̄I − (µ+ δ) ˆ̄R,

(4.4)

Proof. Assume that I(t) is eventually monotone decreasing for t ≥ 0. Then, by Lemma (3.3), there exists limt→+∞ I(t) =
ˆ̄I = Î > 0. Then, by the third equation of (1.2), we obtain that there exists limt→+∞ R(t) = ˆ̄R = R̂ > 0. Then, by

the first equation of (1.2), we obtain that there exists limt→+∞ S(t) = ˆ̄S = Ŝ > 0. Since the positive equilibrium

E∗ = (S∗, I∗, R∗) is unique, we have that Ŝ∗ = ˆ̄S = Ŝ, Î∗ = ˆ̄I = Î and R̂∗ = ¯̄R = R̂. Thus, by (3.1), (4.4) holds.
Now, suppose that I(t) is not eventually monotone decreasing for t ≥ 0. Then, there exists a sequence {tn}∞n=1 such

that limn→+∞ I ′(tn) ≥ 0 and limn→+∞ I(tn) =
ˆ̄I. Since

lim sup
n→+∞

S(tn) ≤
B

µ
− lim

n→+∞
I(tn)− lim inf

n→+∞
R(tn) ≤

B

µ
− ˆ̄I − R̂,

we can immediately derive (4.4). Similarly, we can obtain (4.3). This completes the proof. □

Then, we obtain that 
Ŝ ≥ B(1+ δ

µ )−δ ˆ̄I

(µ+δ)+βḠ(Î, ˆ̄I)
,

Î + µ+γ
β h(Î , ˆ̄I) ≥ B

µ − γ
µ+δ

ˆ̄I,

R̂ ≥ γ
µ+δ Î ,

(4.5)
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and 
ˆ̄S ≤ B(1+ δ

µ )−δÎ

(µ+δ)+βG(Î, ˆ̄I)
,

ˆ̄I + µ+γ
β h̄(Î , ˆ̄I) ≤ B

µ − γ
µ+δ Î ,

ˆ̄R ≤ γ
µ+δ

ˆ̄I.

(4.6)

We now consider the following six sequences {S̄n}∞n=1, {Īn}∞n=1, {R̄n}∞n=1, {Sn}∞n=1, {In}∞n=1 and {Rn}∞n=1, (n =
1, 2, · · · ) as follows (cf. Xu and Ma [17, (3.3)]).

0 ≤ I0 ≤ lim inf
t→+∞

I(t),

K̄(In−1, Īn) =
B

µ
− γ

µ+ δ
In−1,

K(In, Īn) =
B

µ
− γ

µ+ δ
Īn, n = 1, 2, 3 · · · .

(4.7)

and {
Sn = B(µ+δ)/µ−δIn

(µ+δ)+βḠ(In,Īn)
, Rn = γ

µ+δ In,

S̄n =
B(µ+δ)/µ−δIn

(µ+δ)+βG(In,Īn)
, R̄n = γ

µ+δ Īn,
(4.8)

where K̄(I, Ī) and K(I, Ī) are defined such that for any 0 ≤ I ≤ Ī,

K̄(I, Ī) = Ī +
µ+ γ

β
h̄(I, Ī), and K(I, Ī) = I +

µ+ γ

β
h(I, Ī). (4.9)

Then, by Lemma 3.3, (4.6) and (4.7), we have that

I0 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ Ī1. (4.10)

Lemma 4.3. For the sequences {Īn}∞n=1, {In}∞n=1, {S̄n}∞n=1, {Sn}∞n=1, {R̄n}∞n=1 and {Rn}∞n=1 defined by (4.7) and
(4.8), assume I0 < Ī1. Then,

I0 < I1 < Ī1, (4.11)

if and only if,
γ

µ+ δ
< 1 +

µ+ γ

β

h̄(I0, Ī1)− h(I1, Ī1)

Ī1 − I1
. (4.12)

In this case, the three sequences {In}∞n=1, {Sn}∞n=1 and {Rn}∞n=1 are strongly monotone increasing sequences and con-
verge to I∗, S∗ and R∗, respectively, and the three sequences {Īn}∞n=1, {S̄n}∞n=1 and {R̄n}∞n=1 are strongly monotone
decreasing sequences and converge to Ī∗, S̄∗ and R̄∗, respectively, as n tends to +∞, and

lim
n→+∞

In = I∗ ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ lim
n→+∞

Īn = Ī∗,

lim
n→+∞

Sn = S∗ ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ lim
n→+∞

S̄n = S̄∗,

lim
n→+∞

Rn = R∗ ≤ lim inf
t→+∞

R(t) ≤ lim sup
t→+∞

R(t) ≤ lim
n→+∞

R̄n = R̄∗,

(4.13)

and 

Ī∗ + γ
µ+δ I

∗ + µ+γ
β h̄(I∗, Ī∗) = B

µ ,

I∗ + γ
µ+δ Ī

∗ + µ+γ
β h(I∗, Ī∗) = B

µ ,

and

1 + µ+γ
β

h̄(I∗,Ī∗)−h(I∗,Ī∗)
Ī∗−I∗ = γ

µ+δ , if I∗ < Ī∗,

I∗ ≤ Î , if I∗ = Ī∗ = I∗.

