Subaru Hyper Suprime-Cam (HSC) Survey

Masahiro Takada (Kavli IPMU, U. Tokyo)

@ Astro-H Workshop, Tokyo U. of Science, Dec 28

BOSS DRII Results (Dec 18th)

~2 σ tension Should wait for the 2nd Planck result (Sep 2014?)

~8400 deg^2

LSS and Planck tension

Beutler, Saito + 13

Planck favors slightly higher matter density (Ω_m) and sigma_8 than the large-scale structure probes (weak lensing, galaxy clustering, CMB lensing, cluster abundance...)

SuMIRe = Subaru Measurement of Images and Redshifts

- IPMU director Hitoshi Murayama funded (~ \$32M) by the Cabinet in Mar 2009, as one of the stimulus package programs
- Build wide-field camera (Hyper SuprimeCam) and wide-field multi-object spectrograph (Prime Focus Spectrograph) for the Subaru Telescope (8.2m)
- Explore the fate of our Universe: dark matter, dark energy
- Keep the Subaru Telescope a world-leading telescope in the TMT era
- Precise images of IB galaxies
- Measure distances of IM galaxies

Subaru (NAO)

Cosmology/Cluster physics with Survey data

- Obtain a universal picture of the features or evolution of large-scale structure/clusters (use ~IB galaxies for HSC)
- Easy to compare & test the cosmological model
- Can also identify a rare object(s) compared to the other majority
 - I was quite often said in the US "You are totally different from Masataka (Fukugita-san). Which one is a typical Japanese?"
 - Unless we have an enough sample of Japanese people, we can't notice that Fukugita-san is special; can't also study a universal trend for other majority Japanese
 - Hence, in order to find >5sigma rare cluster(s), we need a homogenous survey data anyway; discovery vs. understanding

Hyper Suprime-Cam Project

- All instruments at Mauna Kea
- The *largest* camera in the world
- 3m high
- 3 tons weighed
- 116 CCD chips
 (870 millions pixels)

HSC First Light Image of M31

S. Miyazaki N. Yasuda S. Bickerton (NAOJ)

Feb2, 2013 Seeing 0''.4 ~ 0''.6 FWHM

13年8月30日金曜日

٤

Brief History of HSC

- 2006 HSC grant (~\$20M: PI H. Karoji) started
- 2008 Princeton and Taiwan joined
- 2009 FIRST made up for the shortfall (added ~\$20M)
- Oct 2012 The survey proposal for the HSC Subaru Strategic Program (HSC SSP) submitted (the reviewing process by the Subaru Community)
- Feb 2013 HSC first light using all the 104 CCD chips
- Feb 2013 Troubles of Subaru (in total 3+4 months delay, although we originally wanted to start our survey from this year)
- April 2013 300 nights approved for HSC SSP
 - Previous SSP surveys: SEEDS 120nights (08-13), FMOS 120 requested, but only 40 nights approved (12-13 or 14)
- Late June 2013 the second commissioning run
- Oct 2013 Jan 2014 Commissioning runs (data quality verification)
- Feb 2014 HSC SSP Survey starts till 2019

PI: Satoshi Miyazaki (NAOJ) M.Takada: Science WG co-chair (with M. Strauss), Survey Design Committee chair

HSC SSP proposal About 170 Col's, ever largest galaxy survey

> Wide-field imaging with Hyper Suprime-Cam: Cosmology and Galaxy Evolution A Strategic Survey Proposal for the Subaru Telescope

PI: Satoshi Miyazaki (NAOJ) Co-PI: Ikuru Iwata (NAOJ)

