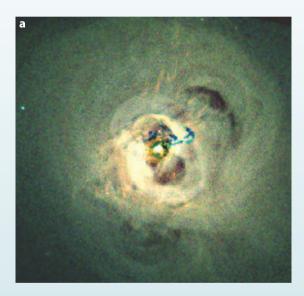
Non-thermal Emissions from Cluster Cores

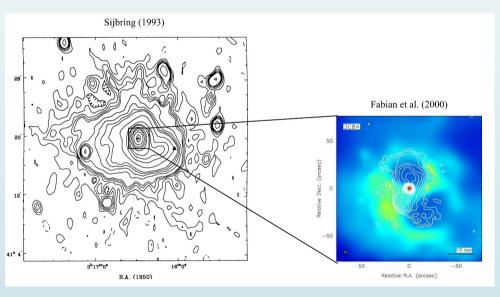
Yutaka Fujita (Osaka)


Outline

- Observations of non-thermal emissions from cluster cores
- Origin of non-thermal emissions
- Turbulence and heating of cluster cores

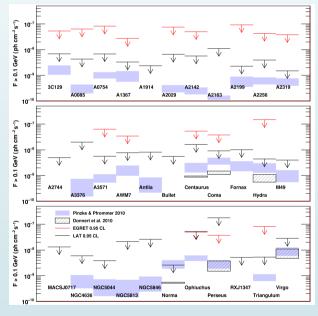
Observations of non-thermal emissions from cluster cores

Cluster cores


- Region within ~100 kpc from the cluster center
- Bright in X-rays
 - High gas density (~ 0.1 cm⁻³)
- Low temperature
 - \sim ~1/3 1/2 of the surroundings
- Cooling time
 - ► ~ 10⁸⁻⁹ yr
 - Much smaller than the cluster age
 - There must be a heating source
- AGN activities are often seen

Core of the Perseus Cluster (Fabian at al. 2012)

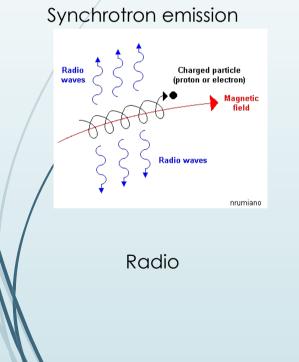
Non-thermal emissions from cores


- Radio observations
 - Mini-halos
 - Diffuse synchrotron emission
 - Comparable to the size of a core (~ 100 kpc)
 - Rare, but the number is increasing (Giacintucci et al. 2013)

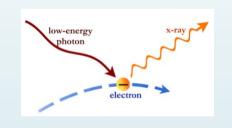
Gitti et al. (2003)

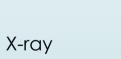
Non-thermal emissions from cores

- X-ray observations
 - Controversial, but probably not detected
 - Chandra (Sanders et al. 2005)
 - XMM-Newton (Molendi, & Gastaldello 2009)
 - Gamma-ray observations
 - Not detected

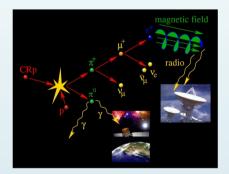


Ackermann et al. (2010)