(4.14)

Moreover, if (1.10) and (1.11) hold, then

I∗ = Ī∗ = I∗ ≤ Î , S∗ = S̄∗ = S∗ and R∗ = R̄∗ = R∗. (4.15)

In particular, if
γ

µ+ δ
≤ 1, (4.16)

then (4.15) holds.
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Proof. By (4.7) and (4.9),  Īn + µ+γ
β h̄(In−1, Īn) =

B
µ − γ

µ+δ In−1,

In + µ+γ
β h(In, Īn) =

B
µ − γ

µ+δ Īn, n = 1, 2, 3, · · · ,
(4.17)

from which we have that for In < Īn and n = 1, 2, 3, · · · ,(
1 +

µ+ γ

β

h̄(In−1, Īn)− h(In, Īn)

Īn − In

)
(Īn − In) =

γ

µ+ δ
(Īn − In−1).

Hence, we obtain that for In < Īn,

Īn − In =

γ
µ+δ

1 + µ+γ
β

h̄(In−1,Īn)−h(In,Īn)

Īn−In

(Īn − In−1), n = 1, 2, 3, · · · , (4.18)

from which one can see that (4.11) holds, if and only if, (4.12) holds. Then, by the monotonicity and inductions in
(4.17), we can prove that In−1 < In < Īn < Īn−1, n = 2, 3, · · · , (4.13) and (4.14) hold. Moreover, suppose that (1.10)

and (1.11) hold. Then, I∗ ≤ Î and by (4.18), we obtain (4.15). Hence, by (4.5) and (4.6), we obtain the conclusion of
this lemma. □

Proof of Theorem 1.2. By Lemma 4.3, we obtain the conclusion of Theorem 1.2. □
Now, we give a property of a lower or upper convex function of I on [a0, b0].

Lemma 4.4. If h(I) is a lower or upper convex function on [a0, b0], then for any a0 ≤ I ≤ I∗ ≤ Ī ≤ b0,
h(I∗)−h(I)

I∗−I ≤ h(Ī)−h(I)
Ī−I

, if h(I) is a lower convex function on [a0, b0],

or
h(Ī)−h(I∗)

Ī−I∗ ≤ h(Ī)−h(I)
Ī−I

, if h(I) is an upper convex function on [a0, b0].

(4.19)

Proof. The proof of this lemma is evident from the definition of a lower and upper convex function of I on [a0, b0]. □

Proof of Corollaries 1.1-1.3. Since by assumption that I∗ < Î and the first equation of (4.14) in Lemma 4.3, we
have that

β

µ+ γ
Ī∗ + h̄(I∗, Ī∗) = R0 −

β

µ+ γ

γ

µ+ δ
I∗ < R0,

βγ

(µ+ γ)(µ+ δ)
Ī∗ = R0 −

(
β

µ+ γ
I∗ + h(I∗, Ī∗)

)
< R0.

Therefore, from (1.14), one can easily see that Ī∗ < Î. Then, by using the results in Theorem 1.2 with Lemmas 4.3 and
4.4, we immediately obtain the conclusion of Corollaries 1.1-1.3. □

For the cases p = 1 and p > 1, by Corollary 1.3, we easily obtain the following result.

Corollary 4.1. Let p ≥ 1 and R0 > 1. If

{α(µ+ γ) + β}(µ+ δ)− βγ > 0, for p = 1, (4.20)

or (1.19)-(1.21) hold for p > 1, then the positive equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) with (1.17) is globally
asymptotically stable in the interior of R3

+0. In particular, for p = 2, if

max

(
β

(µ+ γ)
√
α
+ 2,

βγ

(µ+ γ)(µ+ δ)
√
α

)
> R0 and

µ+ δ

γ

(
1 +

µ+ γ

β
αI∗

)
≥ 1, (4.21)

then, conditions (1.19)-(1.21) are satisfied.

