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Abstract. In this paper, we consider a class of several species Lotka.Volterra systems with time delays and establish
sufficient conditions which ensure the systems to be permanent. We improve and extend the known conditions of the
permanence in Lu and Lu [4], Lu et al. [5] and Nakata and Muroya [7]. Moreover, we give the conditions of the
permanence for a class of three species Lotka-Volterra predator-prey systems which need no restriction on the size of
time delays and improve the result in [2]. Some examples for comparison with the previous results are given to illustrate
the main results.
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1 Introduction

Many authors have since studied the dynamical behavior of some ecological models governed by functional (ordinary)
differential equations (see, e.g., [1–10] and the references therein). The way of interactions between species is also varied
depending on situations. For instance, a species may eat others, may be eaten by others and may compete or cooperate
with others. From the biological aspects, under the above circumstances, it is quite important to obtain the condition
which ensures coexistence of all species in multispecies communities.

In this paper, we consider the following n-dimensional Lotka-Volterra system with multiple delays:

dx1(t)

dt
= x1(t)

[
r1 −

n∑
j=1
j ̸=2

m∑
l=0

al1jxj(t− lτ) + a112x2(t− τ)

]
,

dxi(t)

dt
= xi(t)

[
ri −

n∑
j=1

j ̸=i+1

m∑
l=0

alijxj(t− lτ) +

m∑
l=0

ali i+1xi+1(t− lτ)

]
, i = 2, . . . , n− 1,

dxn(t)

dt
= xn(t)

[
rn −

n∑
j=2

m∑
l=0

alnjxj(t− lτ) +
m∑
l=0

aln1x1(t− lτ)

]
, t ≥ 0,

(1.1)

with initial conditions

xi(θ) = ϕi(θ) ≥ 0, θ ∈ [−mτ, 0], ϕi(0) > 0, 1, 2, . . . , n, (1.2)

where τ ≥ 0, each ri, ai and aij are constants with ϕ is continuous on [−mτ, 0]. It is said that system (1.1) is permanent
if there is a compact set K in the interior of Rn

+ = {x = (x1, x2, . . . , xn) ∈ Rn|xi > 0, i = 1, 2, . . . , n} such that all the
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solutions x(t) = (x1(t), x2(t), . . . , xn(t)) of system (1.1) with initial conditions (1.2) ultimately enter K. That is, there
exists m and M for any solutions x(t) such that

0 < m ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ M < +∞.

To examine the population dynamics of the ecological systems composed of such a variety of species, competitive or prey-
predator Lotka-Volterra systems have been widely discussed in the literature. For example, Ahmad and Lazer [1] have
established the average conditions for persistence on the nonautonomous Lotka-Volterra competitive systems with no
delays and Xu and Chen [10] have studied the delayed nonautonomous three species Lotka-Volterra predator-prey systems
without dominating instantaneous negative feedback. For two species Lotka-Volterra predator-prey and competitive
systems with dominating instantaneous negative feedback, Wang and Ma [9], Lu and Takeuchi [6] obtained that delays
are harmless for the permanence. Recently, for the following three species Lotka-Volterra predator-prey system:

dx1(t)

dt
= x1(t)[r1 − a11x1(t) + a12x2(t− τ)− a13x3(t− 2τ)],

dx2(t)

dt
= x2(t)[r2 − a21x1(t)− a22x2(t) + a23x2(t− τ)],

dx3(t)

dt
= x3(t)[r3 + a31x1(t)− a32x2(t− τ)− a33x3(t− 2τ)],

(1.3)

where ri > 0, aij > 0 1 ≤ i, j ≤ 3 and τ ≥ 0 are constants, Enatsu [2, Corollary 2.1] has obtained the following result
depending on the length of the delays:

Theorem 1.1. System (1.3) is permanent if a13 ≥ a23, a22 > a12 and r1−a13M̂3 > 0, r2−a21M̂1 > 0, r3−a32M̂2 > 0,
where

