Permanence for Lotka-Volterra systems with multiple delays

Guichen Lu
Institute of Computer Applications, Academia Sinica Chengdu 610041, China
E-mail: bromn006@qq.com
Zhengyi Lu ${ }^{\text {* }}$
Department of Mathematics, Sichuan Normal University
Chengdu 610068, China
E-mail: zhengyilu@hotmail.com
Yoichi Enatsu
Department of Pure and Applied Mathematics, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
E-mail: yo1.gc-rw.docomo@akane.waseda.jp

Abstract

In this paper, we consider a class of several species Lotka.Volterra systems with time delays and establish sufficient conditions which ensure the systems to be permanent. We improve and extend the known conditions of the permanence in Lu and Lu 目, Lu et al. 5 and Nakata and Muroya [7. Moreover, we give the conditions of the permanence for a class of three species Lotka-Volterra predator-prey systems which need no restriction on the size of time delays and improve the result in 2 . Some examples for comparison with the previous results are given to illustrate the main results.

Keywords: Lotka-Volterra systems, permanence, time delays.
2000 Mathematics Subject Classification. Primary: 34K20, 34K25; Secondary: 92D30.

1 Introduction

Many authors have since studied the dynamical behavior of some ecological models governed by functional (ordinary) differential equations (see, e.g., 10 and the references therein). The way of interactions between species is also varied depending on situations. For instance, a species may eat others, may be eaten by others and may compete or cooperate with others. From the biological aspects, under the above circumstances, it is quite important to obtain the condition which ensures coexistence of all species in multispecies communities.

In this paper, we consider the following n-dimensional Lotka-Volterra system with multiple delays:

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=x_{1}(t)\left[r_{1}-\sum_{\substack{j=1 \\
j \neq 2}}^{n} \sum_{l=0}^{m} a_{1 j}^{l} x_{j}(t-l \tau)+a_{12}^{1} x_{2}(t-\tau)\right], \tag{1.1}\\
\frac{d x_{i}(t)}{d t}=x_{i}(t)\left[r_{i}-\sum_{\substack{j=1 \\
j \neq i+1}}^{m} \sum_{l=0}^{m} a_{i j}^{l} x_{j}(t-l \tau)+\sum_{l=0}^{m} a_{i i+1}^{l} x_{i+1}(t-l \tau)\right], i=2, \ldots, n-1, \\
\frac{d x_{n}(t)}{d t}=x_{n}(t)\left[r_{n}-\sum_{j=2}^{n} \sum_{l=0}^{m} a_{n j}^{l} x_{j}(t-l \tau)+\sum_{l=0}^{m} a_{n 1}^{l} x_{1}(t-l \tau)\right], t \geq 0,
\end{array}\right.
$$

with initial conditions

$$
\begin{equation*}
x_{i}(\theta)=\phi_{i}(\theta) \geq 0, \quad \theta \in[-m \tau, 0], \quad \phi_{i}(0)>0,1,2, \ldots, n, \tag{1.2}
\end{equation*}
$$

where $\tau \geq 0$, each r_{i}, a_{i} and $a_{i j}$ are constants with ϕ is continuous on [$\left.-m \tau, 0\right]$. It is said that system (1.1) is permanent if there is a compact set K in the interior of $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i}>0, i=1,2, \ldots, n\right\}$ such that all the

[^0]solutions $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ of system (1.1) with initial conditions (1.2) ultimately enter K. That is, there exists m and M for any solutions $x(t)$ such that
$$
0<m \leq \liminf _{t \rightarrow+\infty} x_{i}(t) \leq \limsup _{t \rightarrow+\infty} x_{i}(t) \leq M<+\infty
$$

To examine the population dynamics of the ecological systems composed of such a variety of species, competitive or preypredator Lotka-Volterra systems have been widely discussed in the literature. For example, Ahmad and Lazer 11 have established the average conditions for persistence on the nonautonomous Lotka-Volterra competitive systems with no delays and Xu and Chen 10 have studied the delayed nonautonomous three species Lotka-Volterra predator-prey systems without dominating instantaneous negative feedback. For two species Lotka-Volterra predator-prey and competitive systems with dominating instantaneous negative feedback, Wang and Ma 9, Lu and Takeuchi 6 obtained that delays are harmless for the permanence. Recently, for the following three species Lotka-Volterra predator-prey system:

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=x_{1}(t)\left[r_{1}-a_{11} x_{1}(t)+a_{12} x_{2}(t-\tau)-a_{13} x_{3}(t-2 \tau)\right] \tag{1.3}\\
\frac{d x_{2}(t)}{d t}=x_{2}(t)\left[r_{2}-a_{21} x_{1}(t)-a_{22} x_{2}(t)+a_{23} x_{2}(t-\tau)\right] \\
\frac{d x_{3}(t)}{d t}=x_{3}(t)\left[r_{3}+a_{31} x_{1}(t)-a_{32} x_{2}(t-\tau)-a_{33} x_{3}(t-2 \tau)\right]
\end{array}\right.
$$

where $r_{i}>0, a_{i j}>01 \leq i, j \leq 3$ and $\tau \geq 0$ are constants, Enatsu [2. Corollary 2.1] has obtained the following result depending on the length of the delays:
Theorem 1.1. System (1.3) is permanent if $a_{13} \geq a_{23}, a_{22}>a_{12}$ and $r_{1}-a_{13} \hat{M}_{3}>0, r_{2}-a_{21} \hat{M}_{1}>0, r_{3}-a_{32} \hat{M}_{2}>0$, where

$$
\begin{aligned}
& \hat{M}_{1}=-\frac{a_{12} \hat{P}}{r_{1}}+\left\{\frac{a_{12} \hat{P}}{r_{1}}+\frac{1}{a_{11}}\left(r_{1}+\frac{a_{12} \hat{P}}{\hat{x}_{1}^{*}}\right)\right\} \mathrm{e}^{2 r_{1} \tau}, \hat{M}_{2}=\frac{r_{2}+a_{23} \hat{M}_{3}}{a_{22}}, \hat{M}_{3}=\frac{r_{3}+a_{31} \hat{M}_{1}}{a_{33}} \mathrm{e}^{2\left(r_{3}+a_{31} \hat{M}_{1}\right) \tau}, \\
& \hat{m}_{1}=\frac{r_{1}-a_{13} \hat{M}_{3}}{a_{11}} \mathrm{e}^{2\left(r_{1}-a_{13} \hat{M}_{3}-a_{11} \hat{M}_{1}\right) \tau}, \hat{m}_{2}=\frac{r_{2}-a_{21} \hat{M}_{1}}{a_{22}}, \hat{m}_{3}=\frac{r_{3}-a_{32} \hat{M}_{2}}{a_{33}^{2}} \mathrm{e}^{2\left(r_{3}-a_{32} \hat{M}_{2}-a_{33} \hat{M}_{3}\right) \tau}
\end{aligned}
$$

and $x=\hat{x}_{1}^{*}$ is a unique positive solution of the following equation:

$$
x\left(r_{1}-a_{11} x\right)+a_{12} \hat{P}=0, \quad \hat{P}=\frac{\left(r_{1}+r_{2}\right)^{2}}{4 a_{11}\left(a_{22}-a_{12}\right)}>0
$$

On the other hand, some authors have recently argued that cooperation is also an important interaction among species, which is commonly seen in social animals and in human society. In addition to the above statements, in the real system, the feedback of interspecific interactions and intraspecific competitions on the population dynamics are generally delayed.