The HSC collaboration team¹: S. Abe⁽¹⁾, H. Aihara^{*(2),(3)}, M. Akiyama⁽⁴⁾, K. Aoki⁽⁵⁾, N. Arimoto^{*(5)}, N. A. Bahcall⁽⁶⁾, S. J. Bickerton⁽³⁾, J. Bosch⁽⁶⁾, K. Bundy^{†(3)}, C. W. Chen⁽⁷⁾, M. Chiba^{†(4)}, T. Chiba⁽⁸⁾, N. E. Chisari⁽⁶⁾, J. Coupon⁽⁷⁾, M. Doi⁽²⁾, M. Enoki⁽⁹⁾ S. Foucaud⁽¹⁰⁾, M. Fukugita⁽³⁾, H. Furusawa^{†(5)}, T. Futamase⁽⁴⁾, R. Goto⁽²⁾, T. Goto⁽¹¹⁾, J. E. Greene⁽⁶⁾, J. E. Gunn^{†(6)}, T. Hamana^{†(5)}, T. Hashimoto⁽²⁾, M. Hayashi⁽⁵⁾, Y. Higuchi^{(2),(5)}, C. Hikage⁽¹²⁾, J. C. Hill⁽⁶⁾, P. T. P. Ho^{*(7)}, B. C. Hsieh⁽⁷⁾, K. Y. Huang^{†(7)}, H. Ikeda⁽¹³⁾, M. Imanishi⁽⁵⁾, N. Inada⁽¹⁴⁾, A. K. Inoue⁽¹⁵⁾, W.-H. Ip⁽¹⁾, T. Ito⁽⁵⁾, K. Iwasawa⁽¹⁶⁾, M. Iye⁽⁵⁾, H. Y. Jian⁽¹⁷⁾, Y. Kakazu⁽¹⁸⁾, H. Karoji⁽³⁾, N. Kashikawa⁽⁵⁾, N. Katayama⁽³⁾, T. Kawaguchi⁽¹⁹⁾, S. Kawanomoto⁽⁵⁾, I. Kayo⁽²⁰⁾, T. Kitayama⁽²⁰⁾, G. R. Knapp⁽⁶⁾, T. Kodama⁽⁵⁾, K. Kohno⁽²⁾, M. Koike⁽⁵⁾, E. Kokubo⁽⁵⁾, M. Kokubo⁽²⁾, Y. Komiyama⁽⁵⁾, A. Konno⁽²⁾, Y. Koyama⁽⁵⁾, C. N. Lackner⁽³⁾, D. Lang⁽⁶⁾, A. Leauthaud^{†(3)}, M. J. Lehner⁽⁷⁾, K.-Y. Lin⁽⁷⁾, L. Lin⁽⁷⁾, Y.-T. Lin^{†(7)}, C. P. Loomis⁽⁶⁾, R. H. Lupton^{†(6)}, P. S. Lykawka⁽²¹⁾, K. Maeda⁽³⁾, R. Mandelbaum^{†(22)}, Y. Matsuda⁽⁵⁾, K. Matsuoka^{(13),(23)}, Y. Matsuoka⁽¹²⁾, S. Mineo⁽²⁾, T. Minezaki⁽²⁾, H. Miyatake⁽⁶⁾, R. Momose⁽²⁾, A. More⁽³⁾, S. More⁽³⁾, T. J. Moriya⁽³⁾, T. Morokuma^{†(2)}, H. Murayama^{*(3)}, K. Nagamine⁽²⁴⁾, T. Nagao^{†(23)}, S. Nagataki⁽²³⁾, Y. Naito⁽²⁾, K. Nakajima⁽²⁾, F. Nakata⁽⁵⁾, H. Nakaya⁽⁵⁾, T. Namikawa⁽²⁾, C.-C. Ngeow⁽¹⁾, T. Nishimichi⁽³⁾, H. Nishioka⁽⁷⁾, A. J. Nishizawa^{†(3)}, K. Nomoto⁽³⁾, M. Oguri^{†(3)}, A. Oka⁽²⁾, N. Okabe⁽⁷⁾, S. Okamoto⁽²⁵⁾, S. Okamura⁽²⁶⁾, J. Okumura⁽²³⁾, S. Okumura⁽²⁷⁾, Y. Okura⁽⁵⁾, Y. Ono⁽²⁾ M. Onodera⁽²⁸⁾, K. Ota⁽²³⁾, M. Ouchi^{†(2)}, S. Oyabu⁽¹²⁾, P. A. Price⁽⁶⁾, R. Quimby⁽³⁾, C. E. Rusu^{(2),(5)}, S. Saito⁽²⁹⁾, T. Saito⁽³⁾, Y. Saitou⁽³⁰⁾, M. Sato⁽¹²⁾, T. Shibuya⁽⁵⁾, K. Shimasaku^{†(2)}, A. Shimono⁽³⁾, S. Shinogi⁽²⁾, M. Shirasaki⁽²⁾, J. D. Silverman⁽³⁾, D. N. Spergel^{*(6)}, (3), M. A. Strauss^{†(6)}, H. Sugai⁽³⁾, N. Sugiyama^{(12),(3)}, D. Suto⁽²⁾, Y. Suto^{*(2)}, K. Tadaki⁽²⁾, M. Takada^{†(3)}, R. Takahashi⁽³¹⁾, S. Takahashi⁽⁵⁾, T. Takata⁽⁵⁾, T. T. Takeuchi⁽¹²⁾, N. Tamura⁽³⁾, M. Tanaka⁽⁵⁾, M. Tanaka^{†(3)}, M. Tanaka⁽⁴⁾, Y. Taniguchi⁽¹³⁾, A. Taruya⁽²⁾, T. Terai⁽⁵⁾, Y. Terashima⁽¹³⁾, N. Tominaga⁽³²⁾, J. Toshikawa⁽³⁰⁾, T. Totani⁽²³⁾ M. Tsai⁽¹⁾, E. L. Turner^{*(6)}, Y. Ueda⁽²³⁾, K. Umetsu⁽⁷⁾, Y. Urata^{†(1)}, Y. Utsumi⁽⁵⁾, B. Vulcani⁽³⁾, K. Wada⁽³³⁾, S.-Y. Wang⁽⁷⁾, W.-H. Wang⁽⁷⁾, T. Yamada⁽⁴⁾, Y. Yamada⁽⁵⁾, K. Yamamoto⁽³⁴⁾, H. Yamanoi⁽⁵⁾, C.-H. Yan⁽⁷⁾, N. Yasuda^{†(3)}, A. Yonehara⁽³⁵⁾, F. Yoshida^{†(5)}, N. Yoshida⁽²⁾, M. Yoshikawa⁽³⁶⁾, S. Yuma⁽²⁾ (1) NCU, Taiwan (2) Tokyo (3) Kavli IPMU (4) Tohoku (5) NAOJ

