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1 Introduction

Mathematical models have a role to develop our better understanding of a virus dynamics in vivo. Several mathematical
models have been proposed in order to expect the dynamics of virus population since a basic viral infection model
was formulated by Nowak and Bangham [14]. Those models provide advances in our understanding of HIV-1 (human
immunodeficiency virus 1) and other viruses, such as HBV (hepatitis B virus) and HCV (hepatitis C virus) (see [6,10,12]
and the references therein).

Wodarz et al. [18] proposed a mathematical model describing interaction between viral dynamics and the immune
response. The authors analyzed equilibrium condition of the mathematical model in order to investigate which type of
immune response is required against different types of viral infection. Wang et al. [16] mathematically investigated the
dynamics of the model. They proved that the infection free equilibrium is globally asymptotically stable if the basic
reproduction number is less than or equal to one and that the infected equilibrium is locally asymptotically stable if the
basic reproduction number is greater than one. By using a Lyapunov function they obtained a sufficient condition for
the global stability of the infected equilibrium. In particular, they proved that when there is no nonlytic effector the
infected equilibrium is globally asymptotically stable, see Corollary 3.2 in [16]. Their numerical studies indicated that
the infected equilibrium seems to be globally asymptotically stable, even if the nonlytic component is available. Thus
they offered a conjecture on the global asymptotic stability of the infected equilibrium.

In virus dynamics it has been reported that new virus particles are not instantaneously produced after the initial
infection, see [6, 10, 12, 13]. This motivates us to employ mathematical models by delay differential equations. The
estimated values of kinetic parameters are usually changed by these delay differential equations, see [6,12]. Mathematical
analysis for the models may be helpful to obtain an integrated view for the virus dynamics.

In this paper we formulate the viral infection model with lytic and nonlytic responses by a system of delay differential
equations, based on the mathematical model in Wodarz et al. [18]. Via constructing Lyapunov functionals we prove
that the global dynamics can be completely determined by the basic reproduction number.

The organization of this paper is as follows. In Section 2 we introduce the mathematical model derived in Wodarz et al.
[18], which is a system of ordinary differential equations. Assuming that virus particles are not produced instantaneously,
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we formulate a system of delay differential equations. We prove existence of positive solutions under suitable initial
conditions and existence of equilibria. In Section 3 we analyze dynamics of the model. We prove that the infection free
equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to one and that the
infected equilibrium is globally asymptotically stable if the basic reproduction number is greater than one. Furthermore
we provide a proof for the permanence of the infected cell population when the nonlytic immune response is available.
In Section 5 we discuss our results.

2 Delayed viral infection dynamics with lytic and nonlytic immune effec-
tors

Wodarz et al. [18] proposed the following mathematical model for viral infection dynamics with lytic and nonlytic
immune responses: 

dx(t)

dt
= λ− dx(t)− βx(t)y(t)

1 + qz(t)
,

dy(t)

dt
=

βx(t)y(t)

1 + qz(t)
− ay(t)− py(t)z(t),

dz(t)

dt
= cy(t)− bz(t).

(2.1)

Here x(t), y(t) and z(t) denote the number of susceptible host cells, the number of infected cells, which produce virus
particles, and the number of immune cells at time t, respectively. The number of produced susceptible cells per unit
of time and the mortality rate of the susceptible cells is given by λ and d, respectively. Antiviral immune effector
mechanism is divided into lytic and nonlytic. Lytic components kill infected cells whereas the nonlytic components
inhibit viral replication through soluble mediators. The number of produced infected cells per unit of time at time t is
given by βx(t)y(t)/(1 + qz(t)), where viral replication is inhibited by the nonlytic antiviral activity, where q take into
account the strength of the nonlytic component. Infected cells are killed by the lytic immune response at rate pz(t),
where p denotes the strength of the lytic component. The mortality rate of infected cells is a. The number of produced
immune cells per unit of time and the mortality rate of immune cells are given by cy(t) and b, respectively. We assume
that every parameter is positive except p and q and that p and q are nonnegative constants.

We assume that virus production occurs after the virus entry by a constant delay τ . Then the number of produced
infected cells per unit of time at time t is given as

βe−δτx(t− τ)y(t− τ)

1 + qz(t− τ)
,

where e−δτ is the survival probability of infected but not yet virus-producing cells. We obtain the following delayed
viral infection model: 

dx(t)

dt
= λ− dx(t)− βx(t)y(t)

1 + qz(t)
,

dy(t)

dt
=

βe−δτx(t− τ)y(t− τ)

1 + qz(t− τ)
− ay(t)− py(t)z(t),

dz(t)

dt
= cy(t)− bz(t).

(2.2)

2.1 Existence and uniqueness of positive solution

For the system (2.2) we set a suitable phase space. We denote by C = C([−τ, 0],R3) the Banach space of continuous
functions mapping the interval [−τ, 0] into R3 equipped with the sup-norm. The nonnegative cone of C is defined as
C+ = C([−τ, 0],R3

+). The initial condition for (2.2) is given by (x, y, z) (θ) = ϕ (θ) for θ ∈ [−τ, 0], where ϕ ∈ C+.

Lemma 2.1. System (2.2) generates a unique solution defined on t ∈ (0,∞). For ϕ ∈ C+ one has x(t) > 0, y(t) ≥ 0 and
z(t) ≥ 0 for t ∈ (0,∞). If we assume further that either ϕ2(0) > 0 or there exists θ ∈ [−τ, 0) such that ϕ1(θ)ϕ2(θ) > 0
then y(t) > 0 and z(t) > 0 for t ∈ [τ,∞).