However, there are few papers concerning multispecies Lotka-Volterra cooperative systems with delays to compare with competitive and prey-predator systems. Lin and Lu 3 consider the following two species Lotka-Volterra cooperative system with delays and obtain sufficient conditions which ensure the system to be permanent:

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=x_{1}(t)\left(r_{1}-a_{1} x_{1}(t)-a_{11} x_{1}\left(t-\tau_{11}\right)+a_{12} x_{2}\left(t-\tau_{12}\right)\right) \tag{1.4}\\
\frac{d x_{2}(t)}{d t}=x_{2}(t)\left(r_{2}-a_{2} x_{2}(t)+a_{21} x_{1}\left(t-\tau_{21}\right)-a_{22} x_{2}\left(t-\tau_{22}\right)\right)
\end{array}\right.
$$

where $a_{i}>0, a_{i j}>0, \tau_{i j} \geq 0$ and $r_{i}>0(i, j=1,2)$ are constants.
Theorem 1.2. System (1.4) is permanent if $r_{i}>0$ and $a_{1} a_{2}-a_{12} a_{21}>0$.
On the other hand, Lu and Lu 4 have investigated the permanence for the two species case of system (1.1), namely,

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=x_{1}(t)\left(r_{1}-a_{11}^{1} x_{1}(t-\tau)-a_{11}^{2} x_{1}(t-2 \tau)+a_{12}^{1} x_{2}(t-\tau)\right) \tag{1.5}\\
\frac{d x_{2}(t)}{d t}=x_{2}(t)\left(r_{2}+a_{21}^{0} x_{1}(t)+a_{21}^{1} x_{1}(t-\tau)-a_{22}^{0} x_{2}(t)-a_{22}^{1} x_{2}(t-\tau)\right)
\end{array}\right.
$$

where $a_{i j}>0, r_{i}>0(i, j=1,2)$ and $\tau \geq 0$ are constants. The following result is obtained in [4 Theorem 1.3].
Theorem 1.3. Let $a_{21}^{0}=0$. Then system (1.5) is permanent if there exist constants $C_{i}>0, D_{i} \geq 0$ such that $\frac{d x_{i}(t)}{d t} \leq C_{i} x_{i}(t)+D_{i}(i=1,2)$.

$$
\begin{equation*}
\left\{a_{11}^{2}\left(1-2 r_{1} \tau\right)+a_{11}^{1}\left(1-r_{1} \tau\right)\right\} a_{22}^{0}-a_{12}^{1} a_{21}^{1}>0 \tag{1.6}
\end{equation*}
$$

From Theorem 1.3 , the delays may harm the permanence for Lotka-Volterra cooperative systems. For the similar analysis of delay effect, Lu et al. 5 obtained the following result:

Theorem 1.4. For system (1.4), let $\tau_{21}=0$ and $\tau_{12}=\tau_{22} \geq 0$. Then system (1.4) is permanent if $r_{i}>0(i=1,2)$, $a_{1}>a_{21}$ and $a_{22}>a_{12}$.

Recently, Nakata and Muroya 77 establish new sufficient conditions for system (1.5) to be permanent. Remarkably, their conditions no longer depend on the size of time delays. They obtain the following result (see [8, Corollary 1.2]):

Theorem 1.5. System (1.5) is permanent if

$$
\begin{equation*}
a_{11}^{1}>a_{21}^{0}, \quad a_{11}^{2}>a_{21}^{1}, \quad a_{22}^{0}>a_{12}^{1} \tag{1.7}
\end{equation*}
$$

Later, Enatsu [2] extended their result for a n-dimensional system, in which the following result is also obtained.
Theorem 1.6. System (1.5) is permanent if

$$
\begin{equation*}
a_{11}^{1}>a_{21}^{0}, \quad a_{11}^{2} \geq a_{21}^{1}, \quad a_{22}^{0} \geq a_{12}^{1} \tag{1.8}
\end{equation*}
$$

In the present paper, by using techniques of Nakata and Muroya 7 and a boundary Lyapunov functional method in 6|9], we give the improved permanence conditions for systems (1.3)-(1.5). The main results are as follows:
Theorem 1.7. System (1.5) is permanent if $r_{1} a_{12}^{0}+r_{2} a_{11}^{1}>0, r_{1} a_{21}^{1}+r_{2} a_{11}^{2}>0, a_{11}^{1} a_{22}^{0}>a_{21}^{0} a_{12}^{1}$ and $a_{11}^{2} a_{22}^{0}>a_{21}^{1} a_{12}^{1}$.
Moreover, we can extend the above techniques to the three species case for system (1.3) as follows.
Theorem 1.8. System (1.3) is permanent if $a_{13} a_{22}>a_{23} a_{12}, r_{2} a_{11}-r_{1} a_{21}>0, r_{3} a_{22}-r_{2} a_{32}>0$ and $r_{1} A_{11}+r_{2} A_{12}+$ $r_{3} A_{13}>0$ hold. Here, $A_{11}=a_{22} a_{33}+a_{23} a_{32}, A_{12}=a_{12} a_{33}+a_{32} a_{13}$ and $A_{13}=a_{12} a_{23}-a_{13} a_{22}$.

Remark 1.1. Theorem 1.7 improves Theorems $1.3,1.5$ and 1.6 since our permanence conditions are valid if either of the following three cases hold:

$$
\text { i) } a_{11}^{2}<a_{23}^{1}, \text { ii) } a_{22}^{0}<a_{12}^{1}, \text { iii) } r_{2}<0
$$

In addition, Theorem 1.8 generalizes the results by Enatsu 2, Corollary 2.1] for three species and our conditions also do not need the restriction on the size of time delay τ.

2 Preliminaries and some lemmas

At first, we introduce some basic lemmas. In particular, Lemma 2.2 plays an important role for illustrating the permanence of the cooperative population system.

Lemma 2.1. Every solution of system (1.1) with initial conditions exists in the interval $[0,+\infty)$ and remains positive for all $t \geq 0$.

