(銀河団の物理@東京理科大学, 2013/12/28)

光赤外で探る銀河団銀河の形成と進化 Optical-IR Views of Formation and Evolution of Galaxy Clusters

Tadayuki Kodama (NAOJ) Yusei Koyama (NAOJ), Ken-ichi Tadaki (NAOJ), Masao Hayashi (Univ of Tokyo), Ichi Tanaka (Subaru), Rhythm Shimakawa (Subaru)

A galaxy cluster RXJ0152 at z=0.83 (Subaru/Suprime-Cam)

Origin of the cosmic habitat segregation

Nature? (intrinsic)

earlier galaxy formation and evolution in high density regions

Nurture? (external)

galaxy-galaxy interaction/mergers, gas-stripping

"COSMIC NOON"

The peak epoch of galaxy formation: 1<z<3 (6>T_{cos}(Gyr)>2)

Subaru Wide-Field Survey of Narrow-Band Emitters ([OII], [OIII] and Ha) at 0.4<z<2.5

A typical spectrum of star forming galaxy

It consists of blue stellar continuum and many emission lines from ionized gas.

Kinney et al. (1996)

"MAHALO-Subaru"

MApping HAlpha and Lines of Oxygen with Subaru

Unique sample of NB selected SF galaxies across environments and cosmic times

	environ- ment	target	<i>z</i>	line	$\lambda \ (\mu { m m})$	camera	NB-filter	conti- nuum	status as of Oct '12
z<1 cluster	Low-z cluster	$\begin{array}{c} {\rm CL0024}{+}1652\\ {\rm CL0939}{+}4713\\ {\rm RXJ1716.4}{+}6708\end{array}$	$\begin{array}{c} 0.40 \\ 0.41 \\ 0.81 \end{array}$	$\begin{array}{c} \mathrm{H}\alpha\\ \mathrm{H}\alpha\\ \mathrm{H}\alpha\\ \mathrm{[OII]}\end{array}$	$\begin{array}{c} 0.916 \\ 0.923 \\ 1.190 \\ 0.676 \end{array}$	S-Cam S-Cam MOIRCS S-Cam	NB912 NB921 NB1190 NA671	$egin{array}{c} z' \ z' \ J \ R \end{array}$	Kodama+'04 Koyama+'11 Koyama+'10 observed
z~1.5 cluster	High- <i>z</i> cluster	XCSJ2215–1738 4C65.22 CL0332–2742 CIGJ0218.3–0510	$1.46 \\ 1.52 \\ 1.61 \\ 1.62$	[ΟΙΙ] Ηα [ΟΙΙ] [ΟΙΙ]	$0.916 \\ 1.651 \\ 0.973 \\ 0.977$	S-Cam MOIRCS S-Cam S-Cam	NB912,921 NB1657 NB973 NB973	$z'\\H\\y\\y\\y$	Hayashi+'10,'11 observed Hayashi+'13 Tadaki+'12
z~2 cluster	Proto- cluster	PKS1138–262 4C23.56 USS1558–003	$2.16 \\ 2.48 \\ 2.53$	$egin{array}{c} \mathrm{H}lpha \ \mathrm{H}lpha \ \mathrm{H}lpha \end{array}$	2.071 2.286 2.315	MOIRCS MOIRCS MOIRCS	NB2071 NB2288 NB2315	$egin{array}{c} K_{ m s} \ K_{ m s} \ K_{ m s} \end{array}$	Koyama+'12 Tanaka+'11 Hayashi+'12
z∼2 field	General field	GOODS-N (70 arcmin ²) SXDF-CANDELS (92 arcmin ²)	2.192.192.53	$\begin{array}{c} \mathrm{H}\alpha\\ \mathrm{H}\beta\\ [\mathrm{OII}]\\ \mathrm{H}\alpha\\ \mathrm{H}\beta\\ [\mathrm{OII}]\\ \mathrm{H}\alpha\end{array}$	$\begin{array}{c} 2.094 \\ 1.551 \\ 1.189 \\ 2.094 \\ 1.551 \\ 1.189 \\ 2.315 \end{array}$	MOIRCS MOIRCS MOIRCS MOIRCS MOIRCS MOIRCS	NB2095 NB1550 NB1190 NB2095 NB1550 NB1190 NB2315	$egin{array}{c} K_{ m s} \ H \ J \ K \ H \ J \ K \ J \ K_{ m s} \end{array}$	Tadaki+'11 not yet observed Tadaki+'13 not yet not yet Tadaki+'13

18 nights for imaging, >15 nights for spectroscopy

How narrow-band imaging survey works to sample star forming galaxies at high-z

Discovery of a Prominent Star-Bursting Proto-Cluster at z~2.5

USS1558-003 (z=2.53)

Ha imaging with MOIRCS/NB2315 3.4 hrs, 0.3-0.4" seeing

68 Ha emitters (HAEs) are detected

~20x denser than the general field. Mean separation between galaxies is ~150kpc.

Hayashi et al. (2012)

Environmental dependence in the formation phase of early-type galaxies?