Proof. Since the right hand side of system (2.2) is locally Lipschitzian on C+, there exists α > 0 such that system (2.2)
has a unique local solution on (0, α), see Theorem 2.3, Chapter 2 in [5]. We prove that x(t) > 0, y(t) ≥ 0 and z(t) ≥ 0

for t ∈ (0, α). It is straightforward to show that x(t) > 0 for all t ∈ (0, α), because dx(t)
dt = λ > 0 if x(t) = 0. Consider

the case α ≤ τ . Integrating the second equation of system (2.2) from 0 to t, we get

y(t) = ϕ2(0)e
−

∫ t
0
a+pz(s)ds + βe−δτ

∫ t

0

ϕ1(θ − τ)ϕ2(θ − τ)

1 + qϕ3(θ − τ)
e−

∫ t
θ
a+pz(s)dsdθ, (2.3)
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which yields y(t) ≥ 0 for t ∈ (0, α). Next, integrating the third equation of system (2.2) from 0 to t, we obtain

z(t) = ϕ3(0)e
−bt +

∫ t

0

cy(θ)e−b(t−θ)dθ, (2.4)

which yields z(t) ≥ 0 for t ∈ (0, α). For the case α > τ , one can obtain the nonnegativity by the method of steps with
(2.3) and (2.4). Thus x(t) > 0, y(t) ≥ 0 and z(t) ≥ 0 for all t ∈ (0, α). Now we show the global existence of the solution,
i.e., α = +∞. One has x(t) ≤ max

{
ϕ1(0),

λ
d

}
for t ∈ (0, α). Formulas of (2.3) and (2.4) imply boundedness of y and z

for t ≤ τ . For t > τ we define

N(t) := x(t− τ) + eδτy(t) +
aeδτ

2c
z(t).

Then we get

d

dt
N(t) =λ− dx(t− τ)− aeδτ

2
y(t)− py(t)z(t)− aeδτ

2c
bz(t)

≤λ−min
{
d,

a

2
, b
}
N(t).

This implies that the solution is bounded on (0, α). Therefore, we can take α = +∞ by continuation of the solution,
see Chapter 2 in [5]. Finally, again using the formulas of (2.3) and (2.4), strict positivity of y and z can be shown. □

2.2 Existence of equilibria

System (2.2) always has an infection free equilibrium given as
(
λ
d , 0, 0

)
. To show the existence of an infected equilibrium

we define the basic reproduction number as

R0 :=
λβe−δτ

da
. (2.5)

The basic reproduction number denotes the expected number of the infected cells produced by one infected cell in the
expected life-time in the initial infection. We introduce the following result.

Theorem 2.1. Let us assume that R0 > 1 holds. Then (2.2) admits a unique infected equilibrium, where every compo-
nent is strictly positive.

Proof. We assume that there exists an equilibrium. We denote it by (x, y, z). Then the third equation of (2.2) implies

y =
b

c
z. (2.6)

The first equation of (2.2) and (2.6) give

x = λ

(
d+

β b
cz

1 + qz

)−1

. (2.7)

We define

H(z) :=
βe−δτλ

d(1 + qz) + β b
cz

− a− pz for z > 0.

From the second equation of (2.2), we consider the existence of positive roots of H(z) = 0. It is straightforward to see
that H is a strictly monotone decreasing function with respect to z. Since we have

lim
z→+0

H(z) = βe−δτ λ

d
− a = a (R0 − 1) > 0

there exists a unique positive root of H(z), which is the third component of the infected equilibrium. Then the first and
second components are given as (2.7) and (2.6), respectively. □

3 Global dynamics analysis

In this section we analyze global dynamics of (2.2). We divide the section into two parts for the case, q = 0, i.e., no
nonlytic immune response, and for the case q > 0, i.e., nonlytic immune response is available, while we always assume
p ∈ [0,∞). To analyze global stability of equilibria we construct Lyapunov functionals. For Lyapunov functionals, we
define a function

g(x) := x− 1− lnx (3.1)

defined on (0,∞). One can see that x = 1 is a strict global minimum for g(x) and g(1) = 0 holds. In the proofs we use
the notation xt(θ) = x(t+ θ) for θ ∈ [τ, 0] as usual in the theory of functional differential equations, see e.g [5].

In the following, we restrict our attention to the positive solution. Thus we can redefine the initial condition as
(x, y, z)(θ) = ϕ(θ) with ϕi(θ) > 0 for i ∈ {1, 2, 3} and θ ∈ [−τ, 0].
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3.1 Viral dynamics without nonlytic immune response

First we analyze global dynamics of (2.2) for a special case. We assume that there is no nonlytic immune effector, i.e.,
q = 0. We provide a threshold result in terms of the basic reproduction number.

Theorem 3.1. Let us assume that R0 ≤ 1 holds. Then the infection free equilibrium of (2.2) is globally asymptotically
stable. If R0 > 1 then the infected equilibrium is globally asymptotically stable.

Proof. We define
G := {φ ∈ C+|φi(θ) > 0, i ∈ {1, 2, 3} , θ ∈ [−τ, 0]} .

First, we assume R0 ≤ 1. We denote λ
d by x0. For φ ∈ G we define

V (φ) := x0g

(
φ1(0)

x0

)
+ eδτφ2(0) + βV−(φ) +

peδτ

c

1

2
(φ3(0))

2, (3.2)

where

V−(φ) :=

∫ 0

−τ

φ1(θ)φ2(θ)dθ.