The following result is obtained in 8 .
Lemma 2.2. Consider the following inequality;

$$
\frac{d u(t)}{d t} \leq u(t)\left[a-b u^{\alpha}(t-\tau)\right]+D
$$

with initial conditions $u(t)=\varphi(t)$ for $t \in[-\tau, 0]$ and $\varphi(0)>0$, where $a>0, b>0, \alpha>0$ and $D \geq 0$ are constants. Then there exists a positive $M_{u}<+\infty$ such that

$$
\limsup _{t \rightarrow+\infty} u(t) \leq M_{u} \equiv-\frac{D}{a}+\left(\frac{D}{a}+u^{*}\right) \mathrm{e}^{a \tau}>0
$$

where $u=u^{*}$ is a unique positive solution of $u\left(a-b u^{\alpha}\right)+D=0$.
Lemma 2.3. For system (1.5), assume that $r_{1} a_{12}^{0}+r_{2} a_{11}^{1}>0, r_{1} a_{21}^{1}+r_{2} a_{11}^{2}>0, a_{11}^{1} a_{22}^{0}>a_{21}^{0} a_{12}^{1}$ and $a_{11}^{2} a_{22}^{0}>a_{21}^{1} a_{12}^{1}$ hold. Then there exists a positive constant α such that $\max \left\{a_{21}^{0} / a_{11}^{1}, a_{21}^{1} / a_{11}^{2}\right\}<\alpha<a_{22}^{0} / a_{12}^{1}$ and

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} x_{1}(t) x_{2}(t-\tau) \leq N \equiv \frac{\left(r_{1} \alpha\right)^{\alpha+1}}{\left(\alpha a_{11}^{1}-a_{21}^{0}\right)^{\alpha} a_{22}^{0}} \mathrm{e}^{\left(r_{1} \alpha+r_{2}\right) \tau}<+\infty \tag{2.1}
\end{equation*}
$$

Proof. Since $a_{11}^{1} a_{22}^{0}>a_{21}^{0} a_{12}^{1}$ and $a_{11}^{2} a_{22}^{0}>a_{21}^{1} a_{12}^{1}$, it is clear that there exists a constant α with max $\left\{a_{21}^{0} / a_{11}^{1}, a_{21}^{1} / a_{11}^{2}\right\}<$ $\alpha<a_{22}^{0} / a_{12}^{1}$. Furthermore, from $r_{1} a_{12}^{0}+r_{2} a_{11}^{1}>0$ and $r_{1} a_{21}^{1}+r_{2} a_{11}^{2}>0$, we have $r_{1} \alpha+r_{2}>0$ and $\alpha a_{11}^{1}-a_{21}^{0}>0$.

In order to show (2.1), we first suppose that $\lim \sup _{t \rightarrow+\infty} x_{1}^{\alpha}(t) x_{2}(t-\tau)=+\infty$. Then there exists a subsequence $\left\{t_{k}\right\}_{k=1}^{+\infty}$ such that

$$
\lim _{t_{k} \rightarrow+\infty} x_{1}^{\alpha}\left(t_{k}\right) x_{2}\left(t_{k}-\tau\right)=+\infty, \text { and }\left.\frac{d}{d t} x_{1}^{\alpha}(t) x_{2}(t-\tau)\right|_{t=t_{k}} \geq 0, k=0,1,2, \ldots
$$

From (1.5), we obtain

$$
\begin{align*}
\frac{d}{d t} x_{1}^{\alpha}(t) x_{2}(t-\tau)= & x_{1}^{\alpha}(t) x_{2}(t-\tau)\left[r_{1} \alpha+r_{2}-\left(\alpha a_{11}^{1}-a_{21}^{0}\right) x_{1}(t-\tau)-\left(\alpha a_{11}^{2}-a_{21}^{1}\right) x_{1}(t-2 \tau)\right. \\
& \left.-\left(a_{22}^{0}-\alpha a_{12}^{1}\right) x_{2}(t-\tau)-a_{22}^{0} x_{2}(t-2 \tau)\right] \\
= & x_{1}^{\alpha}(t) x_{2}(t-\tau)\left[r_{1} \alpha+r_{2}-\left(\alpha a_{11}^{1}-a_{21}^{0}\right) x_{1}(t-\tau)-a_{22}^{0} x_{1}(t-2 \tau)\right] . \tag{2.2}
\end{align*}
$$

From (2.2), it follows that

$$
\left(\alpha a_{11}^{1}-a_{21}^{0}\right) x_{1}\left(t_{k}-t a u\right)-a_{22}^{0} x_{1}\left(t_{k}-2 \tau\right) \leq r_{1} \alpha+r_{2} .
$$

Thus, we get $x_{1}\left(t_{k}-\tau\right) \leq \frac{r_{1} \alpha+r_{2}}{\alpha a_{11}^{1}-a_{21}^{0}}$ and $x_{2}\left(t_{k}-2 \tau\right) \leq \frac{r_{1} \alpha+r_{2}}{a_{22}^{0}}$. By integrating both sides of (2.2) from $t_{k}-\tau$ to t_{k}, we obtain

$$
x_{1}\left(t_{k}\right) x_{2}\left(t_{k}-\tau\right) \leq x_{1}\left(t_{k}-\tau\right) x_{2}\left(t_{k}-2 \tau\right) \mathrm{e}^{\left(r_{1} \alpha+r_{2}\right) \tau}<+\infty
$$

This leads to a contradiction. Thus, we have $\lim \sup _{t \rightarrow+\infty} x_{1}(t) x_{2}(t-\tau)<+\infty$. Similar to the above discussion, we obtain (2.1). The proof is complete.

Lemma 2.4. For system (1.5), assume that $r_{1} a_{12}^{0}+r_{2} a_{11}^{1}>0, r_{1} a_{21}^{1}+r_{2} a_{11}^{2}>0, a_{11}^{1} a_{22}^{0}>a_{21}^{0} a_{12}^{1}$ and $a_{11}^{2} a_{22}^{0}>a_{21}^{1} a_{12}^{1}$ hold. Then it holds that