Survey power of HSC

Planned HSC Survey

- Wide Layer: 1400 sq. degs., grizy (i_{AB} =26, 5 σ)
 - Weak gravitational lensing
 - Galaxy clustering, properties of $z \sim I L_*$ galaxy
 - Dark Energy, Dark Matter, neutrino mass, the early universe physics (primordial non-Gaussianity, spectral index)
- Deep Layer: 28 sq. degs, grizy+NBs (i=27)
 - For calibration of galaxy shapes for HSC-Wide WL
 - Lyman-alpha emitters, Lyman break galaxies, QSO
 - Galaxy evolution up to $z\sim7$
 - The physics of cosmic reionization
- Ultra-deep Layer: 2FoV, grizy+NBs (i~28)
 - Type-la SNe up to z~1.4
 - LAEs, LBGs
 - Galaxy evolution
 - Dark Energy, the cosmic reionization

Planned HSC Survey

HSC Survey Fields

- The HSC fields are selected based on ...
 - Synergy with other data sets: SDSS/BOSS, The Atacama Cosmology Telescope CMB survey (from Chile), X-ray (XMM-LSS), spectroscopic data sets
 - Spread in RA
 - Low dust extinction

Subaru Telescope: wide FoV & excellent image quality

- Fast, Wide, Deep & Sharp
- a cosmological survey needs these

Stacked lensing: halo-shear correlation

A preparation study of HSC survey DM distribution of galaxy clusters

- Collected Subaru data of 50 clusters, *all* the most X-ray luminous clusters accessible from Subaru (about 15 Subaru nights; 5 yrs)
- The averaged DM distribution from the combined WL data

N. Okabe

Signal-to-Noise ratio (S/N)~5 for one cluster \Rightarrow S/N~30 when 50 clusters combined