We show that
d

dt
V (xt, yt, zt) ≤ 0, (3.3)

where (xt, yt, zt) is a solution of (2.2). Since it holds λ = dx0, we calculate

d

dt
g

(
x(t)

x0

)
=

1

x0

(
1− x0

x(t)

)
(dx0 − dx(t)− βx(t)y(t))

=

(
1− x0

x(t)

){
d

(
1− x(t)

x0

)
− β

x(t)

x0
y(t)

}
=− d

x0x(t)
(x(t)− x0)

2 − β
x(t)

x0
y(t) + βy(t). (3.4)

We calculate

d

dt
V−(xt, yt, zt) = x(t)y(t)− x(t− τ)y(t− τ) (3.5)

and

d

dt

1

2
(z(t))2 =z(t)(cy(t)− bz(t))

=cz(t)y(t)− b(z(t))2. (3.6)

Combining (3.4), (3.5) and (3.6), we obtain

d

dt
V (xt, yt, zt) =− d

x(t)
(x(t)− x0)

2 − βx(t)y(t) + βx0y(t)

+ eδτ
(
βe−δτx(t− τ)y(t− τ)− ay(t)− py(t)z(t)

)
+ β (x(t)y(t)− x(t− τ)y(t− τ)) +

peδτ

c

{
cz(t)y(t)− b(z(t))2

}
=− d

x(t)
(x(t)− x0)

2
+
(
βx0 − aeδτ

)
y(t)− bpeδτ

c
(z(t))2. (3.7)

Since we have that R0 ≤ 1, it follows that βx0 − aeδτ ≤ 0. Thus, from (3.7), we obtain (3.3). We define a set

G := {φ ∈ G|V (φ) ≤ V (ϕ)} ,

where ϕ = (x0, y0, z0). One can see that G is closed and positively invariant. Thus the closure of G is itself and G
contains (xt, yt, zt) for all t > 0. Since V is continuous on G, V is a Lyapunov functional on G (see Chapter 5.3 in [5]).
We define the set

E := {φ ∈ G|V̇(2.2)(φ) = 0}.

Then we get
E =

{
φ ∈ G|φ1(0) = x0, φ3(0) = 0

}
.
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Let M be the largest subset in E that is invariant with respect to (2.2). By LaSalle’s invariant principle, the solution
tends to M , see Theorem 3.2, Chapter 5.3 in [5]. We show that M consists only of the infection free equilibrium. From
the invariance of M , one has (xt, yt, zt) (ϕ) ∈ M ⊂ E for t > 0. Then it follows xt = x̂0 and zt = 0̂, whereˆdenotes an
inclusion R → C. From the first equation of system (2.2), we obtain yt = 0̂. Thus, M consists only of the infection free
equilibrium. Hence, every solution tends to the infection free equilibrium. By applying Theorem 2.1, Chapter 5.3 in [5]
one can show that the infection free equilibrium is uniformly stable.

Next we assume R0 > 1. We denote the infected equilibrium by (x∗, y∗, z∗). For φ ∈ G we define a functional as

U(φ) = x∗g

(
φ1(0)

x∗

)
+ y∗eδτg

(
φ2(0)

y∗

)
+ βx∗y∗U−(φ) +

peδτ

c
U+(φ3(0)), (3.8)

where

U−(φ) =

∫ 0

−τ

g

(
φ1(θ)

x∗
φ2(θ)

y∗

)
dθ and U+(φ3(0)) =

1

2
(φ3(0)− z∗)

2
.

We now show that
d

dt
U(xt, yt, zt) ≤ 0. (3.9)

In the following we drop ∗ from the notation: x∗, y∗ and z∗. Since one has

λ = dx+ βxy

from the equilibrium condition, we calculate that

d

dt
g

(
x(t)

x

)
=
1

x

(
1− x

x(t)

)
(λ− dx(t)− βx(t)y(t))

=

(
1− x

x(t)

){
d

(
1− x(t)

x

)
+ βy

(
1− x(t)

x

y(t)

y

)}
=− d

xx(t)
(x(t)− x)

2
+ βy

(
1− x(t)

x

y(t)

y
− x

x(t)
+

y(t)

y

)
. (3.10)

We secondly calculate that

d

dt
g

(
y(t)

y

)
=

1

y

(
1− y

y(t)

)(
βe−δτx(t− τ)y(t− τ)− ay(t)− py(t)z(t)

)
=

(
y(t)

y
− 1

)(
βe−δτx

x(t− τ)

x

y(t− τ)

y(t)
− a− pz(t)

)
.

Substituting a = βe−δτx− pz gives

d

dt
g

(
y(t)

y

)
=βe−δτx

(
y(t)

y
− 1

)(
x(t− τ)

x

y(t− τ)

y(t)
− 1

)
− p

(
y(t)

y
− 1

)
(z(t)− z)

=βe−δτx

(
x(t− τ)y(t− τ)

xy
− y(t)

y
− x(t− τ)y(t− τ)

xy(t)
+ 1

)
− pz

(
y(t)

y
− 1

)(
z(t)

z
− 1

)
. (3.11)

We calculate

d

dt
U−(xt, yt, zt) = g

(
x(t)

x

y(t)

y

)
− g

(
x(t− τ)

x

y(t− τ)

y

)
(3.12)

and get

d

dt
U+(z(t)) = (z(t)− z)(cy(t)− bz(t))

= (z(t)− z) {c(y(t)− y)− b(z(t)− z)}

= cyz

(
z(t)

z
− 1

)(
y(t)

y
− 1

)
− bz2

(
z(t)

z
− 1

)2

. (3.13)
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Combining (3.10), (3.11), (3.12) and (3.13), we obtain

d

dt
U(xt, yt, zt) =− d

x(t)
(x(t)− x)

2
+ βxy

[(
1− x(t)

x

y(t)

y
− x

x(t)

)
+

(
x(t− τ)

x

y(t− τ)

y
− x(t− τ)

x

y(t− τ)

y(t)

)
+ 1

+

{
g

(
x(t)

x

y(t)

y

)
− g

(
x(t− τ)

x

y(t− τ)

y

)}]
− pbeδτ

c
z2
(
z(t)

z
− 1

)2

=− d

x(t)
(x(t)− x)

2
+ βxy

{
−g

(
x(t)

x

y(t)

y

)
− g

(
x

x(t)

)
+ g

(
x(t− τ)

x

y(t− τ)

y

)
− g

(
x(t− τ)

x

y(t− τ)

y(t)

)
+g

(
x(t)

x

y(t)

y

)
− g

(
x(t− τ)

x

y(t− τ)

y

)}
− pbeδτ

c
z2
(
z(t)

z
− 1

)2

=− d

x(t)
(x(t)− x)

2
+ βxy

{
−g

(
x

x(t)

)
− g

(
x(t− τ)

x

y(t− τ)

y(t)

)}
− pbeδτ

c
z2
(
z(t)

z
− 1

)2

. (3.14)

Hence we get (3.9). We define a set
G := {φ ∈ G|U(φ) ≤ U(ϕ)} .