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} x_{1}(t) \leq M_{1} \equiv\left[-\frac{a_{12}^{1} N}{r_{1}}+\left(-\frac{a_{12}^{1} N}{r_{1}}+x^{*}\right) \mathrm{e}^{\alpha r_{1} \tau}\right]^{\frac{1}{\alpha}}<+\infty, \\
& \limsup _{t \rightarrow+\infty} x_{2}(t) \leq M_{2} \equiv \frac{r_{2}+\left(a_{21}^{0}+a_{21}^{1}\right) M_{1}}{a_{22}^{0}}<+\infty,
\end{aligned}
$$

where $x=x^{*}$ is the unique positive solution of $x\left(r_{1}-a_{11}^{1} x^{\frac{1}{\alpha}}\right)+a_{12}^{1} N=0$.
Proof. At first, we show that $x_{1}(t)$ is bounded above. From Lemma 2.3 for any positive constant $\varepsilon_{1}>0$, there exists a positive constant T_{1} such that $x_{1}(t) x_{2}(t-\tau) \leq N+\varepsilon_{1}$ for $t>T_{1}$. For the functional $V(t):=x_{1}^{\alpha}(t)$, we have

$$
\begin{aligned}
\frac{d V(t)}{d t} & =\alpha x_{1}^{\alpha}(t)\left[r_{1}-a_{11}^{1} x_{1}(t-\tau)-a_{11}^{2} x_{1}(t-2 \tau)+a_{12}^{1} x_{2}(t-\tau)\right] \\
& =\alpha x_{1}^{\alpha}(t)\left[r_{1}-a_{11}^{1} x_{1}(t-\tau)-a_{11}^{2} x_{1}(t-2 \tau)\right]+\alpha a_{12}^{1}\left(N+\varepsilon_{1}\right) \\
& =\alpha V(t)\left[r_{1}-a_{11}^{1} V^{\frac{1}{\alpha}}(t-\tau)\right]+\alpha a_{12}^{1}\left(N+\varepsilon_{1}\right)
\end{aligned}
$$

Since ε_{1} is arbitrarily chosen, by Lemma 2.2 we obtain

$$
\limsup _{t \rightarrow+\infty} V(t) \leq-\frac{a_{12}^{1} N}{r_{1}}+\left(-\frac{a_{12}^{1} N}{r_{1}}+x^{*}\right) \mathrm{e}^{\alpha r_{1} \tau}
$$

from which we obtain $\lim \sup _{t \rightarrow+\infty} x_{1}(t) \leq M_{1}$.
Next, we show that $x_{2}(t)$ is ultimately bounded. For any positive constant $\varepsilon_{2}>0$, there exists a positive constant T_{2} such that $x_{1}(t) \leq M_{1}+\varepsilon_{2}$ for $t>T_{2}$. Therefore, we have $\lim \sup _{t \rightarrow+\infty} x_{2}(t) \leq M_{2}$.

Similar to Lemmas 2.3 and 2.4 we have
Lemma 2.5. For system (1.3), assume that $a_{13} a_{22}>a_{23} a_{12}$ holds. Then there exist positive constants α_{1} such that $a_{23} / a_{13}<\alpha_{1}<a_{22} / a_{12}$ and

$$
\limsup _{t \rightarrow+\infty} x_{1}^{\alpha_{1}}(t) x_{2}(t-\tau) \leq N_{1}
$$

Lemma 2.6. For system (1.3), if $a_{13} a_{22}>a_{23} a_{12}$ then it holds that

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} x_{1}(t) \leq \tilde{M}_{1} \equiv\left[-\frac{a_{12} N_{1}}{r_{1}}+\left(-\frac{a_{12} N_{1}}{r_{1}}+x_{1}^{*}\right) \mathrm{e}^{\alpha_{1} r_{1} \tau}\right]^{\frac{1}{\alpha_{1}}}<+\infty, \\
& \limsup _{t \rightarrow+\infty} x_{3}(t) \leq \tilde{M}_{3} \equiv \frac{r_{3}+a_{31} \tilde{M}_{1}}{a_{33}} \mathrm{e}^{2\left(r_{3}+a_{31} \tilde{M}_{1}\right) \tau}<+\infty \\
& \limsup _{t \rightarrow+\infty} x_{2}(t) \leq \tilde{M}_{2} \equiv \frac{r_{2}+a_{23} \tilde{M}_{3}}{a_{22}}<+\infty,
\end{aligned}
$$

where $x=x_{1}^{*}$ is the unique positive solution of $x\left(r_{1}-a_{11} x^{\frac{1}{\alpha_{1}}}\right)+a_{12} N_{1}=0$.

3 Proof of Theorem 1.7

In this section, we give a proof of Theorem 1.7

Proof of Theorem 1.7. From Lemma 2.4 there are two positive constants M_{1} and M_{2} such that for sufficiently large t, any solution of (1.5) satisfies $0<x_{i}(t) \leq M_{i}(i=1,2)$. We now consider the following functionals:

$$
\left\{\begin{align*}
V_{1}(t)= & x_{1}(t) \exp \left\{-a_{11}^{1} \int_{t-\tau}^{t} x_{1}(s) d s-a_{11}^{2} \int_{t-2 \tau}^{t} x_{1}(s) d s\right\} \tag{3.3}\\
V_{2}(t)= & \left(x_{1}(t)\right)^{a_{21}^{0}+a_{21}^{1}}\left(x_{2}(t)\right)^{a_{11}^{1}+a_{11}^{2}} \exp \left\{\left(a_{21}^{1} a_{11}^{2}-a_{11}^{1} a_{21}^{0}\right) \int_{t-\tau}^{t} x_{1}(s) d s\right. \\
& \left.-a_{11}^{2}\left(a_{21}^{0}+a_{21}^{1}\right) \int_{t-2 \tau}^{t} x_{1}(s) d s+\left(a_{12}^{1}\left(a_{21}^{0}+a_{21}^{1}\right)-a_{22}^{1}\left(a_{11}^{1}+a_{11}^{2}\right)\right) \int_{t-\tau}^{t} x_{2}(s) d s\right\}
\end{align*}\right.
$$

Then we have

$$
V_{1}^{\prime}(t) \geq V_{1}(t)\left(\delta_{1}-\Delta_{1} x_{1}(t)\right), V_{2}^{\prime}(t)=V_{2}(t)\left(\delta_{2}-\Delta_{2} x_{2}(t)\right)
$$

where $\delta_{1}=r_{1}, \Delta_{1}=a_{11}^{1}+a_{11}^{2}, \delta_{2}=\left(a_{11}^{1}+a_{11}^{2}\right) r_{2}+\left(a_{21}^{0}+a_{21}^{1}\right) r_{1}$ and $\Delta_{2}=\left(a_{11}^{1}+a_{11}^{2}\right)\left(a_{22}^{0}+a_{22}^{1}\right)-a_{12}^{1}\left(a_{21}^{0}+a_{21}^{1}\right)$. Let us fix $0<h_{i}<\frac{\delta_{i}}{2 \Delta_{i}}$ for ($i=1,2$). If $x_{i}(t) \leq h_{i}$ holds for some i, then we have

$$
\begin{equation*}
\frac{d V_{i}(t)}{d t} \geq \frac{\delta_{i}}{2} V_{i}(t) \tag{3.4}
\end{equation*}
$$

