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Abstract. A parametric radical system is introduced as a new concept
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1 Introduction

One of the major advantages of symbolic computation is its capability to pre-
cisely handle ideals with parameters, known as parametric ideals. For instance, a
comprehensive Gröbner system (CGS) and quanti�er elimination method (QE)
are highly e�ective tools for analyzing parametric ideals. However, there is a
scarcity of convenient tools and implementations speci�cally tailored for para-
metric ideals. There is a pressing need to develop numerous algorithms for ana-
lyzing parametric ideals.

In this paper, we investigate the computation of radicals for a parametric
ideal, introducing a parametric radical system as a novel concept within para-
metric ideals in the realm of symbolic computation. The primary contribution
of this study is the provision of an algorithm for computing a radical system of
a parametric ideal.

In 1988, Gianni-Trager-Zacharias introduced an algorithm for computing the
radical of an ideal, along with an algorithm for computing primary decomposi-
tion [4]. Currently, these algorithms are implemented in many computer algebra
systems. However, there is a lack of algorithms and implementations for para-
metric ideals. The purpose of this paper is to generalize the algorithm presented
by Gianni-Trager-Zacharias to parametric cases. We demonstrate that two types
of comprehensive Gröbner systems are necessary for this generalization.
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This paper is organized as follows: In Section 2, we review comprehensive
Gröbner systems. In Section 3, we present several tools for parametric ideals.
In Section 4, we introduce a parametric radical system as a new concept within
parametric ideals. In Section 5, we describe an algorithm for computing a para-
metric radical system of a zero-dimensional ideal. In Section 6, we present the
key result of this paper, which is a special type of comprehensive Gröbner sys-
tem. Finally, in Section 7, we provide an algorithm for computing a parametric
radical system of a non-zero-dimensional ideal.

2 Comprehensive Gröbner systems

Here we brie�y recall comprehensive Gröbner systems that will be frequently
used in this paper. We refer the reader to [5,6,7,8,10,12,13].

2.1 Preliminaries

Let x = {x1, . . . , xn}, t = {t1, . . . , tm} and u = {u1, . . . , uρ} be sets of variables,
K a �eld with characteristic 0 and K an algebraic closed extension of K. (We
often regard t as parameters.) Moreover, let K(u) be a �eld of rational func-
tions with u and K(u) an algebraic closed extension of K(u). Symbols Term(t),
Term(x) and Term(t, x) mean the set of terms of t, the set of terms of x and
the set of terms of t ∪ x, respectively.

In what follow, we �x L = K or K(u).
Fix a term order ≺ on Term(x) and let f ∈ L[t][x]. Then lt(f), lm(f) and

lc(f) denote the leading term, leading monomial and leading coe�cient of f i.e.
lm(f) = lc(f) lt(f). For F ⊂ L[t][x] and f1, . . . , fν ∈ L[t][x], lt(F ) = {lt(f)|f ∈
F} and 〈f1, . . . , fν〉 = {

∑ν
i=1 hifi|h1, . . . , hν ∈ L[t][x]}. The set of natural num-

bers N includes zero, Q is the �eld of rational numbers and C is the �eld of
complex numbers.

For g1, . . . , g` ∈ L[t], VL(g1, . . . , g`) ⊂ L
m

denotes the a�ne variety of

g1, . . . , g`, i.e. VL(g1, . . . , g`) = {t̄ ∈ Lm|g1(t̄) = · · · = g`(t̄) = 0}, and VL(0) =

L
m
. We call an algebraically constructible set of the form VL(f1, . . . , f`)\VL(f ′1,

. . . , f ′`′) ⊂ L
m
, a stratum where f1, . . . , f`, f

′
1, . . . , f

′
`′ ∈ L[t]. As it is clear that

VL(1) = ∅, thusVL(f1, . . . , f`)\VL(1) = VL(f1, . . . , f`). For t̄ ∈ L
m
, the canon-

ical specialization homomorphism σt̄ : L[t][x] → L[x] (or L[t] → L) is de�ned
as the map that substitutes t by t̄ in f(t, x) ∈ L[t][x]. The image σt̄ of a set
F ⊂ L[t][x] is denoted by σt̄(F ) = {σt̄(f)|f ∈ F} ⊂ L[x].

2.2 Comprehensive Gröbner systems

We adopt the following as a de�nition of comprehensive Gröbner system.

De�nition 1. Fix a term ordering ≺ on Term(x). Let F ⊂ L[t][x], E1, . . . , Es,
N1, . . . , Ns ⊂ L[t], G1, . . . , Gs ⊂ L[t][x]. If a �nite set G = {(E1, N1, G1), . . . ,
(Es, Ns, Gs)} of triples satis�es the properties such that

(i) for each i, VL(Ei)\VL(Ni) 6= ∅,
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(ii) for i 6= j,
(
VL(Ei)\VL(Ni)

)
∩
(
VL(Ej)\VL(Nj)

)
= ∅, and

(iii) for all t̄ ∈ VL(Ei)\VL(Ni) and g ∈ Gi, lt(g) = lt(σt̄(g)) and {σt̄(g)/σt̄(

lc(g))|g ∈ Gi} is a minimal Gröbner basis of 〈σt̄(F )〉 in Lm[x],

then G is called a comprehensive Gröbner system (CGS) of 〈F 〉 over L w.r.t. ≺
on
⋃s
i=1 (VL(Ei)\VL(Ni)). We call a triple (Ei, Ni, Gi) segment of G. We simply

say that G is a comprehensive Gröbner system (CGS) of 〈F 〉 over L w.r.t. ≺ if⋃s
i=1 (VL(Ei)\VL(Ni)) = L

m
.

There exist several algorithms and implementations for computing the CGS
for L = Q (R or C) [5,6,7,8,10].

Remark 1. There always exists a CGS G of 〈F 〉 ⊂ L[t][x] over L such that G
forms G =

⋃s
i=1{(Ei, {pi}, Gi)} where p1, . . . , ps ∈ L[t], E1, . . . , Es ⊂ L[t], and

G1, . . . , Gs ⊂ L[t][x] i.e. Ni has one polynomial pi. See [5,6]. Since this form
makes the discussion easier, we adopt the form for all CGSs of this paper.

Example 1. Let F = {ax3y2 + y2 + x2y, x4y + bxy} ⊂ C[a, b][x, y] where a, b
are parameters. Let ≺ be the lexicographic term order with y ≺ x. Then,
a CGS G of 〈F 〉 over C w.r.t. ≺ is G = {({b}, {1}, {y3, x2y + y2}), ({ab −
1}, {1}, {y2, xy}), ({0}, {ab2− b}, G3)} where G3 = {(a3b3−3a2b2 +3ab−1)y5−
b2y2, bxy + (a2b2 − 2ab+ 1)y3}. The set G means the following:

• if (a, b) belongs toVC(b) (i.e. b = 0), then {y3, x2y+y2} is a minimal Gröbner
basis of 〈F 〉 w.r.t. ≺,
• if (a, b) belongs to VC(ab − 1) (i.e. ab − 1 = 0), then {y2, xy} is a minimal
Gröbner basis of 〈F 〉 w.r.t. ≺, and
• if (a, b) belongs to C2\VC(ab2 − b), then G3 is a minimal Gröbner basis of
〈F 〉 w.r.t. ≺.