One can see that G is closed and positively invariant. Thus the closure of G is itself and G contains (xt, yt, zt) for all
t > 0. Since U is continuous on G, U is a Lyapunov functional on G. We define the set

E =
{
φ ∈ G|U̇(2.2)(φ) = 0

}
.

We get

E =

{
φ ∈ G

∣∣∣φ1(0) = x, φ3(0) = z,
φ1(−τ)φ2(−τ)

xφ2(0)
= 1

}
.

Let M be the largest subset in E that is invariant with respect to (2.2). Then, by LaSalle’s invariant principle, the
solution tends to M . As in the case R0 ≤ 1 one can prove that M consists only of the infected equilibrium. Thus every
solution tends to the infected equilibrium. By applying Theorem 2.1, Chapter 5.3 in [5], the infected equilibrium is
uniformly stable. □

3.2 Viral dynamics with nonlytic immune response

We analyze the global dynamics of (2.2) with q > 0. It is convenient to transform a variable as

u(t) := 1 + qz(t).

Then we obtain the following system:

dx(t)

dt
= λ− dx(t)− βx(t)y(t)

u(t)
,

dy(t)

dt
=

βe−δτx(t− τ)y(t− τ)

u(t− τ)
− (h+ ru(t)) y(t),

du(t)

dt
= sy(t)− bu(t) + b,

(3.15)

where
h := a− p

q
, r :=

p

q
and s := qc.

It is a direct consequence from Theorem 2.1 that the infection free equilibrium (λd , 0, 1) always exists whereas the infected
equilibrium exists if R0 > 1.

First we prove that the infection free equilibrium is globally asymptotically stable if R0 ≤ 1.

Theorem 3.2. Let us assume that R0 ≤ 1 holds. Then the infection free equilibrium of (3.15) is globally asymptotically
stable.
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Proof. We define the set as

G := {φ ∈ C+|φi(θ) > 0, i ∈ {1, 2} , φ3(θ) > 1, θ ∈ [−τ, 0]} . (3.16)

For φ ∈ G we define

V (φ) := x0g

(
φ1(0)

x0

)
+ eδτφ2(0) +

βx0

s
g (φ3(0)) + βV−(φ) +

reδτ

s
V+(φ3(0)), (3.17)

where

V−(φ) :=

∫ 0

−τ

φ1(θ)φ2(θ)

φ3(θ)
dθ and V+(u) :=

1

2
(u− 1)2.

We show that
d

dt
V (xt, yt, ut) ≤ 0. (3.18)

Since it holds λ = dx0, we calculate that

d

dt
g

(
x(t)

x0

)
=

1

x0

(
1− x0

x(t)

)(
dx0 − dx(t)− βx(t)y(t)

u(t)

)
=

(
1− x0

x(t)

){
d

(
1− x(t)

x0

)
− β

x0

x(t)y(t)

u(t)

}
=− d

x0x(t)
(x(t)− x0)

2 − β
x(t)

x0

y(t)

u(t)
+ β

y(t)

u(t)
. (3.19)

We compute that

d

dt
g (u(t)) =

(
1− 1

u(t)

)
(sy(t)− bu(t) + b)

=sy(t)− s
y(t)

u(t)
− b

(u(t)− 1)
2

u(t)
. (3.20)

Finally, we calculate

d

dt
V−(xt, yt, ut) =

x(t)y(t)

u(t)
− x(t− τ)y(t− τ)

u(t− τ)
(3.21)

and

d

dt
V+(u(t)) =(u(t)− 1)(sy(t)− bu(t) + b)

=su(t)y(t)− sy(t)− b(u(t)− 1)2. (3.22)

Combining (3.19), (3.20), (3.21) and (3.22), we obtain

d

dt
V (xt, yt, ut) =− d

x(t)
(x(t)− x0)

2 − βx(t)
y(t)

u(t)
+ βx0

y(t)

u(t)

+ eδτ
(
βe−δτx(t− τ)y(t− τ)

u(t− τ)
− hy(t)− ry(t)u(t)

)
+

βx0

s

{
sy(t)− s

y(t)

u(t)
− b

(u(t)− 1)
2

u(t)

}
+ β

(
x(t)y(t)

u(t)
− x(t− τ)y(t− τ)

u(t− τ)

)
+

reδτ

s

{
su(t)y(t)− sy(t)− b (u(t)− 1)

2
}

=− d

x(t)
(x(t)− x0)

2
+
{
βx0 − (h+ r)eδτ

}
y(t)− b

(
βx0

su(t)
+

reδτ

s

)
(u(t)− 1)

2
. (3.23)

Since we have that R0 ≤ 1 , it follows that βx0 − (h+ r)eδτ ≤ 0. Thus, from (3.23), we obtain (3.18). We define a set

G := {φ ∈ G|V (φ) ≤ V (ϕ)} .

One can see that G is closed and positively invariant. Thus the closure of G is itself and G contains (xt, yt, ut) for all
t > 0. Since V is continuous on G, V is a Lyapunov functional on G. We define the set

E := {φ ∈ G|V̇(3.15)(φ) = 0}.

7



Then we get
E =

{
φ ∈ G|φ1(0) = x0, φ3(0) = 1

}
.