M̂1 = −a12P̂

r1
+
{a12P̂

r1
+

1

a11

(
r1 +

a12P̂

x̂∗
1

)}
e2r1τ , M̂2 =

r2 + a23M̂3

a22
, M̂3 =

r3 + a31M̂1

a33
e2(r3+a31M̂1)τ ,

m̂1 =
r1 − a13M̂3

a11
e2(r1−a13M̂3−a11M̂1)τ , m̂2 =

r2 − a21M̂1

a22
, m̂3 =

r3 − a32M̂2

a233
e2(r3−a32M̂2−a33M̂3)τ ,

and x = x̂∗
1 is a unique positive solution of the following equation:

x(r1 − a11x) + a12P̂ = 0, P̂ =
(r1 + r2)

2

4a11(a22 − a12)
> 0.

On the other hand, some authors have recently argued that cooperation is also an important interaction among species,
which is commonly seen in social animals and in human society. In addition to the above statements, in the real system,
the feedback of interspecific interactions and intraspecific competitions on the population dynamics are generally delayed.

However, there are few papers concerning multispecies Lotka-Volterra cooperative systems with delays to compare
with competitive and prey-predator systems. Lin and Lu [3] consider the following two species Lotka-Volterra cooperative
system with delays and obtain sufficient conditions which ensure the system to be permanent:

dx1(t)

dt
= x1(t)(r1 − a1x1(t)− a11x1(t− τ11) + a12x2(t− τ12)),

dx2(t)

dt
= x2(t)(r2 − a2x2(t) + a21x1(t− τ21)− a22x2(t− τ22)),

(1.4)

where ai > 0, aij > 0, τij ≥ 0 and ri > 0 (i, j = 1, 2) are constants.

Theorem 1.2. System (1.4) is permanent if ri > 0 and a1a2 − a12a21 > 0.

On the other hand, Lu and Lu [4] have investigated the permanence for the two species case of system (1.1), namely,
dx1(t)

dt
= x1(t)(r1 − a111x1(t− τ)− a211x1(t− 2τ) + a112x2(t− τ)),

dx2(t)

dt
= x2(t)(r2 + a021x1(t) + a121x1(t− τ)− a022x2(t)− a122x2(t− τ)),

(1.5)

where aij > 0, ri > 0 (i, j = 1, 2) and τ ≥ 0 are constants. The following result is obtained in [4, Theorem 1.3].

Theorem 1.3. Let a021 = 0. Then system (1.5) is permanent if there exist constants Ci > 0, Di ≥ 0 such that
dxi(t)
dt ≤ Cixi(t) +Di (i = 1, 2). {

a211 (1− 2r1τ) + a111 (1− r1τ)
}
a022 − a112a

1
21 > 0. (1.6)
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From Theorem 1.3, the delays may harm the permanence for Lotka-Volterra cooperative systems. For the similar analysis
of delay effect, Lu et al. [5] obtained the following result:

Theorem 1.4. For system (1.4), let τ21 = 0 and τ12 = τ22 ≥ 0. Then system (1.4) is permanent if ri > 0 (i = 1, 2),
a1 > a21 and a22 > a12.

Recently, Nakata and Muroya [7] establish new sufficient conditions for system (1.5) to be permanent. Remarkably,
their conditions no longer depend on the size of time delays. They obtain the following result (see [8, Corollary 1.2]):

Theorem 1.5. System (1.5) is permanent if

a111 > a021, a211 > a121, a022 > a112. (1.7)

Later, Enatsu [2] extended their result for a n-dimensional system, in which the following result is also obtained.

Theorem 1.6. System (1.5) is permanent if

a111 > a021, a211 ≥ a121, a022 ≥ a112. (1.8)

In the present paper, by using techniques of Nakata and Muroya [7] and a boundary Lyapunov functional method in [6,9],
we give the improved permanence conditions for systems (1.3)-(1.5). The main results are as follows:

Theorem 1.7. System (1.5) is permanent if r1a
0
12+r2a

1
11 > 0, r1a

1
21+r2a

2
11 > 0, a111a

0
22 > a021a

1
12 and a211a

0
22 > a121a

1
12.