from which we obtain

$$
\left.\begin{array}{rl}
\underline{m}_{1} x_{1}(t) & \leq V_{1}(t)
\end{array}\right) \leq x_{1}(t), ~\left(\underline{m}_{2}\left(x_{1}(t)\right)^{a_{21}^{0}+a_{21}^{1}}\left(x_{2}(t)\right)^{a_{11}^{1}+a_{11}^{2}} \leq V_{2}(t) \leq \bar{m}_{2}\left(x_{1}(t)\right)^{a_{21}^{0}+a_{21}^{1}}\left(x_{2}(t)\right)^{a_{11}^{1}+a_{11}^{2}},\right.
$$

where

$$
\begin{aligned}
& \underline{m}_{1}=\exp \left[-\left(a_{11}^{1}+2 a_{11}^{2}\right) M_{1} \tau\right], \\
& \underline{m}_{2}=\exp \left[-\left(a_{11}^{1} a_{21}^{0}+2 a_{11}^{2} a_{12}^{0}+2 a_{11}^{2} a_{21}^{0}\right) M_{1} \tau-\left(a_{11}^{1} a_{21}^{0}+a_{11}^{2} a_{22}^{1}\right)\right], \\
& \underline{m}_{3}=\exp \left[a_{21}^{1} a_{11}^{2} M_{1} \tau+a_{12}^{1}\left(a_{21}^{0}+a_{21}^{1}\right) M_{2} \tau\right] .
\end{aligned}
$$

We now consider the two curves l_{1} and l_{2} in the region $\left\{X \in \mathbb{R}_{+0}^{2} \mid X_{i} \leq M_{i}, i=1,2\right\}$ defined by

$$
l_{1}: X_{1}=\lambda h_{1},
$$

with $\lambda \leq \underline{m}_{1}$. Moreover, we suppose that the intersection point of curve l_{1} with $X_{2}=h_{2}$ is $\left(\tilde{X}_{1}, h_{2}\right)$. We here choose C such that

$$
0<C<\underline{m}_{2}\left(\tilde{X}_{1}\right)^{a_{21}^{0}+a_{21}^{1}}\left(h_{2}\right)^{a_{11}^{1}+a_{11}^{2}}
$$

and then define l_{2} by

$$
l_{2}: X_{1}^{a_{21}^{0}+a_{21}^{1}} X_{2}^{a_{11}^{1}+a_{11}^{2}}=C / \bar{m}_{2}
$$

By using the techniques in 66, we first show that if there is a $t_{0}^{*}>t_{0}$ such that $x_{1}\left(t_{0}^{*}\right)>h_{1}$, then the orbits will remain on the right side of curve l_{1} for all $t \geq t_{0}^{*}$. In fact, if $x(t)$ meets l_{1} at t_{2} then there exists a $t_{1} \in\left(t_{0}^{*}, t_{2}\right)$ such that $x_{1}\left(t_{1}\right)=h_{1}$ and $x_{1}(t)<h_{1}$ for any $t \in\left(t_{1}, t_{2}\right.$]. From (3.4), we have $V_{1}\left(t_{1}\right)<V_{1}\left(t_{2}\right)$. On the other hand, it holds that

$$
V_{1}\left(t_{2}\right)<x_{1}\left(t_{2}\right)=\lambda h_{1} \leq \underline{m}_{1} h_{1}=\underline{m} x_{1}\left(t_{1}\right) \leq V_{1}\left(t_{1}\right) .
$$

This is a contradiction.
Similar to the above discussion, we secondly show that if there is a $t_{3}>t_{0}$ such that $x_{1}\left(t_{3}\right)>h_{1}$ then $x(t)$ cannot meet l_{2} for all $t>t_{3}$. In fact, if $x(t)$ meets l_{2} at t_{5}, then there exists a $t_{4} \in\left(t_{3}, t_{5}\right]$ such that $x_{2}\left(t_{4}\right)=h_{2}$ and $x_{2}(t)<h_{2}$ for $t \in\left(t_{4}, t_{5}\right]$. By (3.4), we have

$$
V_{2}\left(t_{4}\right)<V_{2}\left(t_{5}\right) \leq \bar{m}_{2}\left(x_{1}\left(t_{5}\right)\right)^{a_{21}^{0}+a_{21}^{1}}\left(x_{2}\left(t_{5}\right)\right)^{a_{11}^{1}+a_{11}^{2}}=C .
$$

However, since $x(t)$ lies on the right side of l_{1} and $x_{2}\left(t_{4}\right)=h_{2}$, we have

$$
V_{2}\left(t_{4}\right) \geq \underline{m}_{2}\left(x_{1}\left(t_{4}\right)\right)^{a_{21}^{0}+a_{21}^{1}}\left(x_{2}\left(t_{4}\right)\right)^{a_{11}^{1}+a_{11}^{2}} \geq \underline{m}_{2} \tilde{X}_{1}^{a_{21}^{0}+a_{21}^{1}} h_{2}^{a_{11}^{1}+a_{11}^{2}}>C .
$$

This is a contradiction.
Finally, We check that for any solution $x(t)$ and any $t_{0}>0$, there is a $t_{6}>t_{0}$ such that either $x_{1}\left(t_{6}\right)>h_{1}$ or $x_{2}\left(t_{6}\right)>h_{2}$. Otherwise, $x_{1}(t) \leq h_{1}$ and $x_{2}(t) \leq h_{2}$ for all $t>t_{0}$. By integrating (3.4), we have $V_{1}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$, this contradicts the boundedness of $x_{1}(t)$. Therefore, there is a t_{6} such that $x_{1}\left(t_{6}\right)>h_{1}$. Now we show that there is a $t_{7}>t_{6}$ such that $x_{2}\left(t_{7}\right)>h_{2}$. Otherwise, for all $t \geq t_{7}, x_{2}(t) \leq h_{2}$, then we have $V_{2}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$, this contradicts the boundedness of $x(t)$. Therefore, we have proved that for any $t>t_{0}$, there $t_{7}>t_{6}>t_{0}$ such that $x_{1}\left(t_{6}\right)>h_{1}, x_{2}\left(t_{7}\right)>h_{2}$.

The above steps show that any solution $x(t)=\left(x_{1}(t), x_{2}(t)\right)$ will enter a smaller region $\left\{X=\left(X_{1}, X_{2}\right) \in \mathbb{R}_{+0}^{2} \mid h_{i} \leq\right.$ $\left.X_{i} \leq M_{i}, i=1,2\right\}$ and will not leave the larger one. This shows the permanence.