LetM be the largest subset in E that is invariant with respect to (2.2). Then, by LaSalle’s invariant principle, the solution
tends to M . As in the proof of Theorem 3.1 one can prove that M consists only of the infection free equilibrium. Thus
every solution tends to the infected equilibrium. By applying Theorem 2.1, Chapter 5.3 in [5], the infected equilibrium
is uniformly stable. □

We now consider the global dynamics for R0 > 1. First we prove that the system is permanent. Biologically, this
implies that the virus can persist in the host cell population for any initial conditions. We derive a priori bounds for
the solution.

Proposition 3.1. It holds that

lim sup
t→∞

(x(t), y(t), u(t)) ≤
(
λ

d
,

λe−δτ

min {d, h+ r}
, 1 +

s

b

λe−δτ

min {d, h+ r}

)
,

where the inequality is the componentwise inequality.

Proof. Since it holds that
d

dt
x(t) ≤ λ− dx(t),

we get the bound for lim supt→∞ x(t). Similarly it holds

d

dt

(
x(t− τ)e−δτ + y(t)

)
≤ λe−δτ −min {d, h+ r}

(
x(t− τ)eδτ + y(t)

)
,

we have the bound for lim supt→∞ y(t). By

lim sup
t→∞

u(t) ≤ 1 +
s

b
lim sup
t→∞

y(t)

we obtain the bound for lim supt→∞ u(t). □
We define a set as

Γ :=

{
ϕ ∈ C+|ϕ1(θ) ≤

λ

d
, ϕ2(θ) ≤

λe−δτ

max {d, h+ r}
, ϕ3(θ) ≤ U, θ ∈ [−τ, 0]

}
,

where

U := 1 +
s

b

λe−δτ

min {d, h+ r}
.

Then, similar to the proof of Lemma 3 in [2], one can derive the following proposition.

Proposition 3.2. The set Γ is positively invariant for the system (3.15) and attracts all solutions of the system (3.15).

We prepare some elementary results which will be used in the proof for the permanence of the system (3.15). We
denote by (x∗, y∗, u∗) the infected equilibrium of (3.15). For γ ∈ (0, 1) we define

k1(γ) := b− sγ
y∗

u∗ , k2(γ) := βγ
y∗

u∗ .

We prove the following lemma:

Lemma 3.1. Let us assume that R0 > 1 holds. For any γ ∈ (0, 1) one has that k1(γ) > 0 and that

U > u∗ >
b

k1(γ)
,

λ

d+ k2(γ)
> x∗. (3.24)

Proof. We use the equilibrium conditions of (3.15). Using the third equation one can estimate

k1(γ) > b− s
y∗

u∗ =
b

u∗ .

Thus we get k1(γ) > 0 and u∗ > b
k1(γ)

. From the first equation it holds

βx∗y∗

u∗ = λ− dx∗.

8



Since we have u∗ > 1, the second equations of (3.15) implies

y∗ <
(λ− dx∗) e−δτ

h+ r
<

λe−δτ

min {d, h+ r}
.

Then, from the third equations of (3.15), we get

u∗ = 1 +
s

b
y∗ < U.

Using the first equation of (3.15) we have

0 = λ− dx∗ − βx∗y∗

u∗ < λ− (d+ k2(γ))x
∗,

from which we obtain the second part of (3.24). □
For γ ∈ (0, 1), by (3.24) in Lemma 3.1, we can define positive constants

ρ1(γ) := − 1

k1(γ)
ln

u∗ − b
k1(γ)

U − b
k1(γ)

,

ρ2(γ) := − 1

d+ k2(γ)
ln

(
1− x∗(d+ k2(γ))

λ

)
.

By straightforward calculations one can obtain

Lemma 3.2. Let us assume that R0 > 1 holds. Fix γ ∈ (0, 1) arbitrarily. The following inequalities hold:

Ue−k1(γ)t +
b

k1(γ)

(
1− e−k1(γ)t

)
≤ u∗ for t ≥ ρ1(γ)

and
λ

d+ k2(γ)

{
1− e−(d+k2(γ))t

}
≥ x∗ for t ≥ ρ2(γ).

Then we prove

Theorem 3.3. Let us assume that R0 > 1 holds. For any solution of system (3.15), it holds that

lim inf
t→+∞

y(t) ≥ sup
γ∈(0,1)

γ
y∗

u∗ e
−(h+rU)(ρ(γ)+τ), (3.25)

where
ρ(γ) := max {ρ1(γ), ρ2(γ)} .

Proof. From Proposition 3.2 it is enough to consider the solution with initial conditions satisfying ϕ = (x0, y0, u0) ∈ Γ.
Then one has

u(t) ≤ U for t > 0 (3.26)

by Proposition 3.2. We choose a constant γ ∈ (0, 1) arbitrarily. We define

l(γ) := γ
y∗

u∗ .

First we prove

Proposition 3.3. There exists t0 such that for t ≥ t0 either

(i)
y(t)

u(t)
≥ l(γ) or

(ii)
y(t)

u(t)
oscillates about l(γ).
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Proof. Suppose that there exists t0 such that

y(t0)

u(t0)
= l(γ) and

y(t)

u(t)
< l(γ) for any t > t0. (3.27)

In order to lead a contradiction we estimate x(t) and u(t). Since (3.27) implies that

y(t) < l(γ)u(t) for any t > t0,

from the third equation of (3.15) one has

du(t)

dt
< −k1(γ)u(t) + b for any t > t0.

Then we get

u(t) < u(t0)e
−k1(γ)(t−t0) +

b

k1(γ)

(
1− e−k1(γ)(t−t0)

)
, t > t0.

Since we have (3.26), it holds that u(t0) ≤ U . By Lemma 3.2 we obtain that

u(t) < u∗ for any t > t0 + ρ1(γ). (3.28)

From the first equation of (3.15), it follows that

dx(t)

dt
> λ− (d+ k2(γ))x(t) for any t > t0.