Origin of non-thermal emissions

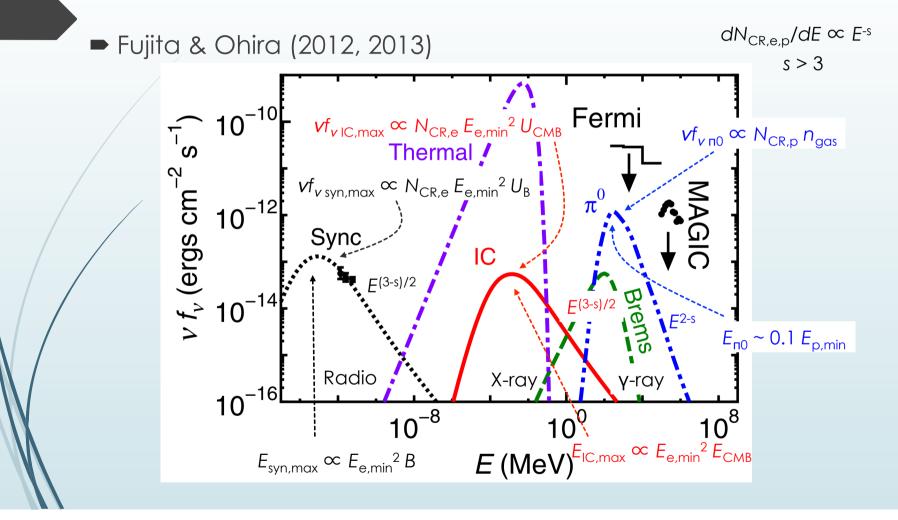

Non-thermal emissions from cosmic-rays

Cosmic-rays (CRs) produce emission through various mechanisms



Inverse Compton (IC) scattering

p-*p* interaction (π^0 -decay)



CR proton – ICM proton

γ-ray

Second electrons are also created \rightarrow Synchrotron, IC

Non-thermal emissions from cores

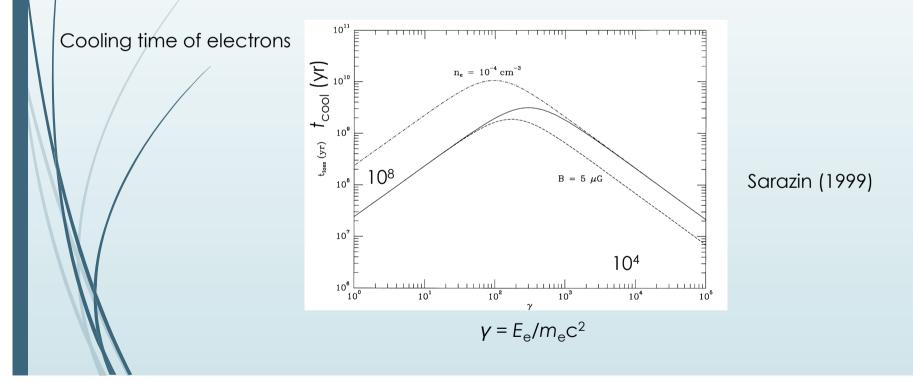
What do the observations mean?

- No detection of gamma-rays
 - Number of cosmic-ray protons is not large
- No detection of hard X-rays
 - Weak IC emission
 - $= U_{\rm CMB} v f_{v \, \rm syn,max} / v f_{v \, \rm IC,max}$
 - Strong Magnetic fields (🕅 µG)
- It would be difficult to detect hard X-rays with Astro-H
 - It is unlikely that $B < \mu G$ in cores
- It would be difficult to detect TeV gamma-rays with CTA
 - It is unlikely that cosmic-ray spectrum is hard in clusters
 - Shocks are weak, and turbulent acceleration is not so efficient
- SKA observations are important to know $E_{e,min}$

What is the origin of synchrotron emission?

• Electron energy ($E_e = \gamma m_e c^2$)

$$\gamma \approx 10^4 \left(\frac{B}{5\mu G}\right)^{-1/2} \left(\frac{\nu}{1.4 \text{GHz}}\right)^{1/2}$$

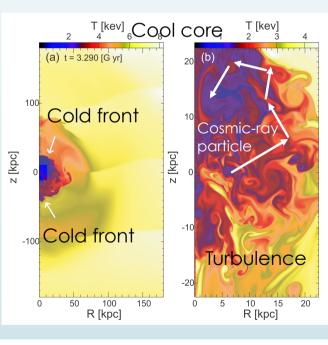

- Primary electrons
 - Electrons directly (re)accelerated at shocks or turbulence
- Secondary electrons
 - Pions are created via p-p interaction, and electrons are generated