Next, let us consider the case L = K(u). It is possible to compute a CGS

on K(u)
m

by utilizing the algorithms that are introduced in [5,6,7,10]. The
algorithm has been implemented in the computer algebra system Risa/Asir [11].

Example 2. Let F = {3u1x
2 + 2axy, ax2 + 3u2y

2} ⊂ C(u1, u2)[a][x, y] where a
is a parameter and x, y are variables. Let ≺ be the graded lexicographic term
order with y ≺ x. Then, a comprehensive Gröbner system G of 〈F 〉 w.r.t. ≺ is
the following:

G = {({0}{(4u1a
3 + 27u3

1u2)a}, {y3, 3u1x
2 + 2axy, 2a2xy − 9u1u2y

2}),
({a}, {1}, {x2, y2}), ({4u1a

3 + 27u3
1u2}, {1}, {3u1xy + 2ay2, 9u2

1x
2 − 4a2y2})

}
.

This output means the following:

• if the parameter a belongs to L
2\VL((4u1a

3 + 27u3
1u2)a) (i.e. (4u1a

3+
27u3

1u2)a 6= 0), then {y3, 3u1x
2 +2axy, 2a2xy−9u1u2y

2} is a minimal Gröb-
ner basis of 〈F 〉 w.r.t. ≺,
• if the parameter a belongs to VL(a) (i.e. a = 0), then {x2, y2} is a minimal
Gröbner basis of 〈F 〉 w.r.t. ≺, and
• if the parameter a belongs toVL(4u1a

3+27u3
1u2), then {3u1xy+2ay2, 9u2

1x
2−

4a2y2} is a minimal Gröbner basis of 〈F 〉 w.r.t. ≺,
where L = C(u1, u2).
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3 Tools for parametric ideals

In order to compute a radical of a parametric ideal, we need to compute the
followings:

(1) Dimensions of a parametric ideal,
(2) Squarefree-part of a univariate polynomial with parameters,
(3) Intersection of parametric ideals,
(4) Least common multiples of parametric polynomials, and
(5) Saturation for a parametric ideal.

Here, we introduce these computational methods.

3.1 Dimensions of a parametric ideal

For a �nite subset u, the cardinality of u is written by |u|.

De�nition 2. Let I be a proper ideal in K[x] and u = {u1, . . . , ur} a subset
of x. Then, u is called an independent set modulo I if I ∩ K[u] = {0}. The
dimension dim(I) is de�ned as

dim(I) = max{|u||u ⊆ x is an independet set modulo I}.

Moreover, u ⊂ x is called a maximal independent set (MIS) modulo I if it is an
independent set modulo I and the cardinality of u is equal to dim(I).

Algorithms, introduced in [2,3], for computing a MIS modulo I are based on
the following theorem.

Theorem 1 ([2, p.448]). Let I be a proper ideal in K[x] and G a Gröbner
basis of I w.r.t. a graded degree term order. Then, dim(I) = dim(〈lt(G)〉).

By utilizing a CGS of a parametric ideal, the parameter dependence of the
dimensions can be obtained as follows.

Algorithm 1 (Dimensions of parametric ideal)

Speci�cation: PARA_DIM(F )
Computation of dimensions of parametric ideal 〈F 〉.

Input: F ⊂ K[t][x] �nite set.
Output: (Z,N ,W): Z = {(E1, {p1}, G1), . . . , (E`, {p`}, G`)}, N = {(E′1, {p′1},
G′1), . . . , (E′`′ , {p′`′}, G′`′)}, W = {(D1, {h1}, H1), . . . , (Ds, {hs}, Hs)}. For each
1 ≤ i ≤ `, ∀ā ∈ VK(Ei)\VK(pi), dim(〈σā(Gi)〉) = 0. For each 1 ≤ j ≤
`′, ∀b̄ ∈ VK(E′j)\VK(p′j), dim(〈σb̄(G′j)〉) 6= 0. For each 1 ≤ k ≤ s, ∀c̄ ∈
VK(Dk)\VK(hk), 〈σc̄(Hk)〉 is not proper where Km

=
(⋃`

i=1 VK(Ei)\VK(pi)
)

∪
(⋃`′

j=1 VK(E′j)\VK(p′j)
)
∪
(⋃s

k=1 VK(Dk)\VK(hk)
)
.

BEGIN
Z ← ∅; N ← ∅; W ← ∅; ≺← A graded degree term order;
G ← Compute a CGS of 〈F 〉 over K w.r.t. ≺;
for each (E, {p}, G) ∈ G do
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if G = {1} or G = {0} then
W ←W ∪ {(E, {p}, G)}; /*〈G〉 is not proper */

else if a MIS modulo 〈lt(G)〉 is ∅ then
Z ← Z ∪ {(E, {p}, G)}; /*dim(〈G〉) = 0 */

else
N ← N ∪ {(E, {p}, G)}; /*dim(〈G〉) 6= 0 */

end-if
end-for
return (Z,N ,W);
END

According to the de�nition of CGS and Theorem 1, Algorithm 1 is guaranteed
to work correctly.

3.2 Squarefree part of a univariate polynomial with parameters

Here, we present an algorithm for computing the squarefree parts of a univariate
polynomial with parameters.

Let xi be a variable in x. Let f =
∏

1≤j≤` f
ej
j be the irreducible factorization

of the monic polynomial f ∈ K[xi], with distinct monic irreducible f1, . . . , f` and
positive e1, . . . , er ∈ N. We de�ne the squarefree part

√
f of f to be

∏
1≤j≤` fj .

It is well-known that
√
f = f/gcd(f, ∂f∂xi ) for the �eld K of characteristic zero

where gcd(f, ∂f∂xi ) is the greatest common divisor of f and ∂f
∂xi

in K[xi].
For parametric polynomials in K[t][xi], it is convenient to replace the usual

division with remainder by using a well-known pseudo-division method, which
computes q, r ∈ K[t][xi] from f, g ∈ K[t][xi] (g 6= 0) such that

lc(g)1+deg(f)−deg(g)f = qg + r, where deg(r) < deg(g).

Note that for f ∈ K[t][xi], we can obtain the (parametric) greatest common
divisors of f and ∂f

∂xi
by computing a comprehensive Gröbner system of 〈f, ∂f∂xi 〉.

Therefore, by combining pseudo-division with the comprehensive Gröbner sys-
tem, we present the following algorithm for computing the squarefree parts of a
univariate polynomial with parameters.

Algorithm 2 (Squarefree parts of a univariate polynomial)

Speci�cation: SQUARE_FREE(E, p, f, xi)
Computation of squarefree parts of a univariate polynomial with parameters.

Input: E ⊂ K[t]: �nite set, p ∈ K[t], f ∈ K[t][xi], xi ∈ x.
For all t̄ ∈ VK(E)\VK(p), σt̄(f) 6= 0. (char(K) = 0)

Output: P = {(E1, {p1}, h1), . . . , (E`, {p`}, h`)} : For all t̄ ∈ VK(Ei)\VK(pi)
(1 ≤ i ≤ `), σt̄(hi)/σt̄(lc(hi)) is the squarefree part of σt̄(f)/ lc(σt̄(f)) where

VK(E)\VK(p) =
⋃̀
i=1

(
VK(Ei)\VK(pi)

)
.

