Clusters with ASTRO-H

- The Perseus cluster
 - (N. Werner, S.W.Allen, T. Tamura et al.)
- M 87 in the Virgo cluster
 - (A. Simionescu, K. Matsushita et al.)
- Mapping Gas Flows and Turbulence in Merging Galaxy clusters
 - (M. Markevitch, H. Akamatsu et al.)
- Measuring Non-Thermal Pressure and Mass
 - (N. Ota, M. Bautz et al.)
- Chemical Composition and Evolution
 - (J. de Plaa, K. Sato et al.)
- Detecting and Characterizing the Warm-Hot Intergalactic Medium
 - (M. Galeazzi, T. Kitayama et al.)

From ASTRO-H white papers

Feedbacks in cool cores

Heating mechanism

- AGN activity?
- Galaxies?

Gas dynamics

- Velocity broadneng
- Metal distribution?
- Resonant line scattering

With SXS, we can map brightest cools cores (several arcmin)

Temperature structure

The Perseus cluster with ASTRO-H

The residual Chandra image of the Perseus cluster with proposed SXS FOVs(3'x3')

- Statistical uncertainties in bulk and turbulent velocities < 10 km/s
- Systematic uncertainties caused by uncertainties in the line spread function and gain of SXS ~ several times km/s

The brightest Fe-K lines

Systematic uncertainties caused by uncertainties in detector responses

 Systematic uncertainties caused by uncertainties in the line spread function and gain of SXS ~ several times km/s

We need some calibrations using SXS cluster data (3' offset of the Perseus cluster?)

Resonant line scattering vs turbulence

Turbulent motions of gas -- suppress the effect of the resonant line scattering

A different sensitivity from the line broadening effect

Measurements of flux ratios of optically thick and thin lines

Resonant line scattering with XMM

Turbulences in the cool cores of the Perseus cluster?

Resonant line scattering with SXS

M 87 (the Virgo cD) with SXS

The gas dynamics in the center and uplifted gas with radio lobes. Turbulence induced by the radio bubble and shock fronts? Metal uplift from the core?

宇宙の大構造と銀河団の合体と成長

CLEF 2004: Kay, da Silva, Aghanim, Blanchard, Liddle, Puget, Sadat, Thomas

Gas Dynamics in Merging Galaxy clusters

A3667 A3667 Cold front	The generation and dissipation of turbulence depends on a microphysical properties of the ICM (viscosity, B)			
	Region 200ks	v _{bulk} , km s ⁻¹	$\sigma_{\rm v}, {\rm km \ s^{-1}}$	
	Constraints for gas inside:			
Inside	(a) $v_{\text{bulk}} = 0$, $\sigma_v = 1000 \text{ km s}^{-1}$ inside		1005 ± 23	
	(b) $v_{\text{bulk}} = 1000 \text{ km s}^{-1}$	±43		
outside	Constraints for gas outside:			
\sim	(a) $v_{\text{bulk}} = 0$, $\sigma_v = 1000 \text{ km s}^{-1}$ inside	±100	420 ± 150	
200 kpc	(b) $v_{\text{bulk}} = 1000 \text{ km s}^{-1}$	±136	571 ± 143	
	1000 km/s turbulence inside			
		<u> </u>		

Dissipated kinetic energy

- Turbulence?
- Bulk motions?
- Thermal energy?
- cosmic rays?

Measuring Non-thermal pressure and mass

Test the assumption that the ICM is in hydrostatic equilibrium

Accuracy of mass measurements of clusters

cosmology

$$\frac{p_{\text{turb}}}{p_{\text{therm}}} \simeq 1.2 \times 10^{-2} \left(\frac{\sigma_{\text{v}}}{100 \text{ km/s}}\right)^2 \left(\frac{\mu}{0.59}\right) \left(\frac{k_{\text{B}} T_{\text{gas}}}{5 \text{ keV}}\right)^{-1}$$

$$\frac{v_{\text{bulk}}}{v_{\text{sound}}} = 0.11 \left(\frac{v_{\text{bulk}}}{100 \text{ km/s}} \right) \left(\frac{k_{\text{B}} T_{\text{gas}}}{5 \text{ keV}} \right)^{-1/2},$$

Gas dynamics of relaxed clusters out to r₂₅₀₀

Rare metals with Astro-H

Rare metals are different indicators for SN Ia/SNcc contributions, Progenetor metallicity Expected errors in solar units in the SXS Perseus core pointing

Assuming that the abundance is 1 solar

	Exposure		Exposure needed for	
Element	50 ks	100 ks	detection $>5\sigma$	
F	83	59	-	
Na	0.35	0.25	$\gtrsim 150 \text{ ks}$	
Al	0.14	0.10	$\gtrsim 25 \text{ ks}$	
Р	0.7	0.5	≳ 625 ks	
Cl	0.4	0.3	$\gtrsim 225 \text{ ks}$	
Κ	0.7	0.5	≥ 625 ks	
Sc	55	39	-	
Ti	0.7	0.5	≥ 625 ks	
V	6.0	4.3	-	
Cr	0.14	0.10	$\gtrsim 25 \text{ ks}$	
Mn	0.27	0.19	≥ 90 ks	
Co	0.7	0.5	≥ 625 ks	
Cu	4.0	2.8	-	
Zn	1.6	1.1	-	

Cr and Mn detection from the Perseus cluster with Suzaku Tamura et al. 2009

Detecting and Characterizing the Warm-Hot Intergalactic Medium

Wavelet decomposed 0.5–2.0 keV image of Abell 222 and Abell 223 (from Werner et al. 2008). The filament connecting the two massive clusters is clearly visible in the image.

- z=0.21
- Excess emission detected at kT=(0.91±0.25) keV
- Extrapolated Overdensity ~ 150

Clusters with ASTRO-H

- The Perseus cluster
 - (N. Werner, S.W.Allen, T. Tamura et al.)
- M 87 in the Virgo cluster
 - (A. Simionescu, K. Matsushita et al.)
- Mapping Gas Flows and Turbulence in Merging Galaxy clusters
 - (M. Markevitch, H. Akamatsu et al.)
- Measuring Non-Thermal Pressure and Mass
 - (N. Ota, M. Bautz et al.)
- Chemical Composition and Evolution
 - (J. de Plaa, K. Sato et al.)
- Detecting and Characterizing the Warm-Hot Intergalactic Medium
 - (M. Galeazzi, T. Kitayama et al.)

From ASTRO-H white papers