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} / \overline{\nu}_{\mu} \rightarrow e^{\pm} + \nu_{e} / \overline{\nu}_{e} + \nu_{\mu} + \overline{\nu}_{\mu}$$

- Protons must have been accelerated
- Lower energy cutoff ($m_{\Pi}c^2 = 140 \text{ MeV}$) \rightarrow SKA

Cooling time of electrons

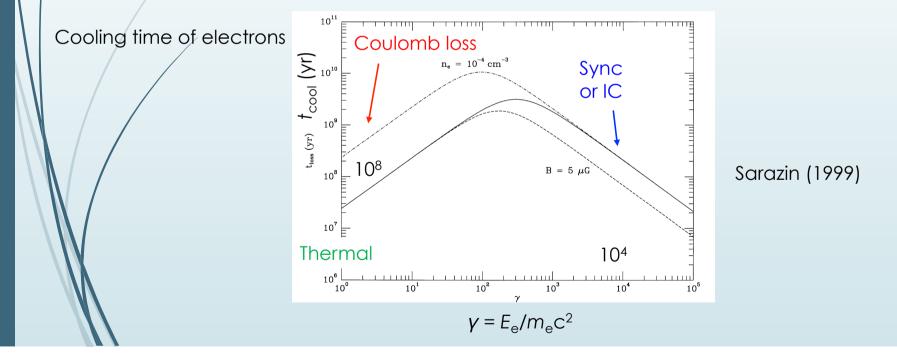
- Cooling time of cosmic-ray elections is much shorter than the age of clusters (10° yr)
 - t_{cool} 🕅 10⁸ yr



Cooling time of electrons

- The short cooling time constrains the acceleration of the electrons
- If the central AGN is the source of the electrons, the diffusion scale of the elections is
 - $r_{\text{diff}} = \sqrt{t_{\text{cool}} L V} \sim 20 \text{ kpc} < \text{mini-halo size} (~100 \text{ kpc})$
 - Diffusion by turbulence
 - ► L: Eddy size, V: Eddy velocity
 - t_{cool} =10⁸ yr, L=10 kpc, V=300 km s⁻¹
 - The electrons cannot cover the mini-halo
- In situ acceleration model (for primary electrons) or secondary electron model are required
 - Cosmic-ray protons do not cool

In situ acceleration


- Elections are reaccelerated by turbulence developing in a core (e.g ZuHone et al. 2013)
 - Second order Fermi acceleration
 - Slow acceleration

Fujita, Matsumoto, & Wada (2004) c.f. Ascasibar & Markevitch (2006)

Why 're'acceleration?

- If thermal electrons are accelerated, they have to break through the 'Coulomb loss barrier'
 - Coulomb interaction with thermal electrons cause energy loss
 - It is generally difficult to overcome it for turbulent acceleration

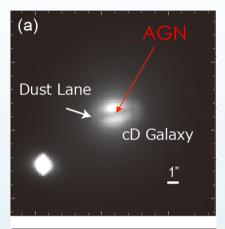


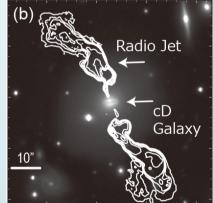
Seed electrons

- Turbulent acceleration models assume the existence of seed cosmic-ray elections
 - **γ** ~ 100
 - $t_{\rm cool} \sim 10^9 {\rm \ yr}$
 - They tend to accumulate in clusters
 - The origin of the seeds has not be considered in detail
 - Electrons accelerated at shocks generated by cluster mergers?
 - Secondary electrons?