Then one has

x(t) > x(t0)e
−(d+k2(γ))(t−t0) +

λ

d+ k2(γ)

{
1− e−(d+k2(γ))(t−t0)

}
>

λ

d+ k2(γ)

{
1− e−(d+k2(γ))(t−t0)

}
, t > t0. (3.29)

By Lemma 3.2 we obtain that
x(t) > x∗ for any t > t0 + ρ2(γ). (3.30)

We define a positive constant as
y := min

θ∈[0,τ ]
y(t0 + ρ(γ) + θ).

We claim that
y(t) ≥ y for any t > t0 + ρ(γ) + τ. (3.31)

Suppose that there exists T > 0 such that y(t0 + ρ(γ) + τ + θ) ≥ y for θ ∈ [0, T ] and y(L) = y with dy
dt (L) < 0, where

L := t0 + ρ(γ) + τ + T . Then one has

dy(L)

dt
≥
{
βe−δτx(L− τ)

u(L− τ)
− (h+ ru(L))

}
y.

Since (3.30) implies that x(L−τ) > x∗ and (3.28) implies u(L−τ) < u∗ and u(L) < u∗, using the equilibrium condition,
it holds that

βe−δτx(L− τ)

u(L− τ)
− (h+ ru(L)) >

βe−δτx∗

u∗ − (h+ ru∗) = 0.

Hence dy(L)
dt > 0 follows, which is a contradiction. Thus (3.31) holds. For φ = (φ1, φ2, φ3) ∈ C+ with φ3(θ) > 1 for

θ ∈ [−τ, 0] we define a functional as

W (φ) := φ2(0) + βe−δτ

∫ 0

−τ

φ1(θ)φ2(θ)

φ3(θ)
dθ. (3.32)

For t > t0 + ρ(γ) + τ we compute

d

dt
W (xt, yt, ut) =

βe−δτx(t− τ)y(t− τ)

u(t− τ)
− (h+ ru(t)) y(t) + βe−δτ

(
x(t)y(t)

u(t)
− x(t− τ)y(t− τ)

u(t− τ)

)
=

{
βe−δτx(t)

u(t)
− (h+ ru(t))

}
y(t).
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Since one has (3.29), we can estimate x(t) as x(t) > x(γ) > x∗, where

x(γ) :=
λ

d+ k2(γ)

{
1− e−(d+k2(γ))(ρ(γ)+τ)

}
.

Then one has

d

dt
W (xt, yt, ut) >

{
βe−δτx(γ)

u∗ − (h+ ru∗)

}
y > 0

for t > t0 + ρ(γ) + τ . Thus it follows that limt→+∞ W (t) = +∞. However, Proposition 3.1 implies boundedness of W ,
which leads to a contradiction. Thus the claim is proved. □
If (i) holds, then it holds that lim inft→+∞ y(t) ≥ l(γ). Thus we obtain (3.25). We consider the case (ii). We choose tj ,
j ∈ {1, 2} such that t0 ≤ t1 < t2,

y(tj)

u(tj)
= l(γ), j ∈ {1, 2} and

y(t)

u(t)
< l(γ) for any t ∈ (t1, t2) . (3.33)

Finally we prove

Proposition 3.4. It holds that

y(t) > l(γ)e−(h+rU)(ρ(γ)+τ) for any t ∈ (t1, t2) . (3.34)

Proof. From (3.26), one has u(t) ≤ U for t ≥ t0. Then, by the second equation of system (3.15), we have that

dy(t)

dt
≥ − (h+ rU) y(t) for any t ≥ t0.

Since y(t1) = l(γ)u(t1) ≥ l(γ), it follows that

y(t) ≥ l(γ)e−(h+rU)(t−t1) for t ∈ (t1, t2) .

If t2 < t1 + ρ(γ) + τ , we obtain (3.34). Consider the case t2 ≥ t1 + ρ(γ) + τ . We define

ν(γ) := l(γ)e−(h+rU)(ρ(γ)+τ).

Suppose that there exists T such that y(t) > ν(γ) for t ∈ (t1, t1 + ρ(γ) + τ + T ) and y(L) = ν(γ) with dy(L)
dt <

0, where L := t1 + ρ(γ) + τ + T. Since we have (3.33), as in the proof of Proposition 3.3, we again obtain that

u(t) < u∗ for t > t1 + ρ1(γ)

and that
x(t) > x∗ for t > t1 + ρ2(γ).

Then, we obtain that

dy(L)

dt
>

{
βe−δτx(L− τ)

u(L− τ)
− (h+ ru(L))

}
ν(γ)

>

{
βe−δτ

u∗ x∗ − (h+ ru∗)

}
ν(γ)

= 0,

which leads a contradiction. Thus, (3.34) holds. □
Since we chose γ arbitrarily and the right hand side in (3.34) is continuous with respect to γ, we obtain the estimation
(3.25). □
Finally we prove the global asymptotic stability of the infected equilibrium.

Theorem 3.4. Let us assume that R0 > 1 holds. Then the infected equilibrium of (3.15) is globally asymptotically
stable.
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Proof. For φ ∈ G, which is defined in (3.16), we define a functional as

U(φ) :=x∗g

(
φ1(0)

x∗

)
+ y∗eδτg

(
φ2(0)

y∗

)
+

βx∗

s
g

(
φ3(0)

u∗

)
+

βx∗y∗

u∗ U−(φ) +
reδτ

s
U+(φ3(0)), (3.35)

where

U−(φ) :=

∫ 0

−τ

g

(
φ1(θ)

x∗
φ2(θ)

y∗
u∗

φ3(θ)

)
dθ,

U+(u) :=
1

2
(u− u∗)

2
.