Moreover, we can extend the above techniques to the three species case for system (1.3) as follows.

Theorem 1.8. System (1.3) is permanent if a13a22 > a23a12, r2a11− r1a21 > 0, r3a22− r2a32 > 0 and r1A11+ r2A12+
r3A13 > 0 hold. Here, A11 = a22a33 + a23a32, A12 = a12a33 + a32a13 and A13 = a12a23 − a13a22.

Remark 1.1. Theorem 1.7 improves Theorems 1.3, 1.5 and 1.6 since our permanence conditions are valid if either of
the following three cases hold:

i) a211 < a123, ii) a022 < a112, iii) r2 < 0.

In addition, Theorem 1.8 generalizes the results by Enatsu [2, Corollary 2.1] for three species and our conditions also
do not need the restriction on the size of time delay τ .

2 Preliminaries and some lemmas

At first, we introduce some basic lemmas. In particular, Lemma 2.2 plays an important role for illustrating the perma-
nence of the cooperative population system.

Lemma 2.1. Every solution of system (1.1) with initial conditions exists in the interval [0,+∞) and remains positive
for all t ≥ 0.

The following result is obtained in [8].

Lemma 2.2. Consider the following inequality;

du(t)

dt
≤ u(t)[a− buα(t− τ)] +D

with initial conditions u(t) = φ(t) for t ∈ [−τ, 0] and φ(0) > 0, where a > 0, b > 0, α > 0 and D ≥ 0 are constants.
Then there exists a positive Mu < +∞ such that

lim sup
t→+∞

u(t) ≤ Mu ≡ −D

a
+

(
D

a
+ u∗

)
eaτ > 0,

where u = u∗ is a unique positive solution of u(a− buα) +D = 0.

Lemma 2.3. For system (1.5), assume that r1a
0
12 + r2a

1
11 > 0, r1a

1
21 + r2a

2
11 > 0, a111a

0
22 > a021a

1
12 and a211a

0
22 > a121a

1
12

hold. Then there exists a positive constant α such that max{a021/a111, a121/a211} < α < a022/a
1
12 and

lim sup
t→+∞

x1(t)x2(t− τ) ≤ N ≡ (r1α)
α+1

(αa111 − a021)
αa022

e(r1α+r2)τ < +∞, (2.1)
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Proof. Since a111a
0
22 > a021a

1
12 and a211a

0
22 > a121a

1
12, it is clear that there exists a constant α with max{a021/a111, a121/a211} <

α < a022/a
1
12. Furthermore, from r1a

0
12 + r2a

1
11 > 0 and r1a

1
21 + r2a

2
11 > 0, we have r1α+ r2 > 0 and αa111 − a021 > 0.

In order to show (2.1), we first suppose that lim supt→+∞ xα
1 (t)x2(t − τ) = +∞. Then there exists a subsequence

{tk}+∞
k=1 such that

lim
tk→+∞

xα
1 (tk)x2(tk − τ) = +∞, and

d

dt
xα
1 (t)x2(t− τ)|t=tk ≥ 0, k = 0, 1, 2, . . . .

From (1.5), we obtain

d

dt
xα
1 (t)x2(t− τ) = xα

1 (t)x2(t− τ)[r1α+ r2 − (αa111 − a021)x1(t− τ)− (αa211 − a121)x1(t− 2τ)

− (a022 − αa112)x2(t− τ)− a022x2(t− 2τ)]

= xα
1 (t)x2(t− τ)[r1α+ r2 − (αa111 − a021)x1(t− τ)− a022x1(t− 2τ)]. (2.2)

From (2.2), it follows that

(αa111 − a021)x1(tk − tau)− a022x1(tk − 2τ) ≤ r1α+ r2.

Thus, we get x1(tk − τ) ≤ r1α+r2
αa1

11−a0
21

and x2(tk − 2τ) ≤ r1α+r2
a0
22

. By integrating both sides of (2.2) from tk − τ to tk, we

obtain

x1(tk)x2(tk − τ) ≤ x1(tk − τ)x2(tk − 2τ)e(r1α+r2)τ < +∞.

