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1 Introduction

One of the major advantages of symbolic computation is its capability to pre-
cisely handle ideals with parameters, known as parametric ideals. For instance, a
comprehensive Grobner system (CGS) and quantifier elimination method (QE)
are highly effective tools for analyzing parametric ideals. However, there is a
scarcity of convenient tools and implementations specifically tailored for para-
metric ideals. There is a pressing need to develop numerous algorithms for ana-
lyzing parametric ideals.

In this paper, we investigate the computation of radicals for a parametric
ideal, introducing a parametric radical system as a novel concept within para-
metric ideals in the realm of symbolic computation. The primary contribution
of this study is the provision of an algorithm for computing a radical system of
a parametric ideal.

In 1988, Gianni-Trager-Zacharias introduced an algorithm for computing the
radical of an ideal, along with an algorithm for computing primary decomposi-
tion [4]. Currently, these algorithms are implemented in many computer algebra
systems. However, there is a lack of algorithms and implementations for para-
metric ideals. The purpose of this paper is to generalize the algorithm presented
by Gianni-Trager-Zacharias to parametric cases. We demonstrate that two types
of comprehensive Grobner systems are necessary for this generalization.
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This paper is organized as follows: In Section 2, we review comprehensive
Grobner systems. In Section 3, we present several tools for parametric ideals.
In Section 4, we introduce a parametric radical system as a new concept within
parametric ideals. In Section 5, we describe an algorithm for computing a para-
metric radical system of a zero-dimensional ideal. In Section 6, we present the
key result of this paper, which is a special type of comprehensive Grébner sys-
tem. Finally, in Section 7, we provide an algorithm for computing a parametric
radical system of a non-zero-dimensional ideal.

2 Comprehensive Grobner systems

Here we briefly recall comprehensive Grobner systems that will be frequently
used in this paper. We refer the reader to [SJ6I7ISITOI2IT3].

2.1 Preliminaries

Let x = {x1,...,xn}, t ={t1,... .t} and u = {u1,...,u,} be sets of variables,
K a field with characteristic 0 and K an algebraic closed extension of K. (We
often regard t as parameters.) Moreover, let K (u) be a field of rational func-
tions with « and K (u) an algebraic closed extension of K (u). Symbols Term(t),
Term(z) and Term(t,z) mean the set of terms of ¢, the set of terms of z and
the set of terms of ¢ U z, respectively.

In what follow, we fix L = K or K(u).

Fix a term order < on Term(z) and let f € L[t][z]. Then It(f),lm(f) and
le(f) denote the leading term, leading monomial and leading coefficient of f i.e.
lm(f) = le(f)16(f). For F C L[t][z] and fi,..., f, € L[t][z], W(F) = {lIt(f)|f €
F}yand (f1,...,f,) ={>i_, hifilh1,..., hy € L[t][z]}. The set of natural num-
bers N includes zero, Q is the field of rational numbers and C is the field of
complex numbers.

For g1,...,90 € L[t], V(g1,...,9¢) C L™ denotes the affine variety of

G196 1 Vg1, 90) = (T € T g1(E) = -+ = ge(f) = 0}, and V(0) =
L™. We call an algebraically constructible set of the form Vi (fi,..o, fO\VZ(f1,
) C I, a stratum where f1,..., fo, fl,..., fi € L[t]. As it is clear that

V(1) = 0, thus VZ(f1, ..., fO\Vz(1) = V(f1,..., fi). Fort € L™, the canon-
ical specialization homomorphism o : L[t][z] — L[z] (or L[t] — L) is defined
as the map that substitutes ¢ by ¢ in f(¢,z) € L[t][z]. The image o7 of a set
F C L[t][z] is denoted by o7(F) = {oz(f)|f € F} C L[z].

2.2 Comprehensive Grobner systems

We adopt the following as a definition of comprehensive Grébner system.

