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The Confrontation between General Relativity and Experiment 43

Parameter Effect Limit Remarks

γ − 1 time delay 2.3× 10−5 Cassini tracking
light deflection 4× 10−4 VLBI

β − 1 perihelion shift 3× 10−3 J2 = 10−7 from helioseismology
Nordtvedt effect 2.3× 10−4 ηN = 4β − γ − 3 assumed

ξ Earth tides 10−3 gravimeter data
α1 orbital polarization 10−4 Lunar laser ranging

2× 10−4 PSR J2317+1439
α2 spin precession 4× 10−7 solar alignment with ecliptic
α3 pulsar acceleration 4× 10−20 pulsar Ṗ statistics
ηN Nordtvedt effect 9× 10−4 lunar laser ranging
ζ1 — 2× 10−2 combined PPN bounds
ζ2 binary acceleration 4× 10−5 P̈p for PSR 1913+16
ζ3 Newton’s 3rd law 10−8 lunar acceleration
ζ4 — — not independent (see Equation (58))

Table 4: Current limits on the PPN parameters. Here ηN is a combination of other parameters

given by ηN = 4β − γ − 3− 10ξ/3− α1 + 2α2/3− 2ζ1/3− ζ2/3.

advance in the perihelion of Mercury. The modern value for this discrepancy is 43 arcseconds
per century. A number of ad hoc proposals were made in an attempt to account for this excess,
including, among others, the existence of a new planet Vulcan near the Sun, a ring of planetoids,
a solar quadrupole moment and a deviation from the inverse-square law of gravitation, but none
was successful. General relativity accounted for the anomalous shift in a natural way without
disturbing the agreement with other planetary observations.

The predicted advance per orbit ∆ω̃, including both relativistic PPN contributions and the
Newtonian contribution resulting from a possible solar quadrupole moment, is given by

∆ω̃ =
6πm

p

�
1
3
(2 + 2γ − β) +

1
6
(2α1 − α2 + α3 + 2ζ2)

µ

m
+

J2R2

2mp

�
, (51)

where m ≡ m1 + m2 and µ ≡ m1m2/m are the total mass and reduced mass of the two-body
system respectively; p ≡ a(1− e2) is the semi-latus rectum of the orbit, with the semi-major axis a
and the eccentricity e; R is the mean radius of the oblate body; and J2 is a dimensionless measure
of its quadrupole moment, given by J2 = (C − A)/m1R2, where C and A are the moments of
inertia about the body’s rotation and equatorial axes, respectively (for details of the derivation see
TEGP 7.3 [281]). We have ignored preferred-frame and galaxy-induced contributions to ∆ω̃; these
are discussed in TEGP 8.3 [281].

The first term in Equation (51) is the classical relativistic perihelion shift, which depends upon
the PPN parameters γ and β. The second term depends upon the ratio of the masses of the two
bodies; it is zero in any fully conservative theory of gravity (α1 ≡ α2 ≡ α3 ≡ ζ2 ≡ 0); it is also
negligible for Mercury, since µ/m ≈ mMerc/M⊙ ≈ 2× 10−7. We shall drop this term henceforth.

The third term depends upon the solar quadrupole moment J2. For a Sun that rotates uni-
formly with its observed surface angular velocity, so that the quadrupole moment is produced by
centrifugal flattening, one may estimate J2 to be ∼ 1× 10−7. This actually agrees reasonably well
with values inferred from rotating solar models that are in accord with observations of the nor-
mal modes of solar oscillations (helioseismology); the latest inversions of helioseismology data give

Living Reviews in Relativity
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Figure 1. Subaru BV RcIcz′ composite color images centered on the galaxy cluster MACS1206 (z = 0.439), overlaid with mass contours
from our joint strong-and-weak lensing analysis (SaWLens) of HST and Subaru observations. The image size in the left panel is 24′ × 24′

covering a projected area of 5.7 × 5.7Mpch−2 at the cluster redshift. In the left and right panels, the lowest contour levels are κ = 0.12
and 0.15, with increments of ∆κ = 0.09 and 0.07, respectively. The right panel is a zoom-in-view of the boxed region of the left panel, with
a side length of 8′ (1.9Mpch−1). North is top and east is left.

