Probing of Interactions between Galaxies and Hot Plasmas in Clusters

a possible energetic flow on cosmological timescale

Liyi Gu (RESCEU, Univ. of Tokyo)

Motivation:

Is there a common mechanism to explain the observed phenomena of ICM ('cooling flow', turbulence) and cluster galaxies (cD formation, morphology-density relation)?

Role of EM Interactions in Clusters

- Long-range electromagnetic (EM) interactions are poorly considered.
- Nature of cosmic plasmas: collective, long-distance interactions (wave, organized motion...)
- Simple test: how strong do cluster member galaxies interact with ICM?

The key is to measure:

Radial galaxy number(light) profiles / radial ICM mass profiles for clusters with different-redshifts

Systematic Study on Galaxy vs. ICM Dist.

Two samples are studied:

- I. Large redshift range (z = 0.1-0.9; Gu+2013, ApJ, 767, 157)
 - Cluster number = 34
 - Total mass = 2-8 10¹⁴ Msun
 - Relaxed morphology
 - Our own optical photometric and archival XMM/Chan. data
 - Member selection: color-mag. and background subtract
- 2. <u>Large sample number (339 clusters; 258 in this talk)</u>
 - Redshift = 0.0-0.5
 - Total mass = 0.1-15 10¹⁴ Msun
 - Morphology-unbiased
 - SDSS DR9 phot-z ($M_r < -21$) and archival XMM/Chan. Data
 - Redshift uncertainty $\Delta z = 0.012 \sim 0.022$

- All SDSS-XMM/Chan. clusters
 80-90% completeness (at >5e-12) relative to X-ray limited sample
- (This work) M₅₀₀ = 10¹⁴⁻¹⁵ Msun selected

 \geq 2971 galaxies ($M_r < -21$) found as member by SDSS DR9 spec-z; 2664 are in our phot-z sample $\rightarrow \sim 90\%$ completeness

50

3609 galaxies defined as member by phot-z, 763 are fore/background by spec-z $\rightarrow \sim 20\%$ contamination

Sample II. Galaxy vs. ICM

Normalized Galaxy number vs. ICM mass ratio

Sample II. Galaxy vs. ICM

Evolution of galaxy-to-ICM profiles does NOT depend on cluster or galaxy mass.

 \diamond Gravitational effects cannot fully explain this evolution.

Member galaxies become centrally-concentrated relative to the ICM from z = 0.9 to z = 0.1.

 ◆ Galaxies lose kinet./poten. energy to ICM/DM by 10⁴⁴⁻⁴⁵ erg/s per cluster → a hidden energetic flow on cosmological timescale.

• Yet to explore:

(1) Actual mechanism of the interaction
(2) Effects of the long-range EM interaction (esp. via magnetic field) in suppressing cooling flow / galaxy evolution / structure formation.

Possible Inter: Clumpy Infall

Group infall/minor mergers: energy dissipation ~ 10^{60} erg (suppress cooling!), galaxy color change along the infalling filament

Photometric-z – Spectroscopic-z

Member number vs. phot-z gas