This leads to a contradiction. Thus, we have lim supt→+∞ x1(t)x2(t − τ) < +∞. Similar to the above discussion, we
obtain (2.1). The proof is complete. □

Lemma 2.4. For system (1.5), assume that r1a
0
12 + r2a

1
11 > 0, r1a

1
21 + r2a

2
11 > 0, a111a

0
22 > a021a

1
12 and a211a

0
22 > a121a

1
12

hold. Then it holds that

lim sup
t→+∞

x1(t) ≤ M1 ≡
[
−a112N

r1
+

(
−a112N

r1
+ x∗

)
eαr1τ

] 1
α

< +∞,

lim sup
t→+∞

x2(t) ≤ M2 ≡ r2 + (a021 + a121)M1

a022
< +∞,

where x = x∗ is the unique positive solution of x(r1 − a111x
1
α ) + a112N = 0.

Proof. At first, we show that x1(t) is bounded above. From Lemma 2.3, for any positive constant ε1 > 0, there exists
a positive constant T1 such that x1(t)x2(t− τ) ≤ N + ε1 for t > T1. For the functional V (t) := xα

1 (t), we have

dV (t)

dt
= αxα

1 (t)[r1 − a111x1(t− τ)− a211x1(t− 2τ) + a112x2(t− τ)]

= αxα
1 (t)[r1 − a111x1(t− τ)− a211x1(t− 2τ)] + αa112(N + ε1)

= αV (t)[r1 − a111V
1
α (t− τ)] + αa112(N + ε1).

Since ε1 is arbitrarily chosen, by Lemma 2.2, we obtain

lim sup
t→+∞

V (t) ≤ −a112N

r1
+

(
−a112N

r1
+ x∗

)
eαr1τ ,

from which we obtain lim supt→+∞ x1(t) ≤ M1.
Next, we show that x2(t) is ultimately bounded. For any positive constant ε2 > 0, there exists a positive constant

T2 such that x1(t) ≤ M1 + ε2 for t > T2. Therefore, we have lim supt→+∞ x2(t) ≤ M2. □

Similar to Lemmas 2.3 and 2.4, we have

Lemma 2.5. For system (1.3), assume that a13a22 > a23a12 holds. Then there exist positive constants α1 such that
a23/a13 < α1 < a22/a12 and

lim sup
t→+∞

xα1
1 (t)x2(t− τ) ≤ N1.
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Lemma 2.6. For system (1.3), if a13a22 > a23a12 then it holds that

lim sup
t→+∞

x1(t) ≤ M̃1 ≡
[
−a12N1

r1
+

(
−a12N1

r1
+ x∗

1

)
eα1r1τ

] 1
α1

< +∞,

lim sup
t→+∞

x3(t) ≤ M̃3 ≡ r3 + a31M̃1

a33
e2(r3+a31M̃1)τ < +∞,

lim sup
t→+∞

x2(t) ≤ M̃2 ≡ r2 + a23M̃3

a22
< +∞,

where x = x∗
1 is the unique positive solution of x(r1 − a11x

1
α1 ) + a12N1 = 0.

3 Proof of Theorem 1.7

In this section, we give a proof of Theorem 1.7.

Proof of Theorem 1.7. From Lemma 2.4, there are two positive constants M1 and M2 such that for sufficiently large
t, any solution of (1.5) satisfies 0 < xi(t) ≤ Mi (i = 1, 2). We now consider the following functionals:

V1(t) = x1(t) exp

{
−a111

∫ t

t−τ

x1(s)ds− a211

∫ t

t−2τ

x1(s)ds

}
V2(t) = (x1(t))

a0
21+a1

21(x2(t))
a1
11+a2

11 exp

{
(a121a

2
11 − a111a

0
21)

∫ t

t−τ

x1(s)ds

−a211(a
0
21 + a121)

∫ t

t−2τ

x1(s)ds+ (a112(a
0
21 + a121)− a122(a

1
11 + a211))

∫ t

t−τ

x2(s)ds

}
.