preparation). This leads to a final photometric accu-
racy of ∼ 0.01mag in all five passbands (see also Section
3.5). Five-band BV RcIcz′ photometry catalog was then
measured using SExtractor (Bertin & Arnouts 1996) in
point-spread-function (PSF) matched images created by
ColorPro (Coe et al. 2006), where a combination of all
five bands was used as a deep detection image. The stel-
lar PSFs were measured from a combination of 100 stars
per band and modeled using IRAF routines.
For the weak-lensing shape analysis (Section 3.2), we

use the Ic-band data taken in 2009 January, which have
the best image quality in our data-sets (in terms of the
stability and coherence of the PSF anisotropy pattern,
taken in fairly good seeing conditions). Two separate
co-added Ic-band images, each with a total exposure
time of 1.1 ks, were produced based on the imaging ob-
tained at two different camera orientations separated by
90 degrees, in order not to degrade the shape measure-
ment quality.

3.2. Subaru Weak Lensing Shape Analysis

For shape measurements of background galaxies, we
use our weak-lensing analysis pipeline based on the IM-
CAT package (Kaiser et al. 1995, KSB hereafter), in-
corporating modifications and improvements outlined in
Umetsu et al. (2010). Our KSB+ implementation has
been applied extensively to Subaru cluster observations
(e.g., Broadhurst et al. 2005a, 2008; Umetsu et al. 2007;
Umetsu & Broadhurst 2008; Okabe & Umetsu 2008b;
Umetsu et al. 2009, 2010, 2011b,a; Medezinski et al.
2010, 2011; Zitrin et al. 2011c; Coe et al. 2012).
We measure components of the complex image ellip-

ticity, eα = {Q11 −Q22, Q12} /(Q11 + Q22), from the
weighted quadrupole moments of the surface brightness
I(θ) of individual objects,

Qαβ =

∫

d2θW (θ)θαθβI(θ) (α,β = 1, 2) (8)

where W (θ) is a Gaussian window function matched to
the size (rg) of the object, and the weighted object cen-

Figure 2. Stellar ellipticity distributions before and after the
PSF anisotropy correction for Subaru/Suprime-Cam Ic-band data
taken with camera orientations of PA = 0◦ (Orientation 1; red)
and PA = 90◦ (Orientation 2; black). The left panel shows the
raw ellipticity components (e∗1, e

∗
2) of stellar objects, and the right

panel shows the residual ellipticity components (δe∗1, δe
∗
2) after the

PSF anisotropy correction.

troid is chosen as the coordinate origin, which is itera-
tively refined to accurately measure the object shapes.
Next, we correct observed ellipticities eα for the PSF

anisotropy using a sample of stars in the field as ref-
erences. We select bright (18 <∼ Ic <∼ 22), unsaturated
stellar objects identified in a branch of the object half-
light radius (rh) versus Ic diagram, and measure the
PSF anisotropy kernel of the KSB algorithm as a func-
tion of the object size rg. Figure 2 shows the distri-
butions of stellar ellipticity components (e∗α) before and
after the PSF anisotropy correction. From the rest of
the object catalog, we select as a weak-lensing galaxy
sample those objects with ν > 10, rh > r∗h + 1.5σ(r∗h),
and rg > mode(r∗g), where ν is the KSB detection sig-

nificance, r∗h and σ(r∗h) are median and rms dispersion
values of stellar sizes r∗h. The anisotropy corrected ellip-
ticities e′α are then corrected for the isotropic smearing
effect as gα = e′α/Pg.
For each galaxy we assign the statistical weight,

w(k) ≡
1

σ2
g(k) + α2

g

, (9)
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'The most general scalar-tensor theory  
with 2nd-order field eqs.  