Note that the sufficient condition in Xu and Ma [17, Theorem 3.1] for p = 1 becomes {α(µ+ γ) + β}(µ+ δ)− βγ >
α(µ+ γ)(µ+ δ)− β(µ+ γ + δ) > 0. Moreover, for the case p = 2 and R0 > 1, we solve the open question to an example
in Huo and Ma [5, Example], because one can see that this example satisfies the condition (4.21) in Corollary 4.1 (see
Muroya et al. [12, Theorem 1.1]).
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S(t)
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R(t)

Figure 1: A graph trajectory of S(t), I(t) and R(t) of system (1.2) for the case (5.1) with β = 0.05 and δ = 0.2. We
have R0 = 0.833 · · · < 1 and E0 = (6.666 · · · , 0, 0).

2 4 6 8 10

1

2

3

4

5

6

Figure 2: A graph trajectory of In and In (0 = I0 → I1 → I1 → · · · ) defined by (4.7) for the case (5.1) with β = 0.5
and δ = 0.2.

5 Numerical examples

In this section, for the following case in system (1.2):

G(I) =
I

1 + αI
, B = 2, α = 1, γ = 0.1, µ = 0.3, h = 10, and k(τ) ≡ 0.1, 0 ≤ τ ≤ h, (5.1)

we first show an example that for R0 < 1, the disease-free equilibrium E0 of system (1.2) is globally asymptotically
stable, and second that for R0 > 1, the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable under
the sharper condition than the global stability condition α(µ+ γ)(µ+ δ)− β(µ+ γ + δ) > 0 in Xu and Ma [17].

By Theorem 1.1, we see that the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable if R0 < 1
(β < 0.06). For the case R0 > 1 (β > 0.06), the global asymptotic stability of the endemic equilibrium of system (1.2)
are guaranteed under the condition

β(0.4 + δ) < 0.4(0.3 + δ) (5.2)

by the condition α(µ+ γ)(µ+ δ)− β(µ+ γ + δ) > 0 in Xu and Ma [17].
However, we see that the condition (5.2) is not valid for any δ > 0 for the case β ≥ 0.4 (see also Figure 3). On the

other hand, the condition (4.20) in Corollary 4.1 is satisfied for any β > 0 and δ > 0. Thus, the condition (4.20) in
Corollary 4.1 greatly improves the condition in Xu and Ma [17].

Figure 1 indicates that the disease-free equilibrium E0 of system (1.2) is globally asymptotically stable for the
case (5.1) with β = 0.05 and δ = 0.2. Figure 2 indicates that both Īn and In (n ≥ 1) defined by (4.7) converge to
I∗ = 2.933 · · · for the case (5.1) with β = 0.5, δ = 0.2 and I0 = 0. Figure 3 indicates the stability region of the
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Figure 3: Feasible region for the parameters δ (vertical line) and β (horizontal line) of the condition (5.2).
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time t

S(t)
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R(t)

Figure 4: A graph trajectory of S(t), I(t) and R(t) of system (1.2) for the case (5.1) with β = 0.5. We have R0 =
8.333 · · · > 1 and E∗ = (3.146 · · · , 2.933 · · · , 0.586 · · · ).

condition (5.2) with respect to β and δ. Figure 4 indicates that the endemic equilibrium E∗ of system (1.2) is globally
asymptotically stable for the case (5.1) with β = 0.5 and δ = 0.2.

6 Conclusion

In this paper, for SIRS epidemic models with a class of nonlinear incidence rates and distributed delays of the forms

βS(t)
∫ h

0
k(τ)G(I(t − τ))dτ , we establish the global asymptotic stability of the disease-free equilibrium E0 for R0 < 1.

Applying new monotone iterative techniques, we obtain sufficient conditions for the global asymptotic stability of the
endemic equilibrium of system (1.2) for R0 > 1, respectively. In particular, by applying Lemma 3.2, we offer a simplified
proof for the permanence of system (1.2) than that of Wang [15] (see also Xu and Ma [17]). We note that a sufficient
condition (1.13) is obtained by investigating convergence conditions of the sequences {In} and {In}.

We also note that the conditions (1.4) and (1.12) play important roles to obtain the global asymptotic stability of
the endemic equilibrium E∗ of system (1.2) for R0 > 1, respectively. Moreover, by the sake of Lemma 4.2, our monotone
iterative techniques become much more improved one than that in Xu and Ma [17] which was applied to the saturated
incidence rate G(I) = I

1+αI .
As a result, we have solved the conjecture to the example in Huo and Ma [5] that the endemic equilibrium of system

(1.2) is globally asymptotically stable if R0 > 1, and also give partial answers to the open problem in Huo and Ma [5]
and also Yang and Xiao [18]. These techniques are also applicable to various kinds of epidemic models with delays,
which will be our future works.
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