BEGIN
P ← ∅; G ← Compute a CGS of 〈f, ∂f∂xi 〉 over K on VK(E)\VK(p);
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for each (E′, {p′}, {g}) ∈ G do
q ← Compute q s.t. lc(g)1+deg(f)−deg(g)f = qg + r (deg(r) < deg(g));

(by pseudo-division)
P ← P ∪ {(E′, {p′}, q)}

end-for
return P;
END

Theorem 2. Algorithm 2 works correctly.

Proof. Let us consider (E′, {p′}, {g}) in thewhile-loop. Since, for all t̄ ∈ VK(E′)

\VK(p′), {σt̄(g)/ lc(σt̄(g))} is the minimal Gröbner basis of 〈σt̄(f), σt̄(
∂f
∂xi

)〉
in K[xi], hence σt̄(g)/ lc(σt̄(g)) is the greatest common divisor of σt̄(f) and
σt̄(

∂f
∂xi

). As K is a �led, we have σt(g)|σt̄(f). By the pseudo-division, there ex-
ists q, r ∈ K[t][xi] such that

lc(g)1+deg(f)−deg(g)f = qg + r (deg(r) < deg(g)).

Hence the fact σt(g)|σt̄(f) implies σt̄(r) = 0, namely,

σt̄(lc(g)1+deg(f)−deg(g))σt̄(f) = σt̄(q)σt̄(g) + σt̄(r) = σt̄(q)σt̄(g).

Therefore, σt̄(q)/σt̄(lc(q)) is the squarefree part of σt̄(f)/ lc(σt̄(f)). ut

3.3 Intersection of parametric ideals

Here we present an algorithm for computing an intersection of parametric ideals
in K[x].

Theorem 3 ([3, Theorem 11]). Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , g`〉 be
ideals in K[x], and G a Gröbner basis of 〈wf1, . . . , wfr, (1−w)g1, . . . , (1−w)g`〉
in K[x,w] w.r.t. a block term order x � w on Term(x ∪ {w}) where w is an
auxiliary variable. Then, I ∩ J = 〈G ∩K[x]〉.

Essentially, by substituting the Gröbner basis with the CGS in the theorem
mentioned above, we can compute the intersection of parametric ideals as follows.

Algorithm 3 (Intersection of parametric ideals)

Speci�cation:PARA_INTERSECTION(E, p, F,G)
Computation of intersections of two parametric ideals.

Input: E ⊂ K[t] : �nite set, p ∈ K[t], F,G ⊂ K[t][x]: �nite sets.
Output: P = {(E1, {p1}, G1), (E2, {p2}, G2), . . . , (E`, {p`}, G`)} : For all t̄ ∈
VK(Ei)\VK(pi) ⊂ K

m
(1 ≤ i ≤ `), 〈σt̄(F )〉 ∩ 〈σt̄(G)〉 = 〈σt̄(Gi)〉 where

VK(E)\VK(p) =
⋃`
i=1

(
VK(Ei)\VK(pi)

)
.

BEGIN
I ← 〈{wf |f ∈ F} ∪ {(1− w)g|g ∈ G}〉 where w is an auxiliary variable;
≺← A block term order with x� w on Term(x ∪ {w});
G ← Compute a CGS of I over K on VK(E)\VK(p) w.r.t. ≺ in K[t][x ∪ {w}];
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P ← {(E′, {p′}, G′ ∩K[t][x]) | (E′, {p′}, G′) ∈ G};
return P;
END

According to the de�nition of CGS and Theorem 3, Algorithm 3 is guaranteed
to work correctly.

3.4 Least common multiples of parametric polynomials

An algorithm for computing the least common multiple of polynomials in K[x]
is provided in [3], based on the following proposition.

Proposition 1 ([3, Proposition 13]).

(i) The intersection I ∩ J of two principal ideals, I, J ⊂ K[x] is a principal
ideal.

(ii) If I = 〈f〉, J = 〈g〉 and I ∩ J = 〈h〉 in K[x], then h is the least common
multiple of f and g i.e. h = lcm{f, g}.

Combining this proposition with Algorithm 3 yields an algorithm for com-
puting the least common multiples of parametric polynomials, as follows.

Algorithm 4 (Least common multiples of parametric polynomials)

Speci�cation:PARA_LCM(E, p, F )
Least common multiples of parametric polynomials.

Input: E ⊂ K[t] : �nite set, p ∈ K[t], F ⊂ K[t][x]: �nite set.
Output: {(E1, {p1}, {g1}), . . . , (E`, {p`}, {g`})}: For all t̄ ∈ VK(Ei)\VK(pi)

(1 ≤ i ≤ `), lcm{σt̄(F )} = σt̄(gi) whereVK(E)\VK(p) =
⋃̀
i=1

(
VK(Ei)\VK(pi)

)
.

BEGIN
G ← ∅; f ← Select one polynomial f from F ; F ← F \ {f};
H ← {(E, {p}, {f})};
for each h ∈ F do

for each (E′, {p′}, {f ′}) ∈ H do
L ←PARA_INTERSECTION(E′, p′, {f ′}, {h}); G ← G ∪ L;

end-for
H ← G;

end-for
return H;
END

3.5 Saturation for a parametric ideal

Here, we introduce how to compute saturation for a parametric ideal .

De�nition 3. Let I be an ideal in K[x] and f ∈ K[x].

(1) I : f = {g ∈ K[x]|gf ∈ I}.
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(2) For the ideal I, the saturation w.r.t. f is de�ned by the ideal I : f∞ =⋃
k≥1(I : fk).

Proposition 2 ([2, Proposition 6.37]). Let I = 〈f1, . . . , fr〉 and f ∈ K[x].
Set J = 〈f1, . . . , fr, 1 − wf〉 where w is an auxiliary variable. Then, I : f∞ =
J ∩K[x].

Let G be a Gröbner basis of J w.r.t. a block term order with x� w. Then,
by the proposition above, G ∩K[x] becomes a basis of the ideal I : f∞.

For parametric ideals, we can extend the method described above to K[t][x]
by substituting the Gröbner basis with the CGS, as follows.

Algorithm 5 (Saturation for a parametric ideal)

Speci�cation:PARA_SAT(E, p, F, f,≺)
Computation of the saturation 〈F 〉 : f∞.

Input: E ⊂ K[t] : �nite set, p ∈ K[t], F ⊂ K[t][x]: �nite set, f ∈ K[t][x],
≺: term order on Term(x).

Output: {(E1, {p1}, G1), (E2, {p2}, G2), . . . , (E`, {p`}, G`)} : For all t̄ ∈ VK(Ei)
\VK(pi) (1 ≤ i ≤ `), σt̄(Gi) is a basis of 〈σt̄(F )〉 : σt̄(f)∞ where VK(E)\VK(p)

=
⋃`
i=1

(
VK(Ei)\VK(pi)

)
.

BEGIN
I ← 〈F ∪ {1− wf}〉 ⊂ K[t][x,w] where w is an auxiliary variable;
≺′← A block term order, with x� w and ≺, on Term(x ∪ {w}) ;
G ← Compute a CGS of I over K w.r.t. ≺′ on VK(E)\VK(p);
P ← {(E′, {p′}, G′ ∩K[t][x]) | (E′, {p′}, G′) ∈ G};
return P;
END

4 Parametric radical system

The aim of this paper is to develop an algorithm for computing the radical
system of a parametric ideal.

