Biases in Mass Estimate of Galaxy Clusters

mainly on X-ray observations 銀河団の質量測定バイアス

東京大学宇宙理論研究室 **須藤 大地 (Daichi Suto)**

Introduction

- Mass of galaxy clusters
 → cosmological parameters (through mass function)
- Impact on cosmological parameters
 - σ_8 from cluster abundance (Shimizu et al., 2006)

 $\sigma_{8,\text{true}} = \sigma_{8,\text{cluster}} + 0.5(1 - \alpha_M) \ \alpha_M = M_{\text{est}}/M_{\text{tot}}@r_{\text{vir}}$

- discrepancy between CMB & cluster abundance
- Ongoing & future projects
 - ASTRO-H, eROSITA (X-ray)
 - Planck, SPT, ACT (Sunyaev-Zel'dovich effext)
 - Subaru HSC (Lensing)
 - \rightarrow Large sample of clusters

Accurate mass measurement becomes more important!

Mock Observations

• Mock observations (Rasia et al., 2012)

- 20 clusters × 3 directions
- weak lensing (assuming HST) : more accurate, larger scatter
- X-ray (assuming Chandra) : less accurate, smaller scatter

X-ray vs. Weak Lensing

• 12 clusters observed in WL (Subaru) & X-ray (XMM-Newton) (Zhang et al., 2010)

Causes of the Bias

• Gravitational Lensing

- substructure
- non-sphericity
- ••••

• X-ray & Sunyaev-Zel'dovich effect

- assumption of hydrostatic equilibrium (HSE)
- deprojection of gas properties from 2D observables (related to non-sphericity)

Hydrostatic Equilibrium (X-ray)

• Observables

- surface brightness & spectroscopic (projected) temperature
- \rightarrow gas density n(r) & (deprojected) temperature T(r)
- Hydrostatic Equilibrium (HSE)

$$-\frac{1}{\rho_{\text{gas}}}\frac{dp}{dr} = \frac{GM}{r^2}$$
$$M_{\text{HSE}} = -\frac{k_B T(r)}{\mu m_p G} \left[\frac{d\log n(r)}{d\log r} + \frac{d\log T(r)}{d\log r}\right]$$

The accuracy of X-ray mass estimate depends on the validity of HSE assumption

Hydrostatic Equilibrium (SZ)

- Observable
 - $Y \sim l.o.s.$ integral of gas pressure
 - 1. combined with gas density or temperature from X-ray
 - \rightarrow estimate mass under the HSE assumption

OR

2. Y-M scaling relation constructed by combining M-T relation with other scaling relations

 \rightarrow scaling relations are calibrated by X-ray observations & simulations

Mass estimate of SZ effect is also based on HSE assumption.

Equation of Motion of Gas

HSE Mass vs. Total Mass

• 1 AMR & 5 SPH simulated clusters (DS+13)

Contribution from Other Terms (1)

Contribution from Other Terms (2)

Contribution from Other Terms (3)

$$\nabla \Phi = -\frac{1}{\rho_{\text{gas}}} \nabla p - \frac{\partial v}{\partial t} - (v \cdot \nabla)v = -\frac{Dv}{Dt} \text{ (Lagrangian acceleration)}$$

normalized by $| \cdot \nabla p / \rho (r_{500}) |$
$$4 - \frac{1}{\rho_{\text{gas}}} \nabla p - \frac{\partial v}{\partial t} - \frac{\partial v}{\partial t} + \frac{1}{\rho_{500}} + \frac{1}{\rho_{500}} \nabla p / \rho + \frac{1}{\rho_{500}} + \frac{1}{\rho_{500}} + \frac{1}{\rho_{500}} \nabla p / \rho + \frac{1}{\rho_{500}} + \frac{1}{\rho_{500$$

Causes of the Bias

- Gravitational Lensing
 - substructure
 - non-sphericity
 - . . .
- X-ray & Sunyaev-Zel'dovich effect
 - assumption of hydrostatic equilibrium (HSE)
 - $\rightarrow~{\sim}10\%$ @ $\rm r_{500},>30\%$ @ larger radii
 - deprojection of gas properties from 2D observables (related to non-sphericity of clusters)

• • • •

Deprojection Effect (1)

• Surface brightness I_X & spectroscopic temperature T_{spec} →Radial profiles of density n(r) & temperature T(r) deprojection process can produce another bias

DS+(in prep)

$$T_{\rm sl} = \frac{\int dl \ n^2 T^{1/4}}{\int dl \ n^2 T^{-3/4}}$$

- make $I_{\rm X}$ & spectroscopic-like temperature $T_{\rm sl}$ from simulation data (1 AMR and 5 SPH clusters)

• find n(r) & T(r) which best reproduce $I_X \& T_{sl}$ assuming

$$\widehat{n}(r) = n_0 \frac{(r/r_c)^{-\alpha/2}}{(1+r^2/r_c^2)^{3\beta/2-\alpha/4}} \quad \widehat{T}(r) = T_0 \frac{(r/r_t)^{-a}}{(1+(r/r_t)^b)^{c/b}}$$

Vikhlinin et al., 2006

calculate HSE mass

$$M_{\rm HSE} = -\frac{k_B T(r)}{\mu m_p G} \left[\frac{d \log n(r)}{d \log r} + \frac{d \log T(r)}{d \log r} \right]$$

Deprojection Effect (2)

- # of bins: arbitrary
- error bars: variance in the annulus

NOT considering some specific observation

Density: tend to be overestimated (observables $\propto n^2$) Temperature: tend to be underestimated

Deprojection Effect (3)

Causes of the Bias

- Gravitational Lensing
 - substructure

. . .

• non-sphericity

- X-ray & Sunyaev-Zel'dovich effect
 - assumption of hydrostatic equilibrium (HSE)
 - → underestimate by ~10% @ r_{500} , >30% @ larger radii
 - deprojection of gas properties from 2D observables (related to non-sphericity of clusters)
 - \rightarrow another ~10% underestimate

Discussion

- assumption of hydrostatic equilibrium (HSE)
 - $\rightarrow~$ underestimate by ~10% @ r_{500}, >30% @ larger radii
- deprojection of gas properties from 2D observables (related to non-sphericity of clusters)
 - \rightarrow another ~10% underestimate
- consistent with Rasia et al. (2012)
 - (~20% @ r₅₀₀ underestimate with large scatter) larger radii?? things neglected in simulations?? treatment of high energy physics in simulations?
- To better estimate mass...
 - 1. accurately measure gas density & temperature e.g. using variance in I_X to correct the bias in density $(\sqrt{n^2} \rightarrow n)$ (Roncarelli et al., 2013)
 - 2. reconcile the discrepancy between HSE mass & total mass

Summary

- According to Rasia et al. (2012)
 - Lensing mass underestimates the true mass by <10% on average with large scatter
 - X-ray hydrostatic mass underestimates the true mass by >20% on average with small scatter
- Bias in X-ray observations
 - assumption of hydrostatic equilibrium (HSE)
 - $\rightarrow~$ underestimate by ~10% @ r_{500}, >30% @ larger radii
 - deprojection of gas properties from 2D observables (related to non-sphericity of clusters)
 → another ~10% underestimate
 - Effect neglected in simulations can be significant in real clusters

Correction Term

Correction Term

Introduction

• Impact on cosmological parameters

• σ_8 from cluster abundance (Shimizu et al., 2006)

 $\sigma_{8,\text{true}} = \sigma_{8,\text{cluster}} + 0.5(1 - \alpha_M) \quad \alpha_M = M_{\text{est}}/M_{\text{tot}}$

• Cluster abundance vs. CMB anisotropies

Entropy