Definition 1. Fiz a term ordering < on Term(z). Let F C L[t][z], F1,..., Es,
Ny,...,Ns C L[t], G1,...,Gs C Lt][z]. If a finite set G = {(E1, N1,G1),...,
(Es, Ng,Gs)} of triples satisfies the properties such that

(i) for each i, V3 (E;)\V1(N;) # 0,
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(ii) fori#j, (VE(E)\VL(N:)) N (VZ(E)\VL(N;)) =0, and
(iii) for allt € VL (E,)\V1(N;) and g € G;, 1t(g) = It(07(g)) and {o7(g)/o#(
lc(9))|g € Gi} is a minimal Grébner basis of (o7(F)) in L [x],
then G is called a comprehensive Gribner system (CGS) of (F) over L w.r.t. <
onU;_; (VE(E)\VE(N;)). We call a triple (E;, N;, G;) segment of G. We simply
say that G is a comprehensive Grobner system (CGS) of (F) over L w.r.t. < if
Uizy (VE(E)\VZ(V)) = L™

There exist several algorithms and implementations for computing the CGS
for L =Q (R or C) [5I6I7I8/10].

Remark 1. There always exists a CGS G of (F) C L[t][z] over L such that G
forms G = U,_,{(E:, {p:}, G;)} where p1,...,ps € L[t], Er,...,Es C L[t], and
G1,...,Gs C L[t][z] i.e. N; has one polynomial p;. See [5l6]. Since this form
makes the discussion easier, we adopt the form for all CGSs of this paper.

Example 1. Let F = {ax3y? + 3 + 2%y, 2%y + bay} C Cla,b][z,y] where a,b
are parameters. Let < be the lexicographic term order with y < z. Then,
a CGS G of (F) over C wa.t. < is G = {({b}, {1}, {v?, 2%y + 4*}), {ab —
1}, {1}, {v?, zy}), ({0}, {ab® — b}, G3)} where G3 = {(a3b® — 3a?b? + 3ab—1)y°® —
b%y?, bry + (a®b? — 2ab + 1)y>}. The set G means the following:

e if (a,b) belongs to V(b) (i.e. b = 0), then {y3, z%y+y?} is a minimal Grobner
basis of (F) w.r.t. <,

e if (a,b) belongs to Vc(ab — 1) (i.e. ab— 1 = 0), then {y? xy} is a minimal
Grobner basis of (F) w.r.t. <, and

e if (a,b) belongs to C*\V¢(ab® — b), then G is a minimal Grébner basis of
(F) wrt. <.

Next, let us consider the case L = K(u). It is possible to compute a CGS

on K(u)m by utilizing the algorithms that are introduced in [5J6I7/10]. The
algorithm has been implemented in the computer algebra system Risa/Asir [11].

Ezample 2. Let F = {3u12? 4 2azy, ax? + 3usy®} C C(u1,u2)[a][z,y] where a
is a parameter and z,y are variables. Let < be the graded lexicographic term
order with y < x. Then, a comprehensive Grébner system G of (F) w.r.t. < is
the following;:

G = {({0}H{ (4ura® + 27u3uz)a}, {y3, 3ui2? + 2azy, 2axy — Juiusy?}),
({(Z}, {1}7 {1'27 yQ})a ({4u1a3 + 27“?“2}7 {1}7 {3U1$y + 2ay2, 97_1,%1’2 - 4a2y2})} .

This output means the following;:

e if the parameter a belongs to fz\Vf((4u1a3 + 27udug)a) (ie. (duja®+
27udug)a # 0), then {43, 3ui 2% + 2axy, 26?2y — Yuquzy?} is a minimal Grob-
ner basis of (F) w.r.t. <,

e if the parameter a belongs to V1(a) (i.e. a = 0), then {2?,y?} is a minimal
Grobner basis of (F) w.r.t. <, and

e if the parameter a belongs to V-(4uia®+27ujus), then {3u;zy+2ay?, Juiz®—
4ay?} is a minimal Grobner basis of (F) w.r.t. <,

where L = C(uq,uz).
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3 Tools for parametric ideals

In order to compute a radical of a parametric ideal, we need to compute the
followings:

(1) Dimensions of a parametric ideal,

(2) Squarefree-part of a univariate polynomial with parameters,
(3) Intersection of parametric ideals,

(4) Least common multiples of parametric polynomials, and

(5) Saturation for a parametric ideal.