(3.3)

Then we have

V ′
1(t) ≥ V1(t)(δ1 −∆1x1(t)), V ′

2(t) = V2(t)(δ2 −∆2x2(t)),

where δ1 = r1, ∆1 = a111 + a211, δ2 = (a111 + a211)r2 + (a021 + a121)r1 and ∆2 = (a111 + a211)(a
0
22 + a122)− a112(a

0
21 + a121). Let

us fix 0 < hi <
δi
2∆i

for (i = 1, 2). If xi(t) ≤ hi holds for some i, then we have

dVi(t)

dt
≥ δi

2
Vi(t), (3.4)

from which we obtain

m1x1(t) ≤ V1(t) ≤ x1(t), (3.5)

m2(x1(t))
a0
21+a1

21(x2(t))
a1
11+a2

11 ≤ V2(t) ≤ m2(x1(t))
a0
21+a1

21(x2(t))
a1
11+a2

11 , (3.6)

where

m1 = exp[−(a111 + 2a211)M1τ ],

m2 = exp[−(a111a
0
21 + 2a211a

0
12 + 2a211a

0
21)M1τ − (a111a

0
21 + a211a

1
22)],

m3 = exp[a121a
2
11M1τ + a112(a

0
21 + a121)M2τ ].

We now consider the two curves l1 and l2 in the region {X ∈ R2
+0|Xi ≤ Mi, i = 1, 2} defined by

l1 : X1 = λh1,

with λ ≤ m1. Moreover, we suppose that the intersection point of curve l1 with X2 = h2 is (X̃1, h2). We here choose C
such that

0 < C < m2(X̃1)
a0
21+a1

21(h2)
a1
11+a2

11

and then define l2 by

l2 : X
a0
21+a1

21
1 X

a1
11+a2

11
2 = C/m2.
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By using the techniques in [6, 9], we first show that if there is a t∗0 > t0 such that x1(t
∗
0) > h1, then the orbits will

remain on the right side of curve l1 for all t ≥ t∗0. In fact, if x(t) meets l1 at t2 then there exists a t1 ∈ (t∗0, t2) such that
x1(t1) = h1 and x1(t) < h1 for any t ∈ (t1, t2]. From (3.4), we have V1(t1) < V1(t2). On the other hand, it holds that

V1(t2) < x1(t2) = λh1 ≤ m1h1 = mx1(t1) ≤ V1(t1).

This is a contradiction.
Similar to the above discussion, we secondly show that if there is a t3 > t0 such that x1(t3) > h1 then x(t) cannot

meet l2 for all t > t3. In fact, if x(t) meets l2 at t5, then there exists a t4 ∈ (t3, t5] such that x2(t4) = h2 and x2(t) < h2

for t ∈ (t4, t5]. By (3.4), we have

V2(t4) < V2(t5) ≤ m2(x1(t5))
a0
21+a1

21(x2(t5))
a1
11+a2

11 = C.

However, since x(t) lies on the right side of l1 and x2(t4) = h2, we have

V2(t4) ≥ m2(x1(t4))
a0
21+a1

21(x2(t4))
a1
11+a2

11 ≥ m2X̃
a0
21+a1

21
1 h

a1
11+a2

11
2 > C.

This is a contradiction.
Finally, We check that for any solution x(t) and any t0 > 0, there is a t6 > t0 such that either x1(t6) > h1 or

x2(t6) > h2. Otherwise, x1(t) ≤ h1 and x2(t) ≤ h2 for all t > t0. By integrating (3.4), we have V1(t) → +∞ as
t → +∞, this contradicts the boundedness of x1(t). Therefore, there is a t6 such that x1(t6) > h1. Now we show that
there is a t7 > t6 such that x2(t7) > h2. Otherwise, for all t ≥ t7, x2(t) ≤ h2, then we have V2(t) → +∞ as t → +∞,
this contradicts the boundedness of x(t). Therefore, we have proved that for any t > t0, there t7 > t6 > t0 such that
x1(t6) > h1, x2(t7) > h2.