De�nition 4. Let I ⊂ L[x] be an ideal (where L = K or K(u)). The radical of
I, denoted radL[x](I), is the set {f |fr ∈ I for some integer r ≥ 1}. I is called a
radical ideal if I = radL[x](I).

In this paper, we extend the algorithm introduced by Gianni-Trager-Zacharias
in [4] for computing the radical of an ideal to its parametric version. We achieve
this by utilizing two types of comprehensive Gröbner systems.

We de�ne the radical of a parametric ideal as follows.

De�nition 5. Fix a term order ≺ on Term(x). Let E1, E2, . . . , Es ⊂ K[t],
N1, N2, . . . , Ns ∈ K[t] and F,G1, G2, . . . , Gs ⊂ K[t][x]. If a �nite set

G = {(E1, N1, G1), (E2, N2, G2), . . . , (Es, Ns, Gs)}

of triples satis�es the properties such that
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• for each i, VK(Ei)\VK(Ni) 6= ∅,
• for i 6= j,

(
VK(Ei)\VK(Ni)

)
∩
(
VK(Ej)\VK(Nj)

)
= ∅, and

• for all t̄ ∈ VK(Ei)\VK(Ni), σt̄(Gi) is a basis of radK[x](〈σt̄(F )〉) in K[x],

then, G is called a parametric radical system (PRS) of 〈F 〉 on
⋃s
i=1 (VK(Ei)\

VK(Ni)). We call a triple (Ei, Ni, Gi) segment of G. We simply say G is a

parametric radical system of 〈F 〉 if
⋃s
i=1 (VK(Ei)\VK(Ni)) = K

m

In Section 5, we explore the computation of a parametric radical system
for a zero-dimensional ideal. In Section 6 we introduce a specialized type of
comprehensive Gröbner system commonly employed for computing a parametric
radical system for non-zero dimensional ideals. Finally, in Section 7, we present
an algorithm for computing a parametric radical system for non-zero dimensional
ideals.

5 Zero dimensional case

Here, we present an algorithm for computing a parametric radical system of a
zero dimensional ideal with parameters. This algorithm is essentially based on
the following lemma.

Lemma 1 ([2, Lemma 8.19]). Let I = 〈f1, . . . , fr〉 be a zero dimensional ideal
in K[x]. For 1 ≤ i ≤ n, let gi be the unique monic polynomial of minimal degree
in I ∩K[xi]. Then, radK[x](〈F 〉) = 〈f1, . . . , fr,

√
g1, . . . ,

√
gn〉 where

√
gi is the

squarefree part of gi.

If I is a zero dimensional ideal on VK(E)\VK(p) where E ⊂ K[t] and
p ∈ K[t], then, for each xi ∈ x, the parametric univariate polynomial gi can be
obtained by computing a CGS w.r.t. a elimination term order. After obtaining
gi, SQUARE_FREE(E, p, gi, xi) outputs squarefree parts of the parametric
univariate polynomial gi on VK(E)\VK(p).

Algorithm 6 (Parametric radical system of a zero dim. ideal)

Speci�cation: PRS_ZERO(E, p, F )
Computation of a parametric radical system of a zero dim. ideal 〈F 〉.

Input: E ⊂ K[t] : �nite set, p ∈ K[t], F ⊂ K[t][x] �nite set.
(For all t̄ ∈ VK(E)\VK(p), dim(〈σt̄(F )〉) = 0.)

Output: P: parametric radical system of 〈F 〉 on VK(E)\VK(p).
BEGIN
P ← {(E, {p}, F )};
for each i = 1 to n do /*n variables */
H ← ∅; ≺← Set a block term order with xi � x\{xi};
G ← Compute a CGS of 〈F 〉 over K w.r.t ≺ on VK(E)\VK(p);
for each (E′, {p′}, G′) ∈ G do
g ← Select the polynomial g of minimal degree in G′ ∩K[t][xi]
B ←SQUARE_FREE(E′, p′, g, xi);
for each (E′′, {h}, b) ∈ B do
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for each (D, {d}, H) ∈ W do
if (VK(E′′)\VK(h)) ∩ (VK(D)\VK(d)) 6= ∅ then
H ← H∪ {(E′′ ∪D, {

√
hd}, H ∪ {b})};

end-if
end-for

end-for
end-for
P ← H;

end-for
return P;
END

Remark 2. Let us consider (VK(E′′)\VK(h)) ∩ (VK(D)\VK(d)). Then,

(VK(E′′)\VK(h)) ∩ (VK(D)\VK(d)) = (VK(E′′) ∩VK(D)) \ (VK(h) ∪VK(d))

= VK(E′′ ∪D)\VK(hd).

Thus, if radK[x](〈E′′∪D〉) 3 hd, we have (VK(E′′)\VK(h))∩(VK(D)\VK(d)) =
∅, otherwise, (VK(E′′)\VK(h)) ∩ (VK(D)\VK(d)) 6= ∅.

Notice that VK(hd) = VK(
√
hd), and we can replace E′′ ∪ D a Gröbner

basis of 〈E′′ ∪D〉 or a basis of radK[t](E
′′ ∪D).

Remark 3. To compute the univariate polynomials with parameters, we have
developed an algorithm for computing the minimal polynomial modulo 〈F 〉 with
respect to xi (1 ≤ i ≤ n). (For details on the minimal polynomials, please refer
to [1].) However, our implementation of the (parametric) minimal polynomial is
slower than our implementation of the CGS. As a result, we have utilized CGS
computation to obtain the univariate polynomials.

Since Algorithm 6 is a natural generalization of Lemma 1 to parametric ideals,
its correctness and termination are guaranteed by Lemma 1, SQUARE_FREE,
and Remark 2.

Example 3. Let F = {x2 + axy, xy2 − bx + y} ⊂ Q[a, b][x, y] where a, b are
parameters and x, y are variables. Then, PARAZERO(F ) outputs (Z, ∅, ∅)
where Z = {({0}, {a}, {bx + ay3 − y, x2 − a2y2, yx + ay2}), ({a}, {b}, {y2, bx −
y}), ({a, b}, {1}, {x2, y})}.

This implies that for all (a, b) ∈ C2, 〈F 〉 is zero dimensional. We execute
Algorithm 6 for each segment.

(1): First we consider the case (C2 \VC(a), {bx+ ay3 − y, x2 − a2y2, yx+ ay2})
and set F1 = {bx+ ay3 − y, x2 − a2y2, yx+ ay2}.

(1-1): A CGS of 〈F1〉 over C w.r.t. the lexicographic term order x ≺ y on
C2 \VC(a) is {{0}, {a}, {x4 + (−a2b−a)x2, x3− ba2x+a2y})}. Take the
univariate polynomial x4 + (−a2b− a)x2. Then,

SQUARE_FREE({0}, a, x4 + (−ba2 − a)x2, x)
outputs
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{({0}, {a(ab+ 1)}, {x3 + (−a2b− a)x}), ({ab+ 1}, {1}, {x})}.
Thus, we have H = {({0}, {a(ab+ 1)}, F1 ∪ {x3 + (−ba2 − a)x}), ({ab+
1}, {1}, F1 ∪ {x})}.