Here, we introduce these computational methods.
3.1 Dimensions of a parametric ideal

For a finite subset u, the cardinality of w is written by |ul.

Definition 2. Let I be a proper ideal in K[z] and u = {u,...,u,} a subset
of x. Then, u is called an independent set modulo I if I N K[u] = {0}. The
dimension dim(I) is defined as

dim(J) = max{|u||u C x is an independet set modulo I}.

Moreover, u C x is called a mazimal independent set (MIS) modulo I if it is an
independent set modulo I and the cardinality of u is equal to dim([).

Algorithms, introduced in [2J3], for computing a MIS modulo I are based on
the following theorem.

Theorem 1 (|2, p.448]). Let I be a proper ideal in K[z] and G a Grébner
basis of I w.r.t. a graded degree term order. Then, dim(I) = dim({It(G))).

By utilizing a CGS of a parametric ideal, the parameter dependence of the
dimensions can be obtained as follows.

Algorithm 1 (Dimensions of parametric ideal)
Specification: PARA DIM(F)

Computation of dimensions of parametric ideal (F').
Input: F C K[t][z] finite set.
Output: (Z,N,W): Z = {(E1,{p1},G1),. -, (Ee,{pe},Go)}, N = {(E{, {p},
Gll)v AR (Ezﬂ {pé’}r Gz/)}v W = {(Dla {hl}le)a s (D87 {hs}aHs)}' For each
1 <i < ¢, Va € VE(E;)\Vx(pi), dim((oa(G;))) = 0. For each 1 < j <
U, Vb € Vi(E)\Vg(p)), dim((c5(G}))) # 0. For each 1 < k < 5, Ve €
Vi(Di)\Vie(hi), (0c(Hy)) is not proper where K™ = (Ui, Ve(E:)\V(pi))
Uiy VE(ED\VE®)) U (Uiey VE(DR\ V().
BEGIN
Z+0; N« 0; W<+ 0; <<+ A graded degree term order;
G + Compute a CGS of (F) over K w.r.t. <;
for each (F, {p},G) € G do
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if G ={1} or G = {0} then
W WU{(E,{p},G)}; /*(G) is not, proper */
else if a MIS modulo (It(G)) is ) then

Z+ ZU{(EAp}, O} /*dim((G)) = 0 */
else
N« NU{(EAp},G)};  /*dim((G)) # 0 */
end-if
end-for
return (Z, N, W);
END

According to the definition of CGS and Theorem [T} Algorithm 1 is guaranteed
to work correctly.

3.2 Squarefree part of a univariate polynomial with parameters

Here, we present an algorithm for computing the squarefree parts of a univariate
polynomial with parameters.

Let z; be a variable in z. Let f = [, f " be the irreducible factorization
of the monic polynomial f € K[xz;], with dlstlnct monic irreducible f1, ..., fr and
positive eq, ..., e, € N. We define the squarefree part \/f of f to be H1<J<z fi

It is well-known that +/f = f/ged(f, az L) for the field K of characterlstlc zero

where ged(f, %:) is the greatest common divisor of f and 2 8—2% in K[x].

For parametric polynomials in K[t][x;], it is convenient to replace the usual
division with remainder by using a well-known pseudo-division method, which
computes ¢,r € K[t][z;] from f, g € K[t][z;] (g # 0) such that

le(g)ttdee(f)=dee(9) f — gg + r, where deg(r) < deg(g).

Note that for f € K|[t][x;], we can obtain the (parametric) greatest common
divisors of f and a—f by computing a comprehensive Grébner system of ( f, e, )
Therefore, by combmlng pseudo-division with the comprehensive Grébner sys-
tem, we present the following algorithm for computing the squarefree parts of a
univariate polynomial with parameters.