The above steps show that any solution x(t) = (x1(t), x2(t)) will enter a smaller region {X = (X1, X2) ∈ R2
+0|hi ≤

Xi ≤ Mi, i = 1, 2} and will not leave the larger one. This shows the permanence. □

4 Proof of Theorem 1.8

In this section, we give a proof of Theorem 1.8.

Proof of Theorem 1.8. From Lemma 2.6, there are positive constants M̃i (i = 1, 2, 3) such that for sufficiently large
t, any solution of (1.5) satisfies 0 < xi(t) ≤ M̃i (i = 1, 2, 3). We now consider the following functionals:

V1(t) = x1(t)
A11x2(t)

A12x3(t)
A13 exp

[
(a12A11 − a32A13)

∫ t

t−τ

x2(s)ds+ (a31A13 − a21A12)

∫ t

t−τ

x1(s)ds

−(a13A11 − a33A13)

∫ t

t−2τ

x3(s)ds+ a23A12

∫ t

t−τ

x3(s)ds

]
V2(t) = (x1(t))

−a21(x2(t))
a11 exp

[
−a11a21

∫ t

t−τ

x1(s)ds− a21a12

∫ t

t−τ

x2(s)ds

+a21a13

∫ t

t−2τ

x3(s)ds+ a11a23

∫ t

t−τ

x3(s)ds

]
,

V3(t) = (x2(t))
−a32(x3(t))

a22 exp

[
(a32a21 + a22a31)

∫ t

t−τ

x1(s)ds

−a32a23

∫ t

t−τ

x3(s)ds− a32a22

∫ t

t−2τ

x2(s)ds− a22a33

∫ t

t−2τ

x3(s)ds

]
,

(4.7)

Then we have

V ′
1(t) ≥ V1(t)(δ1 −∆1x1(t)),

where δ1 = r1A11 + r2A12 + r3A13 and ∆1 = det(A) with the matrix −a11 −a21 a31
a12 −a22 −a32
−a13 a32 −a33


and

V ′
i (t) ≥ Vi(t)(δi −∆ixi(t)), i = 2, 3,
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where δ2 = r2a11 − r1a21, ∆2 = a11a22 + a12a21 and δ3 = r3a22 − r2a32, ∆3 = a22a33 + a23a32. Let us fix 0 < hi <
δi
2∆i

for (i = 1, 2, 3). If xi(t) ≤ hi for some i, then we have

dVi(t)

dt
≥ δi

2
Vi(t), (4.8)

from which we obtain

m1x1(t)
A11x2(t)

A12x3(t)
A13 ≤ V1(t) ≤ mx1(t)

A11x2(t)
A12x3(t)

A13 , (4.9)

m2(x1(t))
−a21(x2(t))

a11 ≤ V2(t) ≤ m2(x1(t))
−a21(x2(t))

a11 , (4.10)

m3(x2(t))
−a32(x3(t))

a22 ≤ V3(t) ≤ m3(x2(t))
−a32(x3(t))

a22 , (4.11)

where

m1 = exp[(a31A13 − a21A12)M̃1τ − 2a13A11M̃3τ ],

m1 = exp[(a23A12 − 2a33A13)M̃3τ + (a12A11 − a32A13)M̃2τ ],

m2 = exp[−a11a21M̃1τ − a21a12M̃2τ ],

m2 = exp[(2a21a13 + a11a23)M̃3τ ],

m3 = exp[−a32a22M̃2τ − (2a22a33 + a32a33)M̃3τ ],

m3 = exp[(a32a21 + a22a31)M̃1τ ]

We now consider the three surfaces L1, L2 and L3 in the region {X ∈ R3
+0|Xi ≤ M̃i, i = 1, 2, 3} defined by