Secondary electron models

- Electrons are created via p-p interaction
- Since proton cooling can be ignored, protons accumulated in a core keep creating the electrons
- Proton accelerators
 - AGNs
 - Jets may include protons
 - Interaction between jets and ICM
 - Cluster mergers



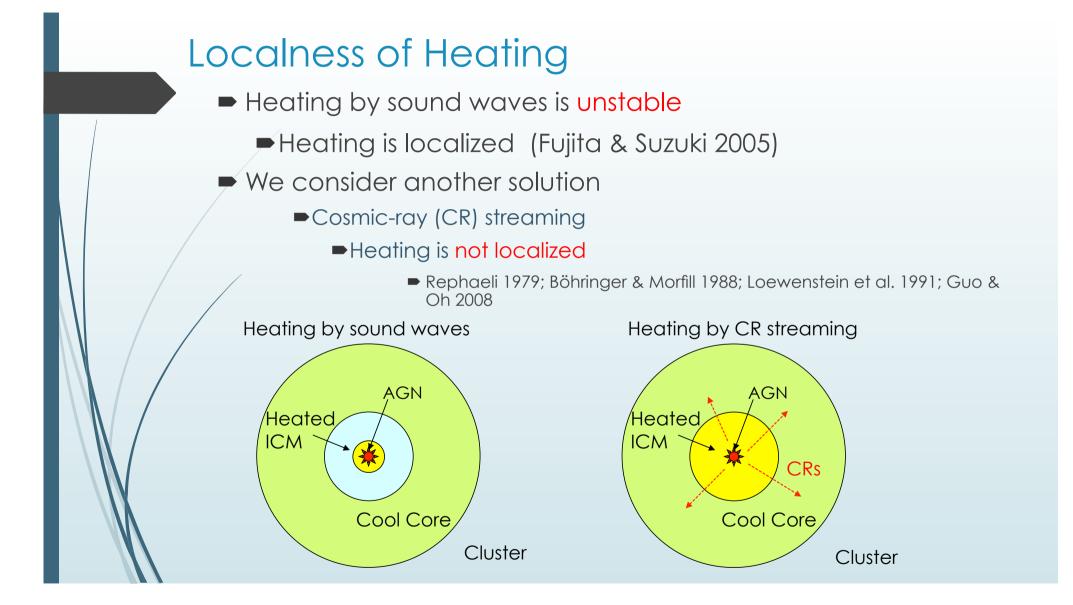

Fujita & Ohira (2013)

Turbulence and heating of cluster cores

AGN Heating

- Cluster cores must have been heated by something
 - AGNs are the most popular candidate of the heating source
- Energy transfer from the AGN to the ICM
 - Mechanical heating?
 - Shocks, sound waves...
 - It has a serious problem

Hydra A (Fujita et al. 2013)



If the amplitude of waves is large (δv MO.1×sound velocity), the waves rapidly (within a few wave lengths) steepen, and become nonlinear weak shocks

e.g. Fluid Mechanics (Landau and Lifshitz)

- Once weak shocks are formed, the wave energy is dissipated at the shock fronts
 - This dissipation is very fast (~10 kpc << core size)</p>
 - In the case of the Perseus cluster, the observed sound waves should soon become weak shocks or they have already become weak shocks.
- Solar corona (Stein & Schwartz 1972; Suzuki 2002)

How to revive the mechanical heading

- Cool cores are unstable
 - However, cooling flows are suppressed in almost all cores
 - Probably, heating is stable
- Strong turbulence in the whole core
 - Mix the ISM and prevent local heating and cooling

Summary

- Observations of non-thermal emissions from cluster cores
 - Radio mini-halos are observed
 - Hard X-rays and gamma-rays have not been confirmed
 - Origin of non-thermal emissions
 - Electrons (primary, secondary)
 - Synchrotron radio emission
 - Inverse Compton scattering (Hard X-rays)
 - Protons
 - $\blacksquare \pi^{0}$ -decay gamma-rays (p-p interaction)
 - Production of secondary electrons

Summary

- Short cooling time of CR electrons constrain CR acceleration models
 - Turbulent acceleration
 - Seed electrons are required
 - Secondary electrons (proton origin)
- Turbulence is related to core heating