[Horndeski (1974), Deffayet, Gao, Steer, & Zahariade 
(2011), Kobayashi, Yamaguchi & Yokoyama (2011)] 

X ≡ −1

2
(∂φ)2

L = K(φ, X)−G3(φ, X)�φ

+G4(φ, X)R+G4X [(�φ)2 − (∇µ∇νφ)
2]

+G5(φ, X)Gµν∇µ∇νφ− 1

6
G5X [(�φ)3

−3�φ(∇µ∇νφ)
2 + 2(∇µ∇νφ)

3]

GiX ≡ ∂Gi/∂X
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ds2 = ηµνdx

µdxν

Z09)<2)'#9'"<L*#'#?*$'$98%#*90D',2')2[%*)2'#?"# 
K(φ0, 0) = 0, Kφ(φ0, 0) = 0

φ = φ0 = const, X = 0

Y7?2)*B"8'$&LL2#)*B'72)#%)X"#*90$'7)9<%B2<'X&'"'

090)28"#*1*$#*B'L"##2) 

C88'#?2'B92}B*20#$'")2'21"8%"#2<'"#'#?2'X"B+:)9%0<R'

r2',*88'*:09)2'#?2'L"$$'#2)L'K
\\
R'

ds2 = −[1+2Φ(r)]dt2 + [1−2Ψ(r)]δijdx
idxj

φ = φ0+ϕ(r)
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ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)dx2

\5.;J�
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α
[r(ϕ�)2]�
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− 3MPl

Λ6
β
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6r2
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Pl (Ψ

� − Φ�)− 2MPlξϕ
� − MPl

Λ3
α
(ϕ�)2

r
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η
(r2ϕ�)�
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− 2

µ

Λ3

[r(ϕ�)2]�
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MPl

Λ3
α
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+

2
ν

Λ6
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− 6MPl
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β
[(ϕ�)2Φ�]�

r2
= 0
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(cf. Vainshtein mechanism under considering background 
evolution [Kimura, Kobayashi, Yamamoto, 1111.6749]) 27 
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G4 =
M2

Pl

2
, G4φ = MPlξ,

KX − 2G3φ = η,

−G3X + 3G4φX =
µ

Λ3
,

G4X −G5φ =
MPl

Λ3
α,

G4XX − 2

3
G5φX =

ν

Λ6
,

G5X = −3MPl

Λ6
β.
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x =
1

Λ3

ϕ�

r
, A(r) =

1

MPlΛ3

M(r)

8πr3

P (x,A) := ξA(r) +
�η
2
+ 3ξ2

�
x+ [µ+ 6αξ − 3βA(r)]x2

+
�
ν + 2α2 + 4βξ

�
x3 − 3β2x5 = 0
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P (x,A) := ξA(r) +
�η
2
+ 3ξ2

�
x+ [µ+ 6αξ − 3βA(r)]x2

+
�
ν + 2α2 + 4βξ

�
x3 − 3β2x5 = 0
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x =
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MPlΛ3

M(r)

8πr3

[cf. Sbisa, Niz, Koyama, Tasinato ‘12] 
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x ≈ xf := − 2ξA(r)

η + 6ξ2
F2B"&*0:'$98%#*90'*0'Oa) 

Z002)'Y98%#*90',?2)2'C-)3jjOJ'i"*0$?#2*0'$B)220*0: 

C$'"')28"1"0#'26"L782D'<2B9%78*0:'8*L*#'9A'L"$$*12':)"1*#& 
Ψ�/r � Φ�/r ∝ A

r2'?"12'#?2'(2,#90*"0'X2?"1*9)J'

η = µ = ν = 0, ξ = 1, α �= 0, β �= 0
(Proxy theory of massive gravity[de Rham & Heisenberg 2011]) 

!?2'B90<*#*90'9A'$L99#?'L"#B?*0:'9A'#?2'#,9'$98%#*90$J�

α < 0 or

√
β

α
≥

�
5 +

√
13

24
∼ 0.6

bYX*$"'2#'"8R'OSPUROOzT{'!('2#'"8RD'OTPSRSTOOc'

x ≈ x− := −

�
ξ

3β
= const.
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α < 0 or
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The case of massive gravity

�4 �2 0 2 4
�4

�2
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α

β =

�
5 +

√
13

24

�
α2

α = 0

Smooth matching is possible

Generic analysis [Narikawa et al. (2013)] 
correctly reproduces previous results 
[Sjors, Mortsell (2011); Sbisa et al. 
(2012)].