4 Proof of Theorem 1.8

In this section, we give a proof of Theorem 1.8

Proof of Theorem 1.8. From Lemma [2.6] there are positive constants $\tilde{M}_{i}(i=1,2,3)$ such that for sufficiently large t, any solution of (1.5) satisfies $0<x_{i}(t) \leq \tilde{M}_{i}(i=1,2,3)$. We now consider the following functionals:

$$
\left\{\begin{align*}
V_{1}(t)= & x_{1}(t)^{A_{11}} x_{2}(t)^{A_{12}} x_{3}(t)^{A_{13}} \exp \left[\left(a_{12} A_{11}-a_{32} A_{13}\right) \int_{t-\tau}^{t} x_{2}(s) d s+\left(a_{31} A_{13}-a_{21} A_{12}\right) \int_{t-\tau}^{t} x_{1}(s) d s\right. \\
& \left.-\left(a_{13} A_{11}-a_{33} A_{13}\right) \int_{t-2 \tau}^{t} x_{3}(s) d s+a_{23} A_{12} \int_{t-\tau}^{t} x_{3}(s) d s\right] \\
V_{2}(t)= & \left(x_{1}(t)\right)^{-a_{21}}\left(x_{2}(t)\right)^{a_{11}} \exp \left[-a_{11} a_{21} \int_{t-\tau}^{t} x_{1}(s) d s-a_{21} a_{12} \int_{t-\tau}^{t} x_{2}(s) d s\right. \tag{4.7}\\
& \left.+a_{21} a_{13} \int_{t-2 \tau}^{t} x_{3}(s) d s+a_{11} a_{23} \int_{t-\tau}^{t} x_{3}(s) d s\right] \\
V_{3}(t)= & \left(x_{2}(t)\right)^{-a_{32}\left(x_{3}(t)\right)^{a_{22}} \exp \left[\left(a_{32} a_{21}+a_{22} a_{31}\right) \int_{t-\tau}^{t} x_{1}(s) d s\right.} \\
& \left.-a_{32} a_{23} \int_{t-\tau}^{t} x_{3}(s) d s-a_{32} a_{22} \int_{t-2 \tau}^{t} x_{2}(s) d s-a_{22} a_{33} \int_{t-2 \tau}^{t} x_{3}(s) d s\right]
\end{align*}\right.
$$

Then we have

$$
V_{1}^{\prime}(t) \geq V_{1}(t)\left(\delta_{1}-\Delta_{1} x_{1}(t)\right)
$$

where $\delta_{1}=r_{1} A_{11}+r_{2} A_{12}+r_{3} A_{13}$ and $\Delta_{1}=\operatorname{det}(A)$ with the matrix

$$
\left(\begin{array}{ccc}
-a_{11} & -a_{21} & a_{31} \\
a_{12} & -a_{22} & -a_{32} \\
-a_{13} & a_{32} & -a_{33}
\end{array}\right)
$$

and

$$
V_{i}^{\prime}(t) \geq V_{i}(t)\left(\delta_{i}-\Delta_{i} x_{i}(t)\right), i=2,3
$$

where $\delta_{2}=r_{2} a_{11}-r_{1} a_{21}, \Delta_{2}=a_{11} a_{22}+a_{12} a_{21}$ and $\delta_{3}=r_{3} a_{22}-r_{2} a_{32}, \Delta_{3}=a_{22} a_{33}+a_{23} a_{32}$. Let us fix $0<h_{i}<\frac{\delta_{i}}{2 \Delta_{i}}$ for ($i=1,2,3$). If $x_{i}(t) \leq h_{i}$ for some i, then we have

$$
\begin{equation*}
\frac{d V_{i}(t)}{d t} \geq \frac{\delta_{i}}{2} V_{i}(t) \tag{4.8}
\end{equation*}
$$

from which we obtain

$$
\begin{align*}
\underline{m}_{1} x_{1}(t)^{A_{11}} x_{2}(t)^{A_{12}} x_{3}(t)^{A_{13}} & \leq V_{1}(t) \tag{4.9}
\end{align*} \leq \bar{m} x_{1}(t)^{A_{11}} x_{2}(t)^{A_{12}} x_{3}(t)^{A_{13}}, ~=\underline{m}_{2}\left(x_{1}(t)\right)^{-a_{21}}\left(x_{2}(t)\right)^{a_{11}} \leq V_{2}(t) \leq \bar{m}_{2}\left(x_{1}(t)\right)^{-a_{21}}\left(x_{2}(t)\right)^{a_{11}}, ~ \underline{m}_{3}\left(x_{2}(t)\right)^{-a_{32}}\left(x_{3}(t)\right)^{a_{22}} \leq V_{3}(t) \leq \bar{m}_{3}\left(x_{2}(t)\right)^{-a_{32}}\left(x_{3}(t)\right)^{a_{22}}, ~ \$
$$

where

$$
\begin{aligned}
& \underline{m}_{1}=\exp \left[\left(a_{31} A_{13}-a_{21} A_{12}\right) \tilde{M}_{1} \tau-2 a_{13} A_{11} \tilde{M}_{3} \tau\right] \\
& \bar{m}_{1}=\exp \left[\left(a_{23} A_{12}-2 a_{33} A_{13}\right) \tilde{M}_{3} \tau+\left(a_{12} A_{11}-a_{32} A_{13}\right) \tilde{M}_{2} \tau\right] \\
& \underline{m}_{2}=\exp \left[-a_{11} a_{21} \tilde{M}_{1} \tau-a_{21} a_{12} \tilde{M}_{2} \tau\right] \\
& \bar{m}_{2}=\exp \left[\left(2 a_{21} a_{13}+a_{11} a_{23}\right) \tilde{M}_{3} \tau\right] \\
& \underline{m}_{3}=\exp \left[-a_{32} a_{22} \tilde{M}_{2} \tau-\left(2 a_{22} a_{33}+a_{32} a_{33}\right) \tilde{M}_{3} \tau\right] \\
& \bar{m}_{3}=\exp \left[\left(a_{32} a_{21}+a_{22} a_{31}\right) \tilde{M}_{1} \tau\right]
\end{aligned}
$$

We now consider the three surfaces L_{1}, L_{2} and L_{3} in the region $\left\{X \in \mathbb{R}_{+0}^{3} \mid X_{i} \leq \tilde{M}_{i}, i=1,2,3\right\}$ defined by

$$
\begin{aligned}
& L_{2}: X_{1}^{-a_{21}} X_{2}^{a_{11}}=\left(\lambda_{2} h_{2}\right)^{a_{11}} \tilde{M}_{1}^{-a_{21}} \\
& L_{3}: X_{2}^{-a_{32}} X_{3}^{a_{22}}=\left(\lambda_{3} h_{3}\right)^{a_{22}} \tilde{M}_{2}^{-a_{32}}
\end{aligned}
$$

with $\lambda_{i} \leq \underline{m}_{i} / \bar{m}_{i}(i=2,3)$. Moreover, we suppose that the intersection of L_{2} and L_{3} with $X_{1}=h_{1}$ is $X_{2}=\tilde{X}_{2}$. We here choose C^{\prime} such that

$$
0<C^{\prime}<\underline{m}_{1} h_{1}^{A_{11}} \tilde{X}_{2}^{A_{12}} \tilde{M}_{3}^{A_{13}}
$$

and then define L_{1} by

$$
L_{1}: X_{1}^{A_{11}} X_{2}^{A_{12}} X_{3}^{A_{13}}=C^{\prime} / \bar{m}_{1}
$$