Algorithm 2 (Squarefree parts of a univariate polynomial)
Specification: SQUARE FREE(E,p, f, ;)
Computation of squarefree parts of a univariate polynomial with parameters.
Input: E C K[t]: finite set, p € K[t], f € K[t][z,], i € .
For all t € V(E)\V¢ ( ), 0(f) # 0. (char(K) = 0)
Output: P = {(E1,{p1}, M), ..., (Ee, {pe}, he)} : For all t € V(E:)\V(pi)
(1 <@ <0, og(h;)/oe(le(h;)) is the squarefree part of oz(f )/lc(o (f)) where

4
VE(EN\V%(p) = U (VR(E)\ViD)).-

BEGIN
P+ 0; G« Compute a CGS of (f > over K on Vi(E)\Vz(p);
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for each (E',{p'},{g}) € G do
g Compute g 5.t e(g) +*50~%50) = gg 11 (deg(r) < des(y);
(by pseudo-division)
P+« PU{(E, {p}q)}
end-for
return P;

END

Theorem 2. Algorithm 2 works correctly.

Proof. Let us consider (E’, {p'}, {g}) in the while-loop. Since, for all t € V(E’)
\V ('), {oi(g9)/1c(oz(g))} is the minimal Grébner basis of <(Tg(f),0’g(%)>
in Fjlxi], hence o(g)/ lc(og(g)) is the greatest common divisor of oz(f) and
05(57). As K is a filed, we have 0:(g)|oz(f). By the pseudo-division, there ex-

i

ists ¢, € K|[t][x;] such that
lc(g)ttdes(f)=dee(9) f — g + 1 (deg(r) < deg(g))-
Hence the fact o4(g)|oz(f) implies oz(r) = 0, namely,
oi(le(g)! i8N =495y (f) = 07(q)e(g) + 07(r) = oe(q)oe(9)-
Therefore, o7(q)/oz(1c(q)) is the squarefree part of oz(f)/lc(oz(f)). O

3.3 Intersection of parametric ideals

Here we present an algorithm for computing an intersection of parametric ideals
in K|z].

Theorem 3 (|3, Theorem 11]). Let I = {f1,..., fr) and J = {(¢1,...,9¢) be
ideals in K[z], and G a Grébner basis of (wf1,...,wfr, (1—w)g1,...,(1—w)ge)
in K[z, w] w.r.t. a block term order x < w on Term(x U {w}) where w is an
auziliary variable. Then, I N J = (G N K|z]).

Essentially, by substituting the Grobner basis with the CGS in the theorem
mentioned above, we can compute the intersection of parametric ideals as follows.

Algorithm 3 (Intersection of parametric ideals)

Specification:PARA INTERSECTION(E,p, F,G)
Computation of intersections of two parametric ideals.
Input: E C KJt] : finite set, p € K[t], F,G C K|t][x]: finite sets.
Output: P = {(El’il,),%}’ G1), (Ea, {p2},G2), ..., (Fe,{pe},Ge)} : For all t €
VelE)\V@) € K" (12 i < 0, (o)) 0 (0r(G)) = (07(Gy) where
VE(E\Vz(®) = Ui, (VE(E)\VEP:))-
BEGIN
I+ ({wf|f e F}U{(1—-w)glg € G}) where w is an auxiliary variable;
<< A block term order with < w on Term(x U {w});
G «+ Compute a CGS of I over K on Vi(E)\Vz(p) w.r.t. < in K[t][z U {w}];
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P {(E;;{p’LG’ NK[t][z]) | (E",{p'},G") € G};
return P;
END

According to the definition of CGS and Theorem 3] Algorithm 3 is guaranteed
to work correctly.

3.4 Least common multiples of parametric polynomials

An algorithm for computing the least common multiple of polynomials in K[x]
is provided in [3], based on the following proposition.

Proposition 1 (|3, Proposition 13]).

(i) The intersection I N J of two principal ideals, I,J C Klz] is a principal
tdeal.

(i) If I = (f), J = {(g) and INJ = (h) in K[z], then h is the least common
multiple of f and g i.e. h =lem{f, g}.

Combining this proposition with Algorithm 3 yields an algorithm for com-
puting the least common multiples of parametric polynomials, as follows.