β
Decoupling limit of massive gravity

de Rham, Gabadadze, Tolley (2011)

2-parameter subclass of 
Horndeski’s theory 

=

ξ = 1, α �= 0, β �= 0,

others = 0

*0'#?2'B"$2'9A'L"$$*12':)"1*#&R�
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the Universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ′

+(r)
]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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IV. DECOUPLING LIMIT OF MASSIVE
GRAVITY

Let us confirm that the conditions for smooth match-
ing indeed reproduce the previous result obtained in the
context of massive gravity [17, 18]. To do so, we start
with finding out the concrete form of K,G3, G4, G5 cor-
responding to the decoupling limit of massive gravity.
The correspondence can be seen more clearly if we move
to the covariantized version of the decoupling limit La-
grangian, i.e., the “proxy theory” proposed in Ref. [27].
It turns out that the proxy theory corresponds to

K = 0 = G3, G4 =
M2

Pl

2
+MPlφ+

MPl

Λ3
αX,

G5 = −3
MPl

Λ6
βX. (38)

In massive gravity, the strong coupling scale Λ is given
by Λ = (m2MPl)1/3, where m is the graviton mass.
Since the proxy theory contains the Riemann dual ten-

sor while the Lagrangian of the generalized Galileon not,
one may wonder how the former is included in the latter.
Actually, G5 ∝ X corresponds to the term containing
the Riemann dual tensor in the proxy theory. The easi-
est way to verify this is to compare the field equations of
the two theories.
From Eq. (38) one finds

η = µ = ν = 0, ξ = 1, α #= 0, β #= 0, (39)

so that the parameter space collapses to a two-
dimensional space. The inner solution x− exists only
for β > 0 and is given by x− = −1/

√
3β. Let us define

ζ :=
√
β/α. Then, the condition (31) reads

P (x−, A) =
2

3

x−
ζ2

(
1− 3

√
3ζ + 6ζ2

)
< 0. (40)

Solving the equation ∂xP (x∗, A∗) − x∗∂2
xP (x∗, A∗) = 0,

which does not in fact depend on A∗, one finds

x∗ =
1√
5

x−
|ζ|

[
1 + 2ζ2 −

(
1 + 4ζ2 − 11ζ4

)1/2]1/2
. (41)

This exists if

|ζ| ≤

√
2 +

√
15

11
& 0.73. (42)

The equation P (x,A) = 0 has three roots in (x−, 0) for
some interval of A if

P (x∗, A∗) > 0 ⇔ 0 < ζ <

√
5 +

√
13

24
& 0.6. (43)

Therefore, smooth matching of the asymptotically flat
solution and the Vainshtein solution is possible provided
that

α < 0 or

√
β

α
≥

√
5 +

√
13

24
. (44)

FIG. 1: The profile of x as a function of the radial coordi-
nate r. The curves are plotted for (α,β) = (0.5, 0.3) (dot-
ted red), (0.8, 0.34) (dot-dashed green), and (0.985, 0.375)
(dashed blue), respectively. As a halo density profile we
adopt the NFW model with Mvir = 1.34 × 1015M!/h and
cvir = 13.8.

Thus, we have confirmed that the previous result [17, 18]
is reproduced.2

V. GRAVITATIONAL LENSING IN MODIFIED
GRAVITY

In this section, we are going to relate our spherically
symmetric solution to gravitational lensing observations.
To do so, it is instructive to begin with seeing the typical
behavior of the Vainshtein solution in massive gravity,
adopting the Navarro-Frenk-White (NFW) halo density
profile [28, 29] for the source ρ(r) := −T t

t . (See Ap-
pendix B for the detailed description of halo density pro-
files.) Figures 1 and 2 show the profile of x and its deriva-
tive, respectively, as a function of the radial coordinate r
for different values of α and β. The fiducial parameters
of the NFW model we use are Mvir = 1.34× 1015 M#/h
and cvir = 13.8 , which correspond to ρs = 7.16×104 ρcr,0
and rs = 145 kpc/h, respectively. The strong coupling
scale is taken to be Λ3 = (100H0)2MPl = (46.4 km)−3.
Then, the Vainshtein radius determined from Eq. (24) is
rV = 209 kpc/h. (As the parameters characterizing the
profile we choose to use the virial cluster mass Mvir and

2 Note that our notation is different from those in [17, 18]. In
particular, αours = −αSbisa et al..

6

FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL
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∫ ∞
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where r =
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r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory
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Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].
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profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
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Hydrostatic Mass + Chameleon

chameleon forcegravitational force
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まとめ
かみのけ座銀河団の多波長観測を用いて、以下の3つの
結果を得た。