L2 : X−a21
1 Xa11

2 = (λ2h2)
a11M̃−a21

1 ,

L3 : X−a32
2 Xa22

3 = (λ3h3)
a22M̃−a32

2 ,

with λi ≤ mi/mi (i = 2, 3). Moreover, we suppose that the intersection of L2 and L3 with X1 = h1 is X2 = X̃2. We
here choose C ′ such that

0 < C ′ < m1h
A11
1 X̃A12

2 M̃A13
3

and then define L1 by

L1 : XA11
1 XA12

2 XA13
3 = C ′/m1.

We first show that if there is a t∗0 > t0 such that x(t) = (x1(t), x2(t), x3(t)) lies on the right side of L2, then the orbits
will remain on the right side of curve L2 for all t ≥ t∗0. In fact, if x(t) meets L2 at t2 then there exists a t1 ∈ (t∗0, t2) such
that x2(t1) = h2 and x2(t) < h2 for t ∈ (t1, t2]. From (4.8), we have V2(t1) < V2(t2). On the other hand, it holds that

V2(t2) ≤ m2(x1(t2))
−a21(x2(t2))

a11 = m2(M̃1)
−a21(λ2h2)

a11

≤ m2(M̃1)
−a21ha11

2 = m2(x1(t1))
−a21(x2(t1))

a11 ≤ V2(t1),

provided λ ≤ m2/m2.
Similar to the above discussion, we secondly show that if there is a t3 > t0 such that x3(t3) > h3 and x(t) lies on the

right side of L3 for all t ≥ t3, then x(t) cannot meet L3 for all t ≥ t3.
In this step, we show that if there is a t4 > t0 such that x2(t4) > h2, x3(t4) > h3 and x(t) lies on the right side of

curves L2 and L3, then x(t) cannot meet L1 for all t > t4. In fact, if x(t) meets L1 at t6, then there exists a t5 ∈ (t4, t6]
such that x1(t5) = h1 for t ∈ (t5, t6], x1(t) < h1. By (4.9), we have

V1(t5) < V1(t6) ≤ m1x1(t6)
A11x2(t6)

A12x3(t6)
A13 = C ′.

However, since x(t) lies on the right side of L2, L3 and x1(t5) = h1, we have

V1(t5) ≥ m1x1(t5)
A11x2(t5)

A12x3(t5)
A13

> m1h
A11
1 X̃A12

2 M̃A13
3 = C ′.

This is a contradiction.
Finally, we check that for any solution x(t) and any t0 > 0, there is a t6 > t0 such that either x1(t6) > h1 or

x2(t6) > h2 or x3(t6) > h3. Otherwise, xi(t) ≤ hi holds for all t > t0, i = 1, 2, 3. By integrating (4.8), we have
Vi(t) → +∞ as t → +∞ and this yields

V1(t)(V3(t))
a13 ≤ m1(m3)

a13x1(t)
A11x2(t)

a12a33x3(t)
a12a23 −→ +∞
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as t → +∞. This contradicts the boundedness of xi(t). Therefore, there is a t6 such that x1(t6) > h1. Now we show
that there is a t7 > t6 such that x2(t7) > h2 or x3(t7) > h3. Otherwise, for all t ≥ t7, x2(t) ≤ h2, x3(t7) ≤ h3 and
we have V2(t) → +∞ as t → +∞. This yields from (4.10) that V2(t) ≤ x1(t)

−a21m2M̃
a11
2 holds for sufficiently large t.

Hence x1(t) → 0 as t → +∞. However, we know that there is a sequence tn → ∞ as n → +∞ such that x1(tn) > h1.
Therefore, we have proved that for any t > t0, there are t7 > t6 > t0 such that x1(t6) > h1, x2(t7) > h2.

Finally, we show that there is a t8 > t7 such that x3(t8) > h3. Otherwise, for all t ≥ t8, x3(t) ≤ h3, we have
V3(t) → +∞. This also yields from (4.10) that V3(t) ≤ x2(t)

−a32m3M̃
a23
3 holds for sufficiently large t. Hence x2(t) → 0

as t → +∞. However, we know that there is a sequence tn → +∞ as n → +∞ such that x2(tn) > h2. Hence, for any
t > t0, there t7 > t6 > t0 such that x1(t6) > h1, x2(t7) > h2.