(1-2): A CGS of 〈F1〉 over C w.r.t. the lexicographic term order y ≺ x on
C2 \ VC(a) is Gy = {({0}, {ab}, {ay4 + (−ab − 1)y2,−bx − ay3 + y}),
({b}, {a}, {ay3−y, xy+ay2, x2−a2y2})}. Take the univariate polynomial
ay4 + (−ab− 1)y2 from the �rst segment of Gy, and execute

SQUARE_FREE({0}, ab, ay4 + (−ab− 1)y2, y).
Then, SQUARE_FREE outputs

{({0}, {ab(ab+ 1)}, ay3 + (−ab− 1)y), ({ab+ 1}, {1}, {y})}.
Thus, H is renewed as

H = {({0}, {ab(ab+ 1)}, F1 ∪ {x3 + (−ba2 − a)x, ay3 + (−ab− 1)y}),
({ab+ 1}, {1}, F1 ∪ {x, y})}.

Next, let us consider the second segment of Gy. We take the univariate poly-
nomial ay3−y and apply the SQUARE_FREE algorithm with the inputs
(b, a, ay3−y, y). The output of SQUARE_FREE is (b, a, ay3 − y). There-
fore, H is updated to

H = {({0}, {ab(ab+ 1)}, F1 ∪ {x3 + (−a2b− a)x, ay3 + (−ab− 1)y}),
({ab+ 1}, {1}, F1 ∪ {x, y}), ({b}, {a}, F1 ∪ {x3 + (−a2b− a)x, ay3 − y})}.

(2) Second we consider the case (VC(a) \VC(b), {y2, bx− y}). As b 6= 0, clearly
we obtain {({a}, {b}, {x, y})}.

(3) Last we consider the case (VC(a, b), {x2, y}). Clearly, we obtain {({a, b}, {1},
{x, y})}.

Therefore, the following is a parametric radical system of 〈F 〉

{({0}, {ab(ab+ 1)}, F1 ∪ {x3 + (−a2b− a)x, ay3 + (−ab− 1)y}),
({ab+ 1}, {1}, F1 ∪ {x, y}), ({b}, {a}, F1 ∪ {x3 + (−a2b− a)x, ay3 − y}),
({a}, {b}, {x, y}), ({a, b}, {1}, {x, y})}.

Note that each segment (E, {p}, G) of the parametric radical system above can
be replaced a CGS of 〈G〉 on VC(E)\VC(p). This optimization technique is
implemented in our implementation. Actually, our implementation outputs the
following as a parametric radical system of 〈F 〉

{({0}, {ab(ab+ 1)}, {x3 + (−a2b− a)x, ay3 + (−ab− 1)y, x+ ay}),
({ab+ 1}, {1}, {x, y}), ({b}, {a}, {x3 − ax, ay3 − y, x+ ay}),
({a}, {b}, {x, y}), ({a, b}, {1}, {x, y})}.

This output means the following:

• if (a, b) belongs to C2\VC(ab(ab+ 1)), then {x3 + (−a2b− a)x, ay3 + (−ab−
1)y, x+ ay} is a basis of radC[x,y](〈F 〉),
• if (a, b) belongs to VC(ab+ 1), then {x, y} is a basis of radC[x,y](〈F 〉),
• if (a, b) belongs to VC(b)\VC(a), then {x, y} is a basis of radC[x,y](〈F 〉),
• if (a, b) belongs to VC(a)\VC(b), then {x, y} is a basis of radC[x,y](〈F 〉), and
• if (a, b) belongs to VC(a, b), then {x, y} is a basis of radC[x,y](〈F 〉).
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6 Key result

Here, we extend certain mathematical fundamentals to parametric scenarios. The
cornerstone of this generalization is a comprehensive Gröbner system (CGS) over

K(u) on A ∩Km
, where A ⊂ K(u)

m
.

Before delving into the generalization, let's quickly review some fundamental
concepts regarding the extension and contraction of ideals in mathematics.

De�nition 6. Let I be an ideal in K[x]. Then, the extension Ie of I to K(u)[x\u]
is the ideal generated by the set I in the ring K[u][x\u] where u ⊂ x.

De�nition 7. Let I be an ideal in K[x] and u ⊂ x. Then, the extension Ie of I
to K(u)[x\u] is the ideal generated by the set I in the ring K(u)[x\u]. If J is an
ideal in K(u)[x\u], then the contraction Jc of J to K[x] is de�ned as J ∩K[x].

Lemma 2 ([2, Lemma 8.91]). Let u be a subset of x, F ⊂ K[x], ≺ a term
order on Term(x\u). Suppose J is an ideal generated by F in K(u)[x\u], and
G is a Gröbner basis of J ⊂ K(u)[x\u] w.r.t. ≺ such that G ⊂ K[u][x\u]. Let
I be the ideal generated by F in K[x], and set f as a least common multiple of
{lc(g)|g ∈ G} (i.e. f = lcm{lc(g)|g ∈ G}), where lc(g) ∈ K[u] is taken of g as
an element of K(u)[x\u]. Then, Jc = I : f∞.

Lemma 2 provides instructions on computing the contraction Jc as follows.

Step 1: Compute a Gröbner basis G of J = 〈F 〉 in K(u)[x\u].
Step 2: Compute f = lcm{lc(g)|g ∈ G}.
Step 3: Compute a basis G′ of I : f∞ in K[x] where I = 〈F 〉 in K[x].

As Jc = 〈G′〉, output G′.

Let us extend the computational method above to parametric cases. Speci�-
cally, we consider the scenario where the ideal J is in K(u)[t][x\u].

The parametric case cannot be solved by simply replacing the Gröbner basis
with a CGS of J because we have three types of symbols

x\u: main variables, t: parameters, u: variables of K(u).

The aim of this paper is to develop an algorithm for computing a parametric
radical system of a parametric ideal. A parametric ideal contains genuine pa-
rameters that do not belong to K(u). Since K

m
is a subset of K(u), in order to

apply a CGS over K(u) to the parametric ideal, we need to restrict a stratum of

the CGS over K(u) to K
m
. Speci�cally, for A ⊂ K(u)

m
, it is necessary to verify

whether A ∩Km
is empty or not.

In a previous study by the third author [9], generic standard bases of para-
metric ideals were discussed in a local ring. One can employ the ideas from that
study to address this problem. The following proposition is adapted from [9].

Proposition 3. Let ρ be the cardinality of u in N and u = {u1, u2, . . . , uρ}. Let
V
K(u)

(E) be a non-empty stratum in K(u)
m

where E ⊂ K[u][t]. Set
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T =
⋃
g∈E

{
cαi ∈ K[t]

∣∣∣∣∣ g =

r∑
i=1

cαiu
αi , αi ∈ N`, αj 6= αk (1 ≤ j < k ≤ r)

}

where uα = ua11 ua22 · · ·u
aρ
ρ for α = (a1, a2, . . . , aρ) ∈ Nρ.

Then,
(
V
K(u)

(E) ∩Km)
= VK(T ) holds.

Proof. As K
m ⊃ VK(T ) and V

K(u)
(E) ⊃ VK(T ), thus we have

(
V
K(u)

(E) ∩
K
m) ⊃ VK(T ). Assume that

(
V
K(u)

(E) ∩ Km) ) VK(T ), then exists b ∈(
V
K(u)

(E) ∩Km)
such that b /∈ VK(T ). Moreover, there exist p1(t), . . . , pν(t) ∈

T ⊂ K[t] and g ∈ E such that p1(b) 6= 0, . . . , pν(b) 6= 0 and g =
∑
α cαu

α +∑ν
i=1 pi(t)u

αi where cα ∈ K[t] and uα1 , . . . , uαν ∈ Nρ. Since uαs and uα1 , . . . , uαν

are linearly independent over K and pi(b)u
αi 6= 0, hence g(b) 6= 0. However, as

b ∈
(
V
K(u)

(E) ∩ Km)
, we have g(b) = 0. This is a contradiction. Therefore,(

V
K(u)

(E) ∩Km)
= VK(T ). ut

De�nition 8. Using the same notation as in Proposition 3, the set T is denoted
as Coef(E).