- Mode of star formation? (starburst, dusty)
 Location on the SFR-M* diagram
 SFE=SFR / f(gas)
 SFR(IR) / SFR(UV) or SFR(Hα) / SFR(UV)
- Internal structure? (clumpy, central burst) HST images of USS1558 proto-cluster (z=2.53) Hα imaging w/ AO, IFU spectroscopy, ALMA

"Main Sequence" of Star Forming Galaxies at z~2

SFR vs. M* (~proportional). Large scatter. SMG is up-scattered by ~×10. There are two modes of star formation: Normal mode and Burst mode

Star formation efficiency variations in the SFR-M* plane Star formation efficiency (SFE) and molecular gas fraction (f_{gas}) as a function of deviation from the main sequence (ΔMS)

Starburst galaxies (high-sSFR; up-scattered from the MS) are dustier (higher SFR(IR) / SFR(UV) ratios)

Nucleated starburst regions are compact and hence have large dust extinction, probably as a result of gas inflow due to galaxy-galaxy interactions/mergers.

Schematic diagram of evolution on SFR-M* (Main Sequence)

Stellar Mass (M*)

Environmental Dependence of the Main-Sequence? → accelerated galaxy formation in proto-cluster (PKS1138) at z~2

SF galaxies in the protocluster at z~2 follow the same "main sequence" as the field one.

However,

the galaxy distribution on the sequence depends on environment in a sense that the proto-cluster tends to contain more massive/high-SFR galaxies than the field.

(Koyama et al. 2013a)

M*-dependent dust correction for Ha is applied. (Garn & Best 2010) Environmental dependence in the formation phase of early-type galaxies?

- Mode of star formation? (starburst, dusty)
 Location on the SFR-M* diagram
 SFE=SFR / f(gas)
 SFR(IR) / SFR(UV) or SFR(Hα) / SFR(UV)
- Internal structure? (clumpy, central burst) HST images of USS1558 proto-cluster (z=2.53) Hα imaging w/ AO, IFU spectroscopy, ALMA

Clumpy Structure is Common

~40% of HAEs at z~2 show clumpy (or merger) structures

HST images (V_{606,I_{814},H_{160}}) from the CANDELS survey

less massive clumpy galaxies $(M_{star}{<}10^{10}M_{\odot})$

massive clumpy galaxies (M_{star}=10¹⁰⁻¹¹M₀) 3" (~25kpc)

colours (I $_{814}$ -H $_{160}$) of individual clumps are shown with red numbers

Tadaki et al. (2013b)

Massive galaxies tend to have a red clump near the mass center, which may be hosting a central dusty starburst and forming a bulge eventually ! Environmental dependence of the clumpiness and the clump colours is expected, and should be tested with up-coming HST imaging of the USS1558 proto-cluster.

"Cold Streams" along filaments (Inflow)

Efficient gas supply to form a massive galaxy on a short time scale at high-z.

Rapid gas accretion forms a gas rich disk which becomes gravitationally unstable and fragmented.

Dekel et al. (2009, Nature)

> Goerdt et al. (2010)

Numerical simulation of clumpy galaxies

Bournaud et al. (2013)

Stellar feedback (photo-ionization, radiation pressure, and supernova) are fully considered.

Medium-mass galaxy $M_{dvn} = 3.5 \times 10^{10} M_{\odot}$

High-z galaxies are gas rich due to massive gas accretion through cold streams.

2A 28

> Gas rich disks are fragmented to clumps due to gravitational instability.

Clumps migrate towards a galactic center due to dynamical friction and probably make a bulge of a disk galaxy.

FIG. 2.— Same as Figure 1 for galaxy G2 (medium mass). Detailed sequences and movies of our fiducial models are available in Perret et al. (2013a). Environmental dependence?

Galaxy Anatomy at $z\sim 2$ as a function of Environment

Galaxy mergers?

Tidal signatures? Nucleated dusty SB? AGN? Disordered kinematics? Central outflow?

Clump migration?

SF clumps? Ordinary rotating disk? Outflows from clumps?

Secular evolution?

Exponential disk-wide star formation? Well-ordered rotational disk?

HST imaging size, morphology, clumpiness AO+NB imaging and IFU

SF regions, AGN, kinematics

ALMA

gas distribution, SF mode, kinematics

All these new exciting data are up-coming within a year or so!