The above steps show that any solution x(t) = (x1(t), x2(t), x3(t)) will enter a smaller region {X = (X1, X2, X3) ∈
R3

+0|hi ≤ Xi ≤ Mi, i = 1, 2, 3} and will not leave the larger one A. This shows the permanence. □

5 Concluding remarks and some examples

In most natural systems, biological models (such as population dynamics, epidemiology, neural networks) involving time
delays have been studied by a lot of authors, since time delays can express the maturation period of a species, the
incubation time of a disease, the maturation of blood cells, etc.

In the present paper, we consider the permanence property for a class of Lotka-Volterra cooperative systems with
multiple delays and obtain sufficient conditions without any restrictions on the size of time delays which improve the
results of [2, 4, 5, 7]. We illustrate our criteria by the following examples:

Example 5.1. 
dx1(t)

dt
= x1(t)[1− ax1(t− 2τ)− ex1(t− τ) + 2e−

11
4 x2(t− τ)],

dx2(t)

dt
= x2(t)

[
r + bx1(t) +

2

3
e

1
4x1(t− τ)− 1

2
x2(t)−

1

6
e2x2(t− τ)

]
.

(5.1)

If a = 1, b = 0, r = 1, in [4], system (5.1) is permanent if τ satisfies 0 < τ < τ∗ :=
1+e− 8

3 e
−− 5

2

2+e ≈ 0.74 and in [2, 7], the
permanence result is improved for any τ > 0 and a > b > 0. In this case, our criterion in Theorem A also holds true.
But if either of the following parameter set:

(5-I) a = 1, b = 1
2 , −

2
3e

− 3
4 < r < 0,

(5-II) r > 0 and a = 1 < b < 1
4e

11
4 ,

then conditions of Theorems 1.2, 1.4 and 1.5 fail, but Theorem A guarantees that system (5.1) remains permanent.

Example 5.2. 
dx1(t)

dt
= x1(t)[1− α0x1(t)− 2x1(t− τ11) + x2(t− τ12)],

dx2(t)

dt
= x2(t)

[
1− 1

4
x2(t) +

1

2
x1(t)− 2x2(t− τ22)

]
.

(5.2)

If τ12 = τ22 = τ and α0, from [5, Theorem 1.3], system (5.2) is permanent, but if α0 ∈ (1/4, 1/2), the conditions
in [5, Theorem 1.3] fails. On the other hand, we see that the condition of Theorem B holds, thus system (5.2) is

permanent for α0 ∈ (1/4, 1/2). satisfies 0 < τ < τ∗ :=
1+e− 8

3 e
− 5

2

2+e ≈ 0.74 and in [2, 4],

Example 5.3. 

dx1(t)

dt
= x1(t)

[
11

4
− 3x1(t) + x2(t− τ)− 3

4
x3(t− 2τ)

]
,

dx2(t)

dt
= x2(t)

[
5

2
− x1(t− τ)− 2x2(t) +

1

2
x3(t− τ)

]
,

dx3(t)

dt
= x3(t)[3 + x1(t− τ)− x2(t− τ)− 3x3(t− 2τ)].

(5.3)

From Enatsu [2], we see that if τ ∈ (0, 0.0759], system (5.3) is permanent, but the conditions in the present paper need
no restriction on the size τ . It is clear that the condition of Theorem C is satisfied. Hence, our criterion guarantees that
system (5.3) is permanent for any sizes of time delays.

Recently, Nakata [8] considered the general case of system (1.5) and gave some sufficient conditions for the per-
manence, in fact, our technique can also work in those cases. Some ideas in this paper are also applicable to the
nonautonomous Lotka-Volterra cooperative systems with delays and a class of the n-species Lotka-Volterra cooperative
population systems with delays. These become our future topics.
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