Example 4. Let E = {t21u2
1u2+(t2+1)u2+t1} in C[u1, u2][t1, t2]. Then, Coef(E) =

{t21, t2 + 1, t1} and VC(u1,u2)
(E) ∩ Cn = VC(Coef(E)) = VC(t1, t2 + 1).

Note that it is clear that
(
V
K(u)

(E)∩Km)
= VK(Coef(E)), and, for E,N ⊂

K[u][x],(
V
K(u)

(E)\V
K(u)

(N)
)
∩Km

=
(
V
K(u)

(E) ∩Km)\(V
K(u)

(N) ∩Km)
= VK(Coef(E))\VK(Coef(N)).

Hence, if radK[t](Coef(E)) = radK[t](Coef(N)), then
(
V
K(u)

(E)\V
K(u)

(N)
)
∩

K
m

= ∅, otherwise
(
V
K(u)

(E)\V
K(u)

(N)
)
∩Km 6= ∅.

Corollary 1. Let E ⊂ K[u][t] and f ∈ K[u][t]. Then, if the radical of 〈Coef(E)〉
includes f in K(u)[t], then

(
V
K(u)

(E)\V
K(u)

(f)
)
∩Km

= ∅, otherwise(
V
K(u)

(E)\V
K(u)

(f)
)
∩Km 6= ∅.

Proof. Since
(
V ¯K(u)(f)∩Km)

= VK(Coef({f}), if the radical of 〈Coef(E)〉 in-
cludes f , thenVK̄(Coef({f}) ⊃ VK(Coef(E)). Therefore,

(
V
K(u)

(E)\V
K(u)

(f)
)

∩Lm = VK(Coef(E))\VK̄(Coef({f}) = ∅. If the radical of 〈Coef(E)〉 does not
include f in K(u)[t], then VK̄(Coef({f}) 6⊃ VK(Coef(E)). Therefore,(
V
K(u)

(E)\V
K(u)

(f)
)
∩Km 6= ∅. ut

In what follows, we assume that any segment (E, {p}, G) of a CGS over K(u)
inK(u)[t][x\u] satis�es �E ⊂ K[u][t], p ∈ K[u][t] and G ⊂ K[u][t][x\u],� namely,
all coe�cients are in K[u].
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The CGS over K(u) is modi�ed as follows by Proposition 3 and Corollary 1.

Algorithm 7 (CGS over K(u) on A ⊂ K
m
)

Speci�cation: CGS_RATIONAL(E, p, F, u,≺)
Computation of a CGS over K(u) on

(
V
K(u)

(E)\V
K(u)

(p)
)
∩Km

.

Input: E ⊂ K[t] : �nite set, p ∈ K[u][t], F ⊂ K(u)[t][x \ u] �nite set, u ⊂ x,
≺: term order on Term(x \ u)

Output: Q: a CGS of 〈F 〉 ⊂ K(u)[t][x \ u] over K(u) on A ∩Km
where A =

V
K(u)

(E)\V
K(u)

(p).

BEGIN
Q ← ∅;
G ← Compute a CGS of 〈F 〉 over K(u) on

(
V
K(u)

(E)\V
K(u)

(p)
)
w.t.r. ≺;

for each (E′, {p′}, G′) ∈ G do
T ← Coef(E′);
if p′ 6∈ radK(u)(〈T 〉) then
Q ← Q∪ {(T, {p′}, G′)};

end-if
end-for
return Q;
END

Algorithm 7 is a crucial tool in this paper.

Remark 4. A segment of Q is formed by (E, {p′}, G′) where E ⊂ K[t], p′ ∈
K[u][t], and G′ ⊂ K[u][t][x\u]. It is important to note that p′ may still contain
the symbol u. However, p′ behaves like Coef(q) ⊂ K[t], as indicated by the
fact that V

K(u)
(p′) ∩ Km

= VK(Coef(p′)) and Corollary 1. In other words,

the symbol u in p′ is not a�ected by any other computations in this paper.
Conversely, by keeping p′ ∈ K[u][t], we maintain simplicity in the style of our
algorithms. This serves as one of our optimization techniques.

Thanks toCGS_RATIONAL, we can generalize the computational method
for contracting an ideal to parametric cases.

Algorithm 8 (Contraction of parametric ideals)

Speci�cation:PARA_CONT(E, p, F, u,≺)
Computation of the contraction for parametric ideals.

Input: E ⊂ K[t] : �nite set, p ∈ K[u][t], F ⊂ K(u)[t][x \ u]: �nite set, u ⊂ x,
≺: a term order on Term(x).

Output: C = {(E1, {p1}, G1), . . . , (Er, {pr}, Gr)}: For all t̄ ∈ VK(Ei)\VK(Coef
(pi)) (1 ≤ i ≤ r), σt̄(Gi) is a Gröbner basis of 〈σt̄(F )〉c w.r.t. ≺ in K[x] where
VK(E)\VK(p) =

⋃r
i=1

(
VK(E)\VK(p)

)
.

BEGIN
C ← ∅; ≺1← A term order on Tern(x\u);
G ← CGS_RATIONAL(E, p, F, u,≺1);
for each (E′, {p′}, G′) ∈ G do
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LC ← {lc(g)|g ∈ G′}; H ←PARA_LCM(E′, p′, LC);
for each (D, {d}, f) ∈ H do
Z ← PARA_SAT(D, d,G′, f,≺); C ← Z ∪ C;

end-for
end-for
return C;
END

Next, we discuss the contraction of Je, where J ⊂ K[t][x].
The following proposition and lemma provide us with the relation between

I and Iec, where I is an ideal in K[x].

Proposition 4 ([2, Proposition 8.94]). Let ≺ be a term order on Term(x\u),
and suppose I is an ideal of K[x] and G is a Gröbner basis of I w.r.t. ≺
in K(u)[x\u]. Set q as a least common multiple of {lc(g)|g ∈ G} (i.e. q =
lcm{lc(g)|g ∈ G}), where lc(g) ∈ K[u] is taken of g as an element of K(u)[x\u].
Then, Iec = I : q∞.

Lemma 3 ([2, Lemma 8.95]). Let I = 〈f1, . . . , fr〉 ⊂ K[x]. Suppose q ∈ K[x]
and s ∈ N\{0} are such that I : qs = I : q∞. Then, I = 〈f1, . . . , fr, q

s〉∩ (I : qs).

Notice that

radK[x](I) = radK[x]

(
〈{f1, . . . , fr} ∪ {qs}〉

)
∩ radK[x]

(
I : q∞)

)
= radK[x]

(
〈{f1, . . . , fr} ∪ {q}〉

)
∩ radK[x]

(
I : q∞)

)
.

Therefore, the integer s is not necessary for computing the basis of radK[x](I);
only the polynomial q ∈ K[u] is required. Since, in Proposition 4, the Gröbner
basis G of I ⊂ K(u)[x\u] is computed to obtain the polynomial q, the algo-
rithm CGS_RATIONAL is again necessary to generalize Proposition 4 and
Lemma 3 to parametric cases.