"GRACIAS-ALMA"

GRAphing CO Intensity And Submm with ALMA

Mapping/resolving gas and dust contents at the peak epoch of galaxy formation

CO line @ Band-3 (~100GHz)

Dust continuum@ Band-6-9 (450 µm–1.1 mm)

Cycle-2 sensitivities

SFR~50M_☉/yr (2.7hrs, 5σ) @1<z<3 SFR~15M_☉/yr (50min, 5σ)

			Mah	alo-Subarı	ı	Grad	cias-ALMA	cycle	-1
target	z	line	$\mu \mathrm{m}$	NB-filter	Camera	Continuum	Line@GHz(band)	proposals	results
2215 - 1738	1.46	[OII]	0.916	NB912	S-Cam	B7,9	CO(2-1)@94 (B3)	Hayashi+	1st
0332-2742	1.61	[O11]	0.973	NB973	S-Cam	B7,9	CO(2-1)@89 (B3)	not yet	
0218.3 - 0510	1.62	[O11]	0.977	NB973	S-Cam	B7,9	CO(2-1)@88 (B3)	not yet	
1138 - 262	2.16	$H\alpha$	2.071	NB2071	MCS	B6,7,9	CO(3-2)@110 (B3)	Koyama+	2nd
4C23.56	2.48	$\mathrm{H}lpha$	2.286	NB2288	MCS	B6,7,9	CO(3-2)@99 (B3)	Suzuki+	1st
1558-003	2.53	$H\alpha$	2.315	NB2315	MCS	B6,7,9	CO(3-2)@98 (B3)	Kodama+	2nd
SXDF	2.19	$H\alpha$	2.094	NB2095	MCS	B6,7,9	CO(3-2)@108 (B3)	Tadaki+	1st
CANDELS	2.53	$H\alpha$	2.315	NB2315	MCS	B6.7.9	CO(3-2)@98 (B3)	Tadaki+	1st

Spatial resolution: 0.01-0.1" ($\leftrightarrow \rightarrow$ 0.1-1kpc) (0.18-0.4" in cycle-2)

Internal structures: < 0.1" (<1kpc) : centralized, disturbed or disk-wide gas distribution? < 50km/s: gas in-/out-flow, rotating disk or disturbed motions? USS1558 proto-cluster (z=2.53)

Clusters are efficient targets for ALMA especially at Band-3 as multiple targets can be observed by a single pointing (1').

> HST images (Hayashi et al.) will be taken soon. (Clumpy fraction, size evolution)

Chandra 100ks X-ray data (Martini et al.) will also be taken soon. (AGN fraction, distribution)

HSC-Deep (27 deg²) Hybrid Cluster Survey to z~1.7

Large-scale (~20Mpc) structures at $z\sim1.5$ unveiled by [OII] λ 3727 emitter survey with S-Cam

Expected number of galaxy clusters

survey	area	cluster number / (Δz=1)
HSC-Deep	27 deg ²	200 (>10 ¹⁴ M_{\odot}) at z=1
(AB=27)		6 (>10 ^{14.5} M _☉) at z=1
HSC-Wide	1400 deg ²	10,000 (>10 ¹⁴ M_{\odot}) at z=1
(AB=26)		300 (>10 ^{14.5} M _•) at z=1
Euclid-Deep	20 deg ²	6 (>10 ¹⁴ M_{\odot}) at z=2
(AB=26)		0.015 (>10 ^{14.5} M _•) at z=2
Euclid-Wide	6000 deg ²	1,800 (>10 ¹⁴ M_{\odot}) at z=2
(AB=24)		4 (>10 ^{14.5} M _•) at z=2

Ref: HSC-SSP proposal

WISH Space Telescope

WISH is a 1.5m diameter space telescope for 1-5 μ m (NIR) with a FoV of 0.24 sq. deg.

Proposing NB filters for WISH

6hrs exp. (5 σ), 1mag extinction of H α

NB Filter	Wavelength (µm)	Redshift (Hα, OIII)	SFR (Msun/yr)	Number / FoV
NB217 (same as SWIMS-18)	2.17	2.3, 3.3	7	~1500
NB284	2.84	3.3, 4.7	20	~200
NB335	3.35	4.1, 5.7	30	~150
NB441	4.41	5.7 , 7.8	90	~20
NB497	4.97	6.6, 8.9	250	??

NB filters at 2.5 ~ 5 μ m will be the key for WISH !

WISH-7 Survey for 1.5<z<8

~7×10⁷ Mpc³ / ($\Delta z=1$)

- ~10 progenitors of Coma class clusters at every z
 NB: 3.5-7×10⁶ Mpc³ / (Δz=0.05-0.1)
 ~ 1 progenitor of Coma class cluster per filter
 30 WISH pointings (0.24 sq. deg. / FoV)
- Exposure times needed

• **[7]** sq. deg.

BB: 1 hrs × 6 filters x 30 p = 180 hrs

NB: $6 \text{ hrs} \times 4 \text{ filters} \times 30 \text{ p} = 720 \text{ hrs}$

900 hrs in total (or 1200 hrs including overheads)

Summary

- Mahalo-Subaru is mapping out star formation activities across cosmic times and environment, covering the peak epoch of galaxy formation and evolution (1<z<3).
- Enhanced star forming activities in cluster cores at z~2
- More massive SFGs in proto-clusters, indicating the biased, accelerated galaxy formation in clusters.
- The mode of star formation (e.g. dusty starburst) may depend on environment.
- Clumpy nature of SFGs at z~2 (especially the red clumps) maybe closely related to a bulge formation. We expect some environmental dependence in internal structures of SFGs.
- HSC will make a large, complete sample of 10K clusters to z~1.7. WISH will extend it to z~6-8.