Okabe et al. 13, ApJ Letters Okabe, MT+ 10

DM distribution of galaxy clusters (cont'd)

N-body simulation of CDM structure formation

Subaru WL result shows a perfect agreement with the CDM model prediction

Forecast for stacked lensing with HSC

Oguri & MT 10

- >10000 clusters with >10^14Msun, up to z~1.4
- HSC can achieve a high S/N detection of stacked WL signals out to $z\sim 1.3$
- Small-angle signals are from one halo (the mean halo mass and the average shape of mass profile)
- Large-angle signals are from the mass distribution in large-scale structure

Complementarity of different data

Springel 05

Thermalization

A pop-up of thermal gas to outside the virial radius, due to heating

Baryon collisional: gravitational kinetic energy ⇒ thermal energy via shock

Thermal gas (fraction) radial profile

- HSC+ACTPol enables to study the average gas/DM profiles for clusters up to z~1.4
- A direct witness of the kinetic and thermal energy transfer at r~r_vir
- An indirect constraint on the turbulence pressure
- Astro-H → A detailed study of the physics

Siminonescu+ 11

Spherical collapse model for $\nu + \Lambda CDM$

- Baryon can catch up with the CDM overdensity at low redshifts
 - Note that, for halos at much earlier collapse time (e.g. first stars), baryon can't catch up (Naoz & Barkana 05)
 - Hence the CDM and baryon can collapse

Neutrinos can't catch up

- The neutrino overdensity is still in the regime, δ_{ν} <1 even at the collapse redshift
- This is also true for M_nu~0.1eV, the lower limit of IMH

Prime Focus Spectrograph (PFS)

- Multi object fiber spectrograph for 8.2m Subaru
- International collaboration; Japan (IPMU+),
 Princeton, JHU, Caltech/JPL, LAM, Brazil, ASIAA
- Initiated by the stimulus funding (~\$30M secure); \$50M needed for the instrumentation
- * The current baseline design
 - The same optics to HSC
 - 2400 fibers
 - 380-1300nm wavelength coverage
 - R~2000, 3000, 5000 (blue, red, NIR)
- The target first light; around 2017
- Capable of various science cases: cosmology, galaxy, galactic archeology

PFS collaboration

NASA

Jet Propulsion Laboratory California Institute of Technology

PFS Positioner

Cobra system is the most essential part of PFS, and will be built at JPL Designed to achieve 5 μ m accuracy in < 8 iterations (40 sec)

PFS Specifications

Approved by Preliminary Design Review (March, 2013)

Number of fibers	2400		
Field of view	1.3 deg (hexagonal-diameter of circumscribed circle)		
Fiber diameter	I.I3" diameter at center I.03" at the edge		
	Blue	Red	NIR
Wavelength range [nm]	380-650	630-970 (706-890)	940-1260
Central resolving power	~2350	~2900 (~5000)	~4200
Detector type	CCD	CCD	HgCdTe

- Share WFC with HSC
- 4 spectrographs for 600 fibers each
- $\lambda = 0.38 1.26 \,\mu$ m with 3 arms
- Fiber density: 2200/sq. degs (⇔ ~140 for BOSS; ~570 for DESI)
- Now, a medium resolution mode (R~5000) for the red arm is our baseline design

Summary

- HSC/ACT/SDSS (eventually eROSITA) allow an unprecedented statistical study of galaxy clusters
 - Weak lensing, SZ and galaxy distribution, up to $z\sim1.4$
 - A stringent test of structure formation scenarios with a unique sample of clusters (dark energy, neutrino mass, ...)
- Cosmology/Cluster physics: a BIG discovery/excitement with improved data (our own data) will come
 - COBE \leftarrow 20 yrs after CMB discovery
 - SDSS: BAO, galaxy clustering \leftarrow 20 yrs after the CfA survey
 - Kamiokande: neutrino experiments \leftarrow proton decay for GUT
 - LHC: Higgs discovery ← 18 years after the top-quark discovery
- So now we should work together for the big excitement!