Algorithm 9 (Cut 〈F 〉ec down to 〈F 〉)
Speci�cation: PARA_EXTCONT(E, p, F, u)

Cut 〈F 〉ec down to 〈F 〉 on VK(E)\VK(p).
Input: E ⊂ K[t] : �nite set, p ∈ K[u][t], F ⊂ K[t][x]: �nite set, u ⊂ x,

≺: a term order on Term(x).
Output: L = {(E1, {p1}, q1), . . . , (Er, {pr}, qr)}: For all t̄ ∈ VK(Ei)\VK(pi)
(1 ≤ i ≤ r),

radK[x](〈σt̄(F )〉) = radK[x](〈σt̄(F ∪ {qi})〉) ∩ radK[x](〈σt̄(F )〉ec)

where q1, . . . , qr ∈ K[t][u] and VK(E)\VK(p) =
⋃r
i=1 VK(Ei)\VK(pi).

BEGIN
L ← ∅;
G ← CGS_RATIONAL(E, p, F, u,≺);
for each (E′, {p′}, G′) ∈ G do

LC ← {lc(g)|g ∈ G};
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H ←PARA_LCM(E′, {p′}, LC); L ← L ∪H;
end-for
return L;
END

7 Non-zero dimensional case

Here, we describe an algorithm for computing a parametric radical system of
a non-zero dimensional ideal with parameters. The following lemma is a well-
known fact and is utilized to reduce the problem to the zero dimensional case
by means of the extension/contraction method.

Lemma 4 ([2, Lemma 7.47]). Let I be an ideal in K[x], If u ⊂ x is a MIS
modulo I, then Ie is a zero dimensional ideal of K(u)[x\u].

Let E ⊂ K[t], p ∈ K[t] and G ⊂ K[t][x]. Assume that a triple (E, {p}, G)
satis�es conditions: for all t̄ ∈ VK̄(E)\VK̄(p), dim(〈lt(G)〉) 6= 0. Set u a MIS
modulo 〈lt(G)〉. Then, for all t̄ ∈ VK̄(E)\VK̄(p), 〈σt̄(G)〉 a zero dimensional
ideal in K(u)[x\u].

To compute a parametric radical system of a non-zero dimensional ideal with
parameters, we �rst compute a parametric radical system of 〈G〉e inK(u)[t][x\u].
Essentially, this algorithm is the same as Algorithm 6 (PRS_ZERO). However,

since the coe�cient domain is K(u), it is necessary to compute a CGS over K(u)
of 〈G〉e. This requires using the algorithm CGS_RATIONAL again.

The following algorithm, which modi�es Algorithm 2 (SQUARE_FREE)
using CGS_RATIONAL, outputs the squarefree parts of a parametric poly-
nomial in K(u)[t][xi].

Algorithm 10 (Squarefree part of f in K(u)[t][xi])

Speci�cation: SQUARE_RATIONAL(E, p, f, u, xi)
Computation of squarefree parts of f in K(u)[t][xi].

Input: E ⊂ K[t]: �nite set, p ∈ K[u][t], f ∈ (K[u][t])[xi], u ⊂ x, xi ∈ x\u.
For all t̄ ∈ VK(E)\VK(p), σt̄(f) 6= 0. (char(K) = 0)

Output: P = {(E1, {p1}, h1), . . . , (E`, {p`}, h`)} : For all t̄ ∈ VK(Ei)\VK(pi)
(1 ≤ i ≤ `), σt̄(hi)/σt̄(lc(hi)) is the squarefree part of σt̄(f)/ lc(σt̄(f)) where

VK(E)\VK(p) =
⋃`
i=1

(
VK(Ei)\VK(pi)

)
.

BEGIN
P ← ∅; G ← CGS_RATIONAL(E, p, {f, ∂f∂xi }, u,≺);
for each (E′, {p′}, {g}) ∈ G do

q ← Compute q s.t. lc(g)1+deg(f)−deg(g)f = qg + r (deg(r) < deg(g));
(by pseudo-division)

P ← P ∪ {(E′, {p′}, q)}
end-for
return P;
END
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Algorithm 11, which modi�es PRS_ZERO using the CGS_RATIONAL
algorithm, computes a parametric radical system in K(u)[t][x\u].

Algorithm 11 (Parametric radical system of 〈F 〉e)
Speci�cation:PRS_MIS(E, p, F, u)

Computation of a parametric radical system of 〈F 〉e in K(u)[x\u].
Input: E ⊂ K[t] : �nite set, p ∈ K[u][t], F ⊂ K[t][x] �nite set,

u ⊂ x: MIS modulo 〈lt(F )〉.
Output: P: parametric radical system of 〈F 〉 ⊂ K(u)[t][x\u] onVK(E)\VK(p).
BEGIN
P ← {(E, {p}, F )}; y = {y1, . . . , yρ} ← x\u;
for each i = 1 to ρ do /*ρ variables */
H ← ∅; ≺← Set a block term order with yi � y\{yi};
G ← CGS_RATIONAL(E, p, F, u,≺);
for each (E′, {p′}, G′) ∈ G do
g ← Select the polynomial g of minimal degree in G′ ∩K(u)[t][yi];
B ←SQUARE_RATIONAL(E′, p′, g, u, yi);
for each (E′′, {h}, b) ∈ B do
W ← P;
for each (D, {d}, H) ∈ W do

if (VK(E′′)\VK(h)) ∩ (VK(D)\VK(d)) 6= ∅ then
H ← H∪ {(E′′ ∪D, {

√
hd}, H ∪ {b})};

end-if
end-for

end-for
end-for
P ← H;

end-for
return P;
END

Let us execute PRS_MIS(E, p,G, u), where E, p,G are taken from the
discussion immediately after Lemma 4, and u is a MIS modulo 〈lt(G)〉. Then,
the output P satis�es: ∀(E′, {p′}, G′) ∈ P and ∀t̄ ∈ VK(E′)\VK(p′),

radK(u)[x\u](〈σt̄(G)〉e) = 〈σt̄(G′)〉 in K(u)[x\u].

Let us apply our contraction method to (E′, p′, G′, u,≺), i.e.,PARA_CONT
(E′, p, u,≺), where ≺ is a term order on Term(x). Then, the output C satis-
�es: ∀(D, {d}, H) ∈ C and ∀ā ∈ VK(D)\VK(d), (radK(u)[x\u](〈σā(G)〉e))c =

〈σā(H)〉 in K[x]. In fact, by the following lemma, we have radK[x](〈σā(G)〉ec) =

〈σā(H)〉 in K[x].

Lemma 5 ([2, Lemma 8.97]). (i) If I is an ideal in K(u)[x\u], then
(radK(u)[x\u](I))c = radK[x](I

c).
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(ii) I1 and I2 are ideals of K[x], then radK[x](I1∩I2) = radK[x](I1) ∩ radK[x](I2).
(iii) If I is an ideal of K[x], then (radK[x](I))e = radK(u)[x\u](I

e).

Recall Proposition 4 and Lemma 5. There exists q ∈ K[t][u] such that ∀ā ∈
VK(D)\VK(d),

radK[x](〈σā(G)〉) = radK[x](〈σā(G ∪ {q})〉) ∩ radK[x](〈σā(G)〉ec).