1. かみのけ座銀河団において、静水圧平衡は重力レンズ
の誤差の範囲で成立している。

2. Chameleon force が存在すると、Hydrostatic mass 
は小さく見積もることになる。

3. ガス分布の理論予想と観測を比較することで、
Chameleon 重力模型のモデルパラメータに対して有用な
制限を得ることができた。
viable f(R) 模型に対しては <∼|fR0| 0.6× 10−4
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(Received 8 November 2011; published 9 May 2012)

We present a new test of gravitational interactions at the r ’ ð0:2–20Þ Mpc scale, around the virial

radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan

Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of fðRÞ gravity to

find an upper bound on the background field amplitude of jfR0j< 3:5# 10$3 at the 1D-marginalized 95%

confidence level. As a model-independent assessment of the constraining power of cluster profiles

measured through weak gravitational lensing, we also constrain the amplitude F0 of a phenomenological

modification based on the profile enhancement induced by fðRÞ gravity when not including effects from

the increased cluster abundance in fðRÞ. In both scenarios, dark-matter-only simulations of the con-

cordance model corresponding to jfR0j ¼ 0 and F0 ¼ 0 are consistent with the lensing measurements,

i.e., at the 68% and 95% confidence level, respectively.

DOI: 10.1103/PhysRevD.85.102001 PACS numbers: 04.80.Cc

I. INTRODUCTION

Modifications of gravity can serve as an alternative
explanation to the dark energy paradigm for the late-time
accelerated expansion of our Universe. Such modifications
have extensively been tested on solar-system scales (see,
e.g., [1]) and to a lesser degree at large cosmological scales
using specific alternative theories of gravity (see, e.g.,
[2–9]), as well as generic modifications to general relativ-
ity (GR) while adopting a !CDM background (see, e.g.,
[10–21]) or simultaneously allowing a dynamic effective
dark energy equation of state [22,23]. However, gravity
may also be tested by the structure observed at intermedi-
ate scales [24,25]. In this regime, nonlinear gravitational
interactions gain in importance and need to be modeled
correctly to obtain reliable predictions for both GR and its
competitors, which in turn can be compared with observa-
tions to infer constraints on modified gravity theories.

To study nonlinear effects in structure formation, we
need to specialize to a particular gravitational modifica-
tion. In our case, this is fðRÞ gravity. Within this model, the
Einstein-Hilbert action is supplemented with a free func-
tion fðRÞ of the Ricci scalar R. It has been shown that such
models can reproduce the late-time accelerated expansion
of the Universe without invoking dark energy [26–28].
However, they also produce a stronger gravitational cou-
pling and enhance the growth of structure. fðRÞ gravity is
formally equivalent to a scalar-tensor theory where the
additional degree of freedom is described by the scalaron
field fR & df=dR [29,30]. We parametrize our models by

the background value of the scalaron field today, jfR0j. The
fR field is massive, and below its Compton wavelength, it
enhances gravitational forces by a factor of 4=3. Because
of the density dependence of the scalaron’s mass, viable
fðRÞ gravity models experience a mechanism dubbed
the chameleon effect [31–33], which returns gravitational
forces to the standard relations in high-density regions,
making them compatible with solar-system tests [34] at r &
20 AU. The transition required to interpolate between the
low curvature of the large-scale structure and the high cur-
vature of the galactic halo sets the currently strongest bound
on the background field, jfR0j< j"j' ð10$6 $ 10$5Þ [34],
i.e., the typical depth of cosmological potential wells. A
bound of the same order is obtained from galaxies serving
as strong gravitational lenses [24] at r' ð1–10Þ kpc.
Independently, strong constraints can also be inferred
from the large-scale structure ðr * 10 MpcÞ. The en-
hanced growth of structure observed in fðRÞ gravity
models manifests itself on the largest scales of the cosmic
microwave background (CMB) temperature anisotropy
power spectrum [35], where compatibility with CMB
data places an upper bound on jfR0j of order unity [5].
Cross correlations of the CMB temperature field with fore-
ground galaxies tighten this constraint by an order of
magnitude [5–8,35]. However, the currently strongest con-
straints on fðRÞ gravity models from large-scale structures
are inferred from the analysis of the abundance of clusters,
yielding an improvement over the CMB constraints of
nearly four orders of magnitude [7,9].
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4 Observable consequences of gravity theories 7