We first show that if there is a $t_{0}^{*}>t_{0}$ such that $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ lies on the right side of L_{2}, then the orbits will remain on the right side of curve L_{2} for all $t \geq t_{0}^{*}$. In fact, if $x(t)$ meets L_{2} at t_{2} then there exists a $t_{1} \in\left(t_{0}^{*}, t_{2}\right)$ such that $x_{2}\left(t_{1}\right)=h_{2}$ and $x_{2}(t)<h_{2}$ for $t \in\left(t_{1}, t_{2}\right.$]. From (4.8), we have $V_{2}\left(t_{1}\right)<V_{2}\left(t_{2}\right)$. On the other hand, it holds that

$$
\begin{aligned}
V_{2}\left(t_{2}\right) & \leq \underline{m}_{2}\left(x_{1}\left(t_{2}\right)\right)^{-a_{21}}\left(x_{2}\left(t_{2}\right)\right)^{a_{11}}=\underline{m}_{2}\left(\tilde{M}_{1}\right)^{-a_{21}}\left(\lambda_{2} h_{2}\right)^{a_{11}} \\
& \leq \underline{m}_{2}\left(\tilde{M}_{1}\right)^{-a_{21}} h_{2}^{a_{11}}=\bar{m}_{2}\left(x_{1}\left(t_{1}\right)\right)^{-a_{21}}\left(x_{2}\left(t_{1}\right)\right)^{a_{11}} \leq V_{2}\left(t_{1}\right),
\end{aligned}
$$

provided $\lambda \leq \underline{m}_{2} / \bar{m}_{2}$.
Similar to the above discussion, we secondly show that if there is a $t_{3}>t_{0}$ such that $x_{3}\left(t_{3}\right)>h_{3}$ and $x(t)$ lies on the right side of L_{3} for all $t \geq t_{3}$, then $x(t)$ cannot meet L_{3} for all $t \geq t_{3}$.

In this step, we show that if there is a $t_{4}>t_{0}$ such that $x_{2}\left(t_{4}\right)>h_{2}, x_{3}\left(t_{4}\right)>h_{3}$ and $x(t)$ lies on the right side of curves L_{2} and L_{3}, then $x(t)$ cannot meet L_{1} for all $t>t_{4}$. In fact, if $x(t)$ meets L_{1} at t_{6}, then there exists a $t_{5} \in\left(t_{4}, t_{6}\right]$ such that $x_{1}\left(t_{5}\right)=h_{1}$ for $t \in\left(t_{5}, t_{6}\right], x_{1}(t)<h_{1}$. By (4.9), we have

$$
V_{1}\left(t_{5}\right)<V_{1}\left(t_{6}\right) \leq \bar{m}_{1} x_{1}\left(t_{6}\right)^{A_{11}} x_{2}\left(t_{6}\right)^{A_{12}} x_{3}\left(t_{6}\right)^{A_{13}}=C^{\prime}
$$

However, since $x(t)$ lies on the right side of L_{2}, L_{3} and $x_{1}\left(t_{5}\right)=h_{1}$, we have

$$
\begin{aligned}
V_{1}\left(t_{5}\right) & \geq \underline{m}_{1} x_{1}\left(t_{5}\right)^{A_{11}} x_{2}\left(t_{5}\right)^{A_{12}} x_{3}\left(t_{5}\right)^{A_{13}} \\
& >\underline{m}_{1} h_{1}^{A_{11}} \tilde{X}_{2}^{A_{12}} \tilde{M}_{3}^{A_{13}}=C^{\prime} .
\end{aligned}
$$

This is a contradiction.
Finally, we check that for any solution $x(t)$ and any $t_{0}>0$, there is a $t_{6}>t_{0}$ such that either $x_{1}\left(t_{6}\right)>h_{1}$ or $x_{2}\left(t_{6}\right)>h_{2}$ or $x_{3}\left(t_{6}\right)>h_{3}$. Otherwise, $x_{i}(t) \leq h_{i}$ holds for all $t>t_{0}, i=1,2,3$. By integrating (4.8), we have $V_{i}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$ and this yields

$$
V_{1}(t)\left(V_{3}(t)\right)^{a_{13}} \leq \bar{m}_{1}\left(\bar{m}_{3}\right)^{a_{13}} x_{1}(t)^{A_{11}} x_{2}(t)^{a_{12} a_{33}} x_{3}(t)^{a_{12} a_{23}} \longrightarrow+\infty
$$

as $t \rightarrow+\infty$. This contradicts the boundedness of $x_{i}(t)$. Therefore, there is a t_{6} such that $x_{1}\left(t_{6}\right)>h_{1}$. Now we show that there is a $t_{7}>t_{6}$ such that $x_{2}\left(t_{7}\right)>h_{2}$ or $x_{3}\left(t_{7}\right)>h_{3}$. Otherwise, for all $t \geq t_{7}, x_{2}(t) \leq h_{2}, x_{3}\left(t_{7}\right) \leq h_{3}$ and we have $V_{2}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. This yields from (4.10) that $V_{2}(t) \leq x_{1}(t)^{-a_{21}} \bar{m}_{2} \tilde{M}_{2}^{a_{11}}$ holds for sufficiently large t. Hence $x_{1}(t) \rightarrow 0$ as $t \rightarrow+\infty$. However, we know that there is a sequence $t_{n} \rightarrow \infty$ as $n \rightarrow+\infty$ such that $x_{1}\left(t_{n}\right)>h_{1}$. Therefore, we have proved that for any $t>t_{0}$, there are $t_{7}>t_{6}>t_{0}$ such that $x_{1}\left(t_{6}\right)>h_{1}, x_{2}\left(t_{7}\right)>h_{2}$.

Finally, we show that there is a $t_{8}>t_{7}$ such that $x_{3}\left(t_{8}\right)>h_{3}$. Otherwise, for all $t \geq t_{8}, x_{3}(t) \leq h_{3}$, we have $V_{3}(t) \rightarrow+\infty$. This also yields from (4.10) that $V_{3}(t) \leq x_{2}(t)^{-a_{32}} \bar{m}_{3} \tilde{M}_{3}^{a_{23}}$ holds for sufficiently large t. Hence $x_{2}(t) \rightarrow 0$ as $t \rightarrow+\infty$. However, we know that there is a sequence $t_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$ such that $x_{2}\left(t_{n}\right)>h_{2}$. Hence, for any $t>t_{0}$, there $t_{7}>t_{6}>t_{0}$ such that $x_{1}\left(t_{6}\right)>h_{1}, x_{2}\left(t_{7}\right)>h_{2}$.