We show that
d

dt
U(xt, yt, ut) ≤ 0. (3.36)

In the following we drop ∗ from the notation: x∗, y∗ and u∗. Since one has

λ = dx+ β
xy

u

from the equilibrium condition, we calculate that

d

dt
g

(
x(t)

x

)
=
1

x

(
1− x

x(t)

)(
λ− dx(t)− βx(t)y(t)

u(t)

)
=

(
1− x

x(t)

){
d

(
1− x(t)

x

)
+

βy

u

(
1− x(t)

x

y(t)

y

u

u(t)

)}
=− d

xx(t)
(x(t)− x)

2
+

βy

u

(
1− x(t)

x

y(t)

y

u

u(t)
− x

x(t)
+

y(t)

y

u

u(t)

)
. (3.37)

We secondly calculate that

d

dt
g

(
y(t)

y

)
=
1

y

(
1− y

y(t)

){
βe−δτx(t− τ)y(t− τ)

u(t− τ)
− (h+ ru(t)) y(t)

}
=

(
y(t)

y
− 1

){
βe−δτx

u

x(t− τ)

x

y(t− τ)

y(t)

u

u(t− τ)
−
(
h+ ru

u(t)

u

)}
.

Substituting h = βe−δτ x
u − ru gives

d

dt
g

(
y(t)

y

)
=

(
y(t)

y
− 1

){
βe−δτx

u

(
x(t− τ)

x

y(t− τ)

y(t)

u

u(t− τ)
− 1

)
− ru

(
u(t)

u
− 1

)}
=
βe−δτx

u

(
x(t− τ)y(t− τ)

xy

u

u(t− τ)
− y(t)

y
− x(t− τ)y(t− τ)

xy(t)

u

u(t− τ)
+ 1

)
− ru

(
y(t)

y
− 1

)(
u(t)

u
− 1

)
.

(3.38)

We calculate that
d

dt
g

(
u(t)

u

)
=

1

u

(
1− u

u(t)

)
(sy(t)− bu(t) + b) .

Since we have
b = bu− sy, (3.39)

it holds

d

dt
g

(
u(t)

u

)
=

1

u

(
1− u

u(t)

){
sy

(
y(t)

y
− 1

)
− bu

(
u(t)

u
− 1

)}
=

sy

u

(
y(t)

y
− 1− y(t)

y

u

u(t)
+

u

u(t)

)
− b

u

u(t)

(
u(t)

u
− 1

)2

. (3.40)

We calculate

d

dt
U−(xt, yt, ut) = g

(
x(t)

x

y(t)

y

u

u(t)

)
− g

(
x(t− τ)

x

y(t− τ)

y

u

u(t− τ)

)
. (3.41)
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Using (3.39) again we get

d

dt
U+(u(t)) = (u(t)− u) (sy(t)− bu(t) + b)

=(u(t)− u) {s(y(t)− y)− b(u(t)− u)}

=syu

(
u(t)

u
− 1

)(
y(t)

y
− 1

)
− bu2

(
u(t)

u
− 1

)2

. (3.42)

Thus, combining (3.37), (3.38), (3.40), (3.41) and (3.42), we obtain

d

dt
U(xt, yt, ut) =− d

x(t)
(x(t)− x)

2
+

βxy

u

[(
1− x(t)

x

y(t)

y

u

u(t)
− x

x(t)

)
+

(
x(t− τ)

x

y(t− τ)

y

u

u(t− τ)
− x(t− τ)

x

y(t− τ)

y(t)

u

u(t− τ)

)
+

u

u(t)

+

{
g

(
x(t)

x

y(t)

y

u

u(t)

)
− g

(
x(t− τ)

x

y(t− τ)

y

u

u(t− τ)

)}]
− b

s

(
βx

u

u(t)
+ reδτu2

)(
u(t)

u
− 1

)2

=− d

x(t)
(x(t)− x)

2
+

βxy

u

{
−g

(
x(t)

x

y(t)

y

u

u(t)

)
− g

(
x

x(t)

)
+ g

(
x(t− τ)

x

y(t− τ)

y

u

u(t− τ)

)
− g

(
x(t− τ)

x

y(t− τ)

y(t)

u

u(t− τ)

)
+g

(
u

u(t)

)
+ g

(
x(t)

x

y(t)

y

u

u(t)

)
− g

(
x(t− τ)

x

y(t− τ)

y

u

u(t− τ)

)}
− b

s

(
βx

u

u(t)
+ reδτu2

)(
u(t)

u
− 1

)2

=− d

x(t)
(x(t)− x)

2
+

βxy

u

{
−g

(
x

x(t)

)
− g

(
x(t− τ)

x

y(t− τ)

y(t)

u

u(t− τ)

)}
+

βxy

u
g

(
u

u(t)

)
− b

s

(
βx

u

u(t)
+ reδτu2

)(
u(t)

u
− 1

)2

. (3.43)

Since it holds that
(x− 1)

2

x
− g

(
1

x

)
= g(x) ≥ 0 for x ∈ (0,∞) ,

one has

g

(
u

u(t)

)
≤ u

u(t)

(
u(t)

u
− 1

)2

.

Then it holds that

βxy

u
g

(
u

u(t)

)
− b

s

(
βx

u

u(t)
+ reδτu2

)(
u(t)

u
− 1

)2

≤
{
βx

(
y

u
− b

s

)
u

u(t)
− breδτu2

s

}(
u(t)

u
− 1

)2

.

One can see that (3.39) implies that
y

u
− b

s
=

sy − bu

su
= − b

su
< 0.

Thus, we get (3.36). We define a set
G := {φ ∈ G|U(φ) ≤ U(ϕ)} .

As in the proof of Theorem 3.2 one can see that U is a Lyapunov functional on G. We define the set

E := {φ ∈ G|U̇(3.15)(φ) = 0}.

Then we get

E =

{
φ ∈ G|φ1(0) = x, φ3(0) = u,

φ1(−τ)φ2(−τ)u

xφ2(0)φ3(−τ)
= 1

}
.