By applying the algorithm PARA_EXTCONT, the polynomial q can be ob-
tained. Therefore, if we have a basis of radK[x](〈σā(G ∪ q)〉), we can obtain the

basis of radK[x](〈σā(G)〉) by computing their intersection.

Since the same computation can be done recursively for 〈G ∪ {q}〉, we can
devise an algorithm for computing a parametric radical system of a parametric
ideal as follows.

Algorithm 12 (Parametric radical system of non-zero dim. ideal)

Speci�cation: PRS_NONZERO(E, p, F,≺)
Computation of a parametric radical system of a non-zero dim. ideal.

Input: E ⊂ K[t] : �nite set, p ∈ K[u][t], F ⊂ K[t][x] �nite set,
≺: term order on Term(x).

(∀t̄ ∈ VK(E)\VK(p), dim(〈σt̄(F )〉) 6= 0, 〈σt̄(F )〉 6= {0} and 〈σt̄(F )〉 6= 〈1〉.)
Output: NZ: parametric radical system of 〈F 〉 on VK(E)\VK(p).
BEGIN
NZ ← ∅; G ← Compute a CGS of 〈F 〉 over K on VK(E)\VK(p);
for each (E′, {p′}, G′) ∈ G do

u← Compute a MIS modulo 〈lt(G′)〉;
Z ←PRS_MIS(E′, p′, G′, u);
for each (Ez, {pz}, Z) ∈ Z do
C ← PARA_CONT(Ez, pz, Z, u,≺);
D ←PARA_EXTCONT(E′, p′, G′, u);
for each (Ed, {pd}, qd) ∈ D do

for each (Ec, {pc}, Gc) ∈ C do
if VK(Ed ∪ Ec)\VK(

√
pdpc) 6= ∅ then

L ←PRS_NONZERO(Ec ∪ Ed,
√
pcpd, Gc ∪ {qd},≺);

end-if
for each (El, {pl}, L) ∈ L do
A ←PARA_INTERSECTION(El, pl, L,Gc);
NZ ← NZ ∪ A;
end-for

end-for
end-for

end-for
end-for
return NZ;
END

Remark 5. (i) As
(
VK(El)\VK(pl)

)
⊂
(
VK(Ec)\VK(pc)

)
, thus we have



On the radical of a polynomial ideal with parameters 19(
VK(El)\VK(pl)

)
∩
(
VK(Ec)\VK(pc)

)
=
(
VK(El)\VK(pl)

)
.

Hence, we adopted PARA_INTERSECTION(El, pl, L,Gc) in the algo-
rithm.

(ii) Since algorithms for computing a CGS output a �nite number of strata, the
stratum VK(E)\VK(p) is divided into a �nite number of strata. We note
that by the MIS u, we have 〈G′〉 ∩K(t)[u] = 0. It follows that the inclusion
〈Gc〉 ⊂ 〈Gc∪{qd}〉 is proper in K(t)[x]. We observe that the recursive calls of
PRS_NONZERO gives rise to a strictly ascending chain of ideals, which
cannot be in�nite since K(t)[x] is Noetherian. This occurs for each stratum
VK(Ec ∪ Ed)\VK(

√
pcpd). Therefore, the algorithm terminates.

Example 5. Let F = {ax2z + xy2, (y + xz)2 + ax3z2} ⊂ C[a][x, y, z] and ≺ the
graded reverse lexicographic term order with x ≺ y ≺ z where a is a parameter
and x, y, z are variables. A CGS of 〈F 〉 over C w.r.t. ≺ is

{({0}, {a}, G), ({a}, {1}, {y4, z2x2 + 2zyx+ y2, y2x})}

where {az2x3 + z2x2 + 2zyx+ y2,−a2z2x2 + y4, azx2 + y2x}.
Let us consider the �rst segment ({0}, {a}, G). Then, a MIS modulo 〈lt(G)〉 is

{x}. Thus, 〈G〉 is not zero dimensional on C\VC(a). Then,PRS_MIS({0}, a,G,
{x}) outputs {({0}, {a}, G ∪ Z)} where

Z = {ay3x+ y3− 2ay2 + a2y, a2z3x4 + 2az3x3 + (z3− 2a2z2)x2 + 2az2x+ a2z}.

Next,PARA_CONT({0}, a, Z, {x},≺) outputs {({0}, {a}, {azx+y2, (az2y
+2a2z2)x2 + z2yx+ 3azy− 2a2z,−az2x3 + (2azy− z2)x2 − 3azx− 2ay})}, and
PRS_EXTCONT({0}, a,G) outputs {({0}, {a}, {a2x4 + 2ax3 + x2})}.

Due to the page limitation, the computation process from here is omitted.
After computing PARA_NONZERO({0}, a,G ∪ {a2x4 + 2ax3 + x2},≺), we
obtain a parametric radical system P of 〈G〉 on C \VC(a) as follows.

P = {({0}, {a}, {azx+ y2, az2x3 + (−2azy + z2)x2 + 3azx+ 2ay})}.

Repeat the same procedure for ({a}, {1}, {y4, z2x2 + 2zyx+ y2, y2x). Then,
we obtain a parametric radical system of 〈F 〉 as follows

{({0}, {a}, {azx+y2, az2x3 +(−2azy+z2)x2 +3azx+2ay}), ({a}, {1}, {y, zx})}.

The following is the algorithm for computing a parametric radical system of
a parametric ideal.

Algorithm 13

Speci�cation: PRS(F,≺)
Computation of a parametric radical system of a parametric ideal.

Input: F ⊂ K[t][x]: �nite set, ≺: term order on Term(x).
Output: L: parametric radical system of 〈F 〉.
BEGIN
(Z,N ,W)← PARA_DIM(F );
P ←

⋃
(E,{p},G)∈Z PRS_ZERO(E, p,G);
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Q ←
⋃

(E′,{p′},G′)∈N PRS_NONZERO(E′, {p′}, G′,≺);

L ← {(E′′,Coef(p′′), G′′) | (E′′, {p′′}, G′′) ∈ Q} ∪ P ∪W;
return L;
END

Algorithm 13 has been implemented in the computer algebra system Risa/Asir.
The code is available on the web:
https://www.rs.tus.ac.jp/~nabeshima/softwares.html.

Example 6. Let F = {ax2z + xy4, (x + y)3 + bx3z2, y2 + bxy} ⊂ Q[a, b][x, y, z]
where a, b are parameters and x, y, z are variables. Then, our implementation
outputs the following parametric radical system of 〈F 〉.
{({b2 − 3b + 3}, {ab}, {3ax + (−b + 3)ay, 3yz3 − byz + 3yz}), ({0}, {(b4 − 4b3 +
6b2−3b)a}, {(b4−4b3 +6b2−3b)ax+(b3−4b2 +6b−3)ay, (b3−4b2 +6b−3)azx+
(3az3 +(−2b2 +5b−3)az)y}), ({b−1}, {(b3−3b2 +3b)a}, {y, x}), ({a}, {b3−3b2 +
3b}, {y, (bz2+1)x}), ({a, b2−3b+3}, {b2−3b}, {y, (3z2−b+3)x}), ({a, b}, {1}, {y,
x}), ({b}, {a}, {x, y]})}.
Acknowledgements: This work has been partly supported by JSPS Grant-in-
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