Figure 2. Astrophysical [64, 38, 39] and cosmological [89, 90, 91] limits on chameleon theories. The spatial
scale on the x-axis gives the range of length scales probed by particular experiments. The parameter on the
y-axis is the background field value, or the range of the interaction (y-axis label on the right side) for an
f(R) model of the accelerating universe. The rectangular regions give the exclusion zone from a particular
experiment. All but the solar system results have been obtained in the last 5 years, illustrating the impressive
interplay between theory and experiment in the field. The two rectangles with dots are meant to indicate
preliminary results from ongoing work. This figure is adapted from Lombriser et al [33].

samples of galaxies binned in luminosity or another observable that serves as a proxy for halo mass. Figures

1 and 2 include the tests described above as part of a wider set of tests of gravity.

4.2 Astrophysical tests in the nearby universe

The logic of screening in scalar-tensor gravity theories implies that on small scales the fifth force that arises

in MG impacts some tracers and not others. Galaxies themselves can have enhanced motions, as discussed

above in the tests involving lensing and dynamical masses. And the components of galaxies – stars, gas,

neutron stars and black holes – respond differently to the fifth force because they can be screened at different
levels. The different components can acquire different velocities or be displaced in their spatial distribution.

A variety of observable phenomena result, and are typically best observed in nearby galaxies which can be

seen at high resolution [34]. We will continue to classify theories into two classes based on the screening

mechanism used to recover GR in the solar system: chameleon and Vainshtein theories.

For chameleon theories galaxies in low-density environments may remain unscreened as the Newtonian

potential ΨN, which determines the level of screening, can be smaller than in the Milky Way. Hence dwarf
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Gravitational redshift of galaxies in clusters as
predicted by general relativity
Radosław Wojtak1, Steen H. Hansen1 & Jens Hjorth1

The theoretical frameworkof cosmology ismainly defined by gravity,
ofwhichgeneral relativity is the currentmodel.Recent testsof general
relativity within the Lambda ColdDarkMatter (LCDM)model have
found a concordance between predictions and the observations of
the growth rate and clustering of the cosmicweb1,2.General relativity
has not hitherto been tested on cosmological scales independently of
the assumptionsof theLCDMmodel.Herewe report anobservation
of the gravitational redshift of light coming from galaxies in clusters
at the 99 per cent confidence level, based on archival data3. Our
measurement agrees with the predictions of general relativity and
its modification created to explain cosmic acceleration without the
need for dark energy (the f(R) theory4), but is inconsistent with
alternative models designed to avoid the presence of dark matter5,6.
According to the theory of general relativity7, light emitted from

galaxies moving in the gravitational potential well of galaxy clusters is
expected to be redshifted proportionally to the difference in gravita-
tional potential W between the clusters and an observer, that is,
zgr5DW/c2, where c is the velocity of light in vacuum. For typical
cluster masses of*1014M8, whereM8 is the Sun’s mass, the gravita-
tional redshift is estimated to be8–10 czgr< 10 km s21, which is around
two orders of magnitude smaller than the Doppler shift owing to the
random motions of galaxies in clusters. The method of disentangling
the kinematic Doppler effect from gravitational redshift relies on the
fact that the former gives rise to a symmetric broadening of the
observed velocity distribution, whereas the latter shifts its centroid.
A critical factor in detecting such a velocity shift is the number of
galaxies with spectroscopically measured velocities and the number
of galaxy clusters. Both should be sufficiently high to reduce the error
due to the Doppler width of the velocity distribution and to eliminate
the sensitivity to irregularities in cluster structure, such as substruc-
tures and asphericity.
The data are compiled from the SDSS3 Data Release 7 and the

associated GaussianMixture Brightest Cluster Galaxy catalogue11 con-
taining the positions and redshifts of galaxy clusters identified in the
survey. The cluster sample is richness-limited with a threshold corres-
ponding to a cluster mass of 1014M8. The mean, 5th percentile and
95th percentile values of the cluster richness11 are 16, 8, and 86 and
correspond to cluster masses of around 2|1014M8, 1014M8 and
1015M8, respectively. The typical number of spectroscopic redshifts
per cluster (within a 6-megaparsec (Mpc) aperture and a velocity range
of 64,000 km s21 around the mean cluster velocities) varies from 10
for low-richness clusters to 140 for the richest ones.
Figure 1 shows the histograms of galaxy velocities calculated in four