Let M be the largest subset in E that is invariant with respect to (2.2). Then, by LaSalle’s invariant principle, the
solution tends to M . As in the proof of Theorem 3.1 one can prove that M consists only of the infected equilibrium. Thus
every solution tends to the infected equilibrium. By applying Theorem 2.1, Chapter 5.3 in [5], the infected equilibrium
is uniformly stable. □
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Figure 1: Surface plot of z∗(p, q) with respect to 0 < p ≤ 1 and 0 < q ≤ 5 for the parameter values λ = 0.3 day−1,
β = 0.027 mm day−1, d = 0.02 day−1, a = 0.1 day−1, c = 1 day−1, b = 2.4 day−1, δ = 0.02 and τ = 0.1 day. For this
case, we have R0 = 4.0419 · · · > 1.

4 Biological findings

In Section 3 we showed that the basic reproduction number given as in (2.5) has a critical role to determine the dynamics
of (2.2) for any strength of lytic and nonlytic immune activities. The basic reproduction number denotes the expected
number of the infected cells produced by one infected cell in the expected life-time in a completely susceptible cell
population, see [3] in the context of the infectious disease in human population. One can see that the value of the basic
reproduction number decreases as the length of the delay increases. It has a clear meaning that, if the length of the
delay is large, infected cells may die before it spreads virus due to the small survival probability in the latent period
between the infection phase and the virus-producing phase. It is also natural that the strength of immune effector does
not change the value of the basic reproduction number, since the basic reproduction number measures a possibility of
successful invasion of the virus in a completely susceptible cell population, where no active immune cells exist.

The strength of lytic and nonlytic component monotonically change the number of cells at the infected equilibrium.
To show that we assume that the basic reproduction number is greater than one and we choose p and q as free parameters.
From the proof of Theorem 2.1, we see that the number of immune cells at the equilibrium is determined by the equation:

H(p, q, z) = 0,

where

H(p, q, z) =
βe−δτλ

d(1 + qz) + β b
cz

− a− pz, (p, q, z) ∈ R3
+.

We denote the unique equilibrium of the immune cells by a function z∗(p, q) which satisfies H(p, q, z∗(p, q)) = 0. By an
application of the implicit function theorem, it is straightforward to prove

∂z∗

∂p
(p, q) < 0,

∂z∗

∂q
(p, q) < 0 for any (p, q) ∈ R2

+.

Thus the number of immune cells at the equilibrium decreases with respect to p and q, see Figure 1. Since the number
of infected cells at the equilibrium is linearly dependent on the number of the immune cells, see (2.6), it also decreases
with respect to p and q. Hence, large strength of immune effectors regulates the number of both immune cells and
infected cells at the equilibrium. From (2.7) the number of susceptible cells at the equilibrium is given as

x∗(p, q) := λ

(
d+

β b
cz

∗(p, q)

1 + qz∗(p, q)

)−1

.

Using the chain rule of differentiation, one can obtain that

∂x∗

∂p
(p, q) > 0,

∂x∗

∂q
(p, q) > 0 for any (p, q) ∈ R2

+.

Thus the number of susceptible cells at the equilibrium increases with respect to p and q, see Figure 2. One can conclude
that the immune effector has a positive role for the number of susceptible cells at the equilibrium.
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Figure 2: Surface plot of x∗(p, q) with respect to 0 < p ≤ 1 and 0 < q ≤ 5 for the parameter values λ = 0.3 day−1,
β = 0.027 mm day−1, d = 0.02 day−1, a = 0.1 day−1, c = 1 day−1, b = 2.4 day−1, δ = 0.02 and τ = 0.1 day. For this
case, we have R0 = 4.0419 · · · > 1.

5 Discussion

The authors in [18] formulated the mathematical model (2.1) by a system of ordinary differential equations to investigate
the effect of two different immune responses. Stability of equilibria of (2.1) was investigate in [16]. It was not clear that
if the nonlytic immune response changes the global stability of the infected equilibrium, though their numerical studies
suggested that the infected equilibrium is always globally stable. Thus they left a conjecture on the global stability.
In this paper we formulate (2.2) by introducing virus replication delay. We prove that for any strength of the nonlytic
component the basic reproduction number determines the equilibrium that is globally asymptotically stable: if the basic
reproduction number is less than or equal to one then the infection free equilibrium is globally asymptotically stable
while if the basic reproduction number is greater than one then the infected equilibrium is globally asymptotically stable.
Thus we can say that the nonlytic immune response does not change the qualitative dynamics. Since one can easily
see that this threshold type result holds for a special case, τ = 0, the conjecture offered in [16] is affirmatively solved:
the infected equilibrium is always globally stable if the basic reproduction number is greater than one. For the global
stability results we construct Lyapunov functionals and apply LaSalle’s invariant principle. The essential idea behind the
construction of the Lyapunov functionals and the calculation of the time derivative is firstly introduced in the paper [9]
for a delayed epidemiological model. Here we carefully designed Lyapunov functionals for a specific nonlinearity by
immune cells appeared in the incidence rate.

We also prove the permanence of the infected cell population when nonlytic immune effector is available, i.e., q > 0.
We modify the proof in [15, 17] for (2.2). Since the application of the approach in [15, 17] was not clear due to the
nonlinearity in the infectious incidence rate, we have decided to put the proof for the permanence. Since permanence
implies ultimate survival of the interested population, it has been an important concept in mathematical biology, see
e.g. [4, 7], in particular, when it is difficult to analyze global stability of a positive equilibrium. Wang [17] provided an
elementary proof for the permanence of a delayed epidemic model. One important aspect of the approach is that we
can get the explicit formula to estimate the lower bound of the solution.

Since we tried to avoid technical difficulty, with keeping the essential ideas on the proofs, we have concentrated on
the constant delay model (2.2). However, it may be not a difficult task to construct similar Lyapunov functionals for
(2.2) with distributed delay, instead of the constant delay, see [9, 11] for the treatment for distributed delay models.
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