Algorithm 4 (Least common multiples of parametric polynomials)
Specification:PARA LCM(E, p, F)
Least common multiples of parametric polynomials.
Input: E C Kt] : finite set, p € K[t], F C K[t|[x]: finite set.
Output: {(E1,{p1},{g1}),. .-, (Ee, {pe},{gc})}: For all Z € V?(EZ)\Vf(pZ)

(1 < <), lem{o7(F)} = 0i(g;) where Vi(E)\V(p) = | (Vr(E)\V(p:))-

BEGIN =
G < 0; f + Select one polynomial f from F; F «+ F\{f};
o {(B, {ph A/D):
for each h € F' do
for each (E',{p'},{f'}) € H do
£ +PARA_INTERSECTION(E',p, {f},{h}); G « GUL;
end-for
H <+ G;
end-for

return #;
END

3.5 Saturation for a parametric ideal
Here, we introduce how to compute saturation for a parametric ideal .
Definition 3. Let I be an ideal in K[z] and f € K|[x].

(1) I:f={ge€K[z]lgf € I}.
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(2) For the ideal 1, the saturation w.r.t. f is defined by the ideal T : f> =
Uk21(1 L fF).

Proposition 2 (|2, Proposition 6.37]). Let I = (f1,..., fr) and f € K|z].
Set J = {f1,..., fry1 — wf) where w is an auziliary variable. Then, I : >~ =
J N Klz].

Let G be a Grobner basis of J w.r.t. a block term order with < w. Then,
by the proposition above, G N K[z] becomes a basis of the ideal I : f>°.

For parametric ideals, we can extend the method described above to K[t][z]
by substituting the Grébner basis with the CGS, as follows.

Algorithm 5 (Saturation for a parametric ideal)
Specification:PARA _SAT(E,p, F, f, <)

Computation of the saturation (F) : f*°.
Input: F C K[t] : finite set, p € K[t], F C K[t][z]: finite set, f € K[t][x],

<: term order on Term(x).

Output: {(E1, {p1},G1), (B2, {p2}, G2), ..., (Ee, {pe}, Go)} : Forallt € V(E;)
\Vx(pi) (1 <i <), 07(Gs) is a basis of (07(F)) : 07(f)> where VE(E)\V&(p)
= Uiy (VR(E)\V(p)).
BEGIN
I+ (FU{l—-wf}) C K[t][x,w] where w is an auxiliary variable;
<" A block term order, with z < w and <, on Term(z U {w}) ;
G + Compute a CGS of I over K w.r.t. <’ on Vz(E)\V#(p);
P (B {0/}, G' N Kltla]) | (B, {p'},G") € G);
return P;
END

4 Parametric radical system

The aim of this paper is to develop an algorithm for computing the radical
system of a parametric ideal.

Definition 4. Let I C L{z] be an ideal (where L = K or K(u)). The radical of
I, denoted rad,)(1), is the set {f|f" € I for some integer r > 1}. I is called a
radical ideal if I = rad ().

In this paper, we extend the algorithm introduced by Gianni-Trager-Zacharias
in [4] for computing the radical of an ideal to its parametric version. We achieve
this by utilizing two types of comprehensive Grobner systems.

We define the radical of a parametric ideal as follows.

Definition 5. Fiz a term order < on Term(zx). Let E1,FEs,...,E, C KJt],
Ny,No,...,Ns € K[t] and F,G1,Ga,...,Gs C K[t][z]. If a finite set

g = {(E17N17G1)7 (E27N2aG2)7 ceey (ES7N55GS)}

of triples satisfies the properties such that
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o for each i, Vi (E;))\V#(N;) # 0,

o fori# j, (Ve(E)\Vg(Ni) N (VE(E)\VE(N;)) =0, and o

o for allt € Vi(E;)\Vi(N:), 07(G;) is a basis of radge, (o7 (F))) in Klz],
then, G is called a parametric radical system (PRS) of (F) on |J;_, (V& (E;)\
V(N;)). We call a triple (E;, N;,G;) segment of G. We simply say G is a
parametric radical system of (F) if J_, (Ve(E)\Vg(N:)) =K

In Section [5] we explore the computation of a parametric radical system
for a zero-dimensional ideal. In Section [6] we introduce a specialized type of
comprehensive Grébner system commonly employed for computing a parametric
radical system for non-zero dimensional ideals. Finally, in Section [7, we present
an algorithm for computing a parametric radical system for non-zero dimensional
ideals.