bins of the projected cluster-centric distance centred at 0.6, 1.6, 3.3 and
5.2Mpc. The cluster centres and redshifts were approximated by the
coordinates and redshifts of the brightest cluster galaxies. The
observed velocity distributions consist of two clearly distinct parts: a
quasi-flat distribution of galaxies not belonging to the clusters
(observed due to projection effect) and a quasi-Gaussian component
associated with galaxies gravitationally bound to the clusters12. The
latter is expected to reveal the signature of gravitational redshift in
terms of a systematic shift of its velocity centroid. Analysis of mock

kinematic data generated from cosmological simulations shows that
the number of redshifts and clusters is sufficient to reduce all expected
sources of noise—such as substructures, cluster asphericity, and non-
negligible offset between the brightest cluster galaxies and cluster
centres13 (both in the position on the sky and redshift space)—and
to allow for detection of gravitational redshift at a confidence level of
nearly 3s (see Supplementary Information).
We search for gravitational redshift bymeasuring themean velocity

D of the quasi-Gaussian component of the observed velocity distri-
bution.We carry out aMonte CarloMarkov Chain analysis of the data
using a two-component model for the velocity distribution which
includes contributions from both the cluster and non-cluster galaxies
(Supplementary Information). Constraints on the mean velocity are
obtained by marginalizing the likelihood function over the set of
nuisance parameters defining the shape of both components of the
velocity distribution. The best-fitting models of the velocity distribu-
tions are shown in Fig. 1 and the resulting measurements of the mean
velocity as a function of the projected cluster-centric distance R are
presented in Fig. 2. The obtained mean velocity is negative at all radii
with a clear tendency to decline with increasing radius. The negative
values arise from the fact that the rest frames of the clusters are defined
by the observed velocities of the central galaxies. This choice of the
reference frame implies that the gravitational redshift manifests itself

1Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark.
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Figure 1 | Velocity distributions of galaxies combined from 7,800 SDSS
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arbitrary amount for presentation purposes. Red lines present the histograms of
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the best-fitting models. The model assumes a linear contribution from the
galaxies that do not belong to the cluster and a quasi-Gaussian contribution
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of the brightest cluster galaxies. The error bars represent Poisson noise.
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as a blueshift10 (negative mean velocity) varying with the projected
cluster-centric distance from 0 at the cluster centre to 2jW(0)j/c at
large projected radii R.
The detection of gravitational redshift is significant at the 99% con-

fidence level. The integrated signalwithin the 6-Mpc aperture amounts
to D527.76 3.0 km s21, which is consistent with the gravitational
potential depths of simulated galaxy clusters of D52(5–10) km s21

(ref. 10). A more quantitative comparison with theoretical predictions
requires explicit information about the mean gravitational potential
profile and the distribution of cluster masses in the sample. We make
use of the velocity dispersion profile of the composite cluster to con-
strain both functions. Then we calculate the gravitational redshift in
terms of the mean velocity D by convolving the individual profiles of
the clusterswith theirmass distribution (Supplementary Information).
The resulting profile (red profile in Fig. 2; see also discussion on the
effect of the anisotropy of galaxy orbits in Supplementary Information)
is fully consistent with the gravitational redshift inferred from the
velocity distributions. The fact that the same gravitational potential
underlies galaxymotions and gravitational redshift of photons in clusters
provides observational evidence of the equivalence principle on the scale
of galaxy clusters.
We confront the obtained constraints on gravitational redshift with

the predictions of alternative theories of gravity. We consider two
popular models of gravity, the tensor–vector–scalar (TeVeS) theory5,6

and the f(R)model4, designed to alleviate the problemof darkmatter or
to recover the expansion history of the Universe, respectively.
Theoretical profiles of gravitational redshift are calculated using the