The above steps show that any solution $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ will enter a smaller region $\left\{X=\left(X_{1}, X_{2}, X_{3}\right) \in\right.$ $\left.\mathbb{R}_{+0}^{3} \mid h_{i} \leq X_{i} \leq M_{i}, i=1,2,3\right\}$ and will not leave the larger one A . This shows the permanence.

5 Concluding remarks and some examples

In most natural systems, biological models (such as population dynamics, epidemiology, neural networks) involving time delays have been studied by a lot of authors, since time delays can express the maturation period of a species, the incubation time of a disease, the maturation of blood cells, etc.

In the present paper, we consider the permanence property for a class of Lotka-Volterra cooperative systems with multiple delays and obtain sufficient conditions without any restrictions on the size of time delays which improve the results of 2,45, 7. We illustrate our criteria by the following examples:

Example 5.1.

$$
\left\{\begin{align*}
\frac{d x_{1}(t)}{d t} & =x_{1}(t)\left[1-a x_{1}(t-2 \tau)-\mathrm{e} x_{1}(t-\tau)+2 \mathrm{e}^{-\frac{11}{4}} x_{2}(t-\tau)\right] \tag{5.1}\\
\frac{d x_{2}(t)}{d t} & =x_{2}(t)\left[r+b x_{1}(t)+\frac{2}{3} \mathrm{e}^{\frac{1}{4}} x_{1}(t-\tau)-\frac{1}{2} x_{2}(t)-\frac{1}{6} \mathrm{e}^{2} x_{2}(t-\tau)\right]
\end{align*}\right.
$$

If $a=1, b=0, r=1$, in [4, system (5.1) is permanent if τ satisfies $0<\tau<\tau^{*}:=\frac{1+\mathrm{e}-\frac{8}{3} \mathrm{e}^{--\frac{5}{2}}}{2+\mathrm{e}} \approx 0.74$ and in [2], 7 , the permanence result is improved for any $\tau>0$ and $a>b>0$. In this case, our criterion in Theorem A also holds true. But if either of the following parameter set:
(5-I) $a=1, b=\frac{1}{2},-\frac{2}{3} \mathrm{e}^{-\frac{3}{4}}<r<0$,
(5-II) $r>0$ and $a=1<b<\frac{1}{4} \mathrm{e}^{\frac{11}{4}}$,
then conditions of Theorems 1.2, 1.4 and 1.5 fail, but Theorem A guarantees that system (5.1) remains permanent.

Example 5.2.

$$
\left\{\begin{align*}
\frac{d x_{1}(t)}{d t} & =x_{1}(t)\left[1-\alpha_{0} x_{1}(t)-2 x_{1}\left(t-\tau_{11}\right)+x_{2}\left(t-\tau_{12}\right)\right] \tag{5.2}\\
\frac{d x_{2}(t)}{d t} & =x_{2}(t)\left[1-\frac{1}{4} x_{2}(t)+\frac{1}{2} x_{1}(t)-2 x_{2}\left(t-\tau_{22}\right)\right]
\end{align*}\right.
$$

If $\tau_{12}=\tau_{22}=\tau$ and α_{0}, from [5. Theorem 1.3], system (5.2) is permanent, but if $\alpha_{0} \in(1 / 4,1 / 2)$, the conditions in (5) Theorem 1.3] fails. On the other hand, we see that the condition of Theorem B holds, thus system (5.2) is permanent for $\alpha_{0} \in(1 / 4,1 / 2)$. satisfies $0<\tau<\tau^{*}:=\frac{1+\mathrm{e}-\frac{8}{3} \mathrm{e}^{-\frac{5}{2}}}{2+\mathrm{e}} \approx 0.74$ and in 244,
Example 5.3.

$$
\left\{\begin{align*}
\frac{d x_{1}(t)}{d t} & =x_{1}(t)\left[\frac{11}{4}-3 x_{1}(t)+x_{2}(t-\tau)-\frac{3}{4} x_{3}(t-2 \tau)\right] \tag{5.3}\\
\frac{d x_{2}(t)}{d t} & =x_{2}(t)\left[\frac{5}{2}-x_{1}(t-\tau)-2 x_{2}(t)+\frac{1}{2} x_{3}(t-\tau)\right] \\
\frac{d x_{3}(t)}{d t} & =x_{3}(t)\left[3+x_{1}(t-\tau)-x_{2}(t-\tau)-3 x_{3}(t-2 \tau)\right]
\end{align*}\right.
$$

From Enatsu [2, we see that if $\tau \in(0,0.0759]$, system (5.3) is permanent, but the conditions in the present paper need no restriction on the size τ. It is clear that the condition of Theorem C is satisfied. Hence, our criterion guarantees that system (5.3) is permanent for any sizes of time delays.

Recently, Nakata [8] considered the general case of system (1.5) and gave some sufficient conditions for the permanence, in fact, our technique can also work in those cases. Some ideas in this paper are also applicable to the nonautonomous Lotka-Volterra cooperative systems with delays and a class of the n-species Lotka-Volterra cooperative population systems with delays. These become our future topics.

Acknowledgments

We would like to sincerely acknowledge the anonymous referees for their many useful comments and suggestions. The second author is partially supported by a National Key Basic Research Project of China (Grant No. 2004CB318000).

References

[1] S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system, Nonl. Anal. TMA. 40 (2000), 37-49.
[2] Y. Enatsu, Permanence for multi-species nonautonomous Lotka-Volterra cooperative systems, AIP Conf. Proc. 1124 (2009), 109-118.
[3] S. Lin and Z. Lu, Permanence for two species Lotka-Volterra systems with delays, Math. Biosci. Engi. 3 (2006), 137-144.
[4] G. Lu and Z. Lu, Permanence for two species Lotka-Volterra systems with delays, Math. Biosci. Engi. 5 (2008), 477-484.
[5] G. Lu, Z. Lu and X. Lian, Delay effect on the permanence for Lotka-Volterra cooperative systems, Nonl. Anal. RWA. 11 (2010), 2810-2816.
[6] Z. Lu and Y. Takeuchi, Permanence and global attractivity for Lotka-Volterra systems with delay, Nonlinear Anal. TMA 22 (1994), 847-856
[7] Y. Nakata and Y. Muroya, Permanence for nonautonomous Lotka-Volterra cooperative systems with delays, Nonl. Anal. RWA. 11 (2010), 528-534.
[8] Y. Nakata, Permanence for the Lotka-Volterra cooperative system with several delays, Int. J. Biomath. 2 (2009), 267-285.
[9] W. Wang and Z. Ma, Harmless delays for uniform persistence, J. Math. Anal. Appl. 158 (1991), 256.268.
[10] R. Xu and L. Chen, Persistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback, Math. Anal. Appl. 262 (2001), 50-61.

[^0]: * Corresponding author.