5 Zero dimensional case

Here, we present an algorithm for computing a parametric radical system of a
zero dimensional ideal with parameters. This algorithm is essentially based on
the following lemma.

Lemma 1 (|2, Lemma 8.19]). Let I = (f1,..., fr) be a zero dimensional ideal
in K[z]. For 1 <1i<mn, let g; be the unique monic polynomial of minimal degree

in I N K[xz;]. Then, radg)((F)) = (f1,-- -, frs\/915- - »+/Gn) where \/g; is the

squarefree part of g;.

If T is a zero dimensional ideal on Vi (E)\Vx(p) where E C K[t] and
p € K|[t], then, for each x; € x, the parametric univariate polynomial g; can be
obtained by computing a CGS w.r.t. a elimination term order. After obtaining
gi, SQUARE _FREE(E,p, g;,x;) outputs squarefree parts of the parametric
univariate polynomial g; on Vi (E)\V#(p).

Algorithm 6 (Parametric radical system of a zero dim. ideal)

Specification: PRS ZERO(E,p, F)
Computation of a parametric radical system of a zero dim. ideal (F).
Input: F C K[t] : finite set, p € K[t], F C K[t][x] finite set.
(For all t € Vi(E)\V#(p), dim((cz(F))) = 0.)
Output: P: parametric radical system of (F') on V(E)\Vz(p).
BEGIN
P« {(E,{p}, F)}
for each i =1 ton do /*n variables */
H + 0; << Set a block term order with z; < z\{z;};
G + Compute a CGS of (F) over K w.r.t < on Vz(E)\V#(p);
for each (E',{p'},G’') € G do
g  Select the polynomial ¢g of minimal degree in G’ N K'[t][z]
B +~SQUARE_FREE(E' Y, g,z;);
for each (E”,{h},b) € B do
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for each (D,{d},H) € W do
if (Vz(E")\Vg(h)) N (Vg(D)\VE(d)) # 0 then
H— HU{(E"UD,{Vhd}, HU{b})};
end-if
end-for
end-for
end-for
P+~ H;
end-for
return P;

END

Remark 2. Let us consider (V(E")\V(h)) N (Vi(D)\V(d)). Then,

(VR(E")N\VE(h) N (VE(D)\VE(d) = (VE(E") N V(D) \ (VE(h) UVE(d)
= V(E" UD)\Vx(hd).

Thus, if rad i ((E"UD)) 3 hd, we have (V(E")\V(h))N(V(D)\V(d)) =
0, otherwise, (V(E")\V(h)) N (Vz(D)\V(d)) # 0.

Notice that Vz(hd) = Vz(Vhd), and we can replace E” U D a Grobner
basis of (E" U D) or a basis of rad g (E"” U D).

Remark 3. To compute the univariate polynomials with parameters, we have
developed an algorithm for computing the minimal polynomial modulo (F") with
respect to z; (1 < ¢ <mn). (For details on the minimal polynomials, please refer
to [I].) However, our implementation of the (parametric) minimal polynomial is
slower than our implementation of the CGS. As a result, we have utilized CGS
computation to obtain the univariate polynomials.

Since Algorithm 6 is a natural generalization of LemmalI]to parametric ideals,
its correctness and termination are guaranteed by Lemma SQUARE_ FREE,
and Remark 2

Example 3. Let F = {2? + azy,ry®> — bx + y} C Qla,b][x,y] where a,b are
parameters and x,y are variables. Then, PARAZERO(F) outputs (Z,0,0)
where Z = {({0}, {a}, {ba + ay® — y,2* — a®y?, yz + ay®}), ({a}, {b}, {y? ba —
y}), ({a, b}, {1}, {=%y})}-

This implies that for all (a,b) € C2, (F) is zero dimensional. We execute
Algorithm 6 for each segment.

(1): First we consider the case (C?\ V¢(a), {bx + ay® — y, 2% — a®y?, yz + ay?})
and set Fy = {bx + ay® — y, 2> — a®y