relations between the generalized gravitational potentials of these
models and the Newtonian potential (Supplementary Information).
The Newtonian potential is inferred from the observed velocity dis-
persion profile of the composite cluster using the assumptions of the
most reliable anisotropic model of galaxy orbits (see Supplementary
Information for more details), and constitutes the reference basis for
the calculations. For TeVeS we assume that the total masses of galaxy
clusters make up 80% of those recovered under assumption of the
Newtonian gravity. This factor lowers the ratio of dynamical-to-
baryonic mass in galaxy clusters to the value resulting from fitting
Modified Newtonian Dynamics5 (to which TeVeS is a relativistic
generalization) to cluster data14. The resulting profile of gravitational
redshift does not match the data, deviating from the observations at
the95%confidence level (thebluedashed line inFig. 2). This discrepancy
increases with projected radius and is mostly caused by a logarithmic
divergence of the scalar field in the regime of small accelerations, that is,
g, a0 and a0< 10210m s22, which is responsible for a 1/rmodification
of the gravitational acceleration. This result points to a critical problem
for the TeVeS (or Modified Newtonian Dynamics) model in recovering
the true gravitational potential at large distances around the cluster
centres. Considering the f(R) model, we choose the least favourable set
of free parameters maximizing the departure from Newtonian gravita-
tional acceleration15. Despite this choice, the resulting profile of gravita-
tional redshift is consistent with the data (the blue solid line in Fig. 2).
The obtained constraints on gravity are consistent with recent tests

verifying the concordance between gravity, the cosmological model and
observationsof the large-scale structureof theUniverse1,2.An important
advantage of using the gravitational redshift effect is that this method
does not depend on cosmology (see also Supplementary Information)
allowing to probe gravity in a direct way. In particular, this implies that
the discrepancy between TeVeS theory and the observations2 is unlikely
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(blue star), and analysis of the cluster data reported in this work (red circle). All
measurements are divided by the predictions of general relativity (filled
symbols). Results obtained for galaxy clusters are also compared with the
predictions of f(R) theory and TeVeS model (red open symbols). As a measure
of gravitational redshift in galaxy clusters we used the signal integrated within
the aperture of 6Mpc. The green square and circle show the measurement of
the rate of growth of cosmic structure c (ref. 1) and the probe of gravity Eg,
which combines the properties of galaxy–galaxy lensing, galaxy clustering and
galaxy velocities2. Both results are compared with the prediction of general
relativity with a standardLCDM cosmological model. All error bars represent
standard deviations. The relative accuracy of themeasurement from the space-
borne experiment21 is beyond the resolution of the plot and amounts to 1024.
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Figure 9. Upper panels: A near edge-on view of the final disk from the edge-on infall case (figure 7).

We show only the NFW4kpc halo and the cSIS2kpc halo here; the rotation curve of cSIS4kpc is quali-

tatively similar to that of cSIS2kpc. Stars are color-coded by their radial velocity in km/s. Black lines

denote the principal axis of the stellar distribution used to define the rotation curves. Lower panels:
The HI and stellar rotation curves along the major axis of each galaxy. Two effects are apparent.

First, because the HI disk is not dense enough to be self-shielded, it feels a stronger gravitational

attraction to the dark matter and has a faster overall rotation. Second, the self-screened stellar disk

lags the halo, leading to asymmetric distortions in the rotation curve of the disk. This effect is more

pronounced for a steeper core.

masses and the separation d of the galaxy centers. However, a nearby neighbor is not essential

— in general the external force on a galaxy is determined by its complete environment.

4.2 Comparison with previous work

We introduced the work presented above in section 1 by noting the connections to astrophys-

ical tests of the fifth force and the equivalent principle. Those tests were discussed by [GF;

6], [KK; 12], and references therein. These authors placed limits on additional interactions

between the dark matter particles that are not felt by baryons. GF considered the Milky Way

(MW) infall towards Andromeda (M31), while KK examined the leading and trailing tidal

arms of dwarf galaxies in the Milky Way. For related effects on large-scales, see also [13].

The motivation for our work is different: we are considering tests of modified gravity

theories that introduce an additional, universal interaction for all matter — one that is

suppressed in massive galaxies like the Milky Way but may act on smooth dark matter and

gas in smaller galaxies in low-density environments. Hence the tests within the MW and M31

considered by previous authors would not be the most powerful tests of modified gravity.

But the physical effects in dwarf galaxies described in this paper would qualitatively

apply to the MW and M31 stellar disks. The absence of the distortions of the stellar disks

of the MW and M31 and the lack of asymmetry in rotation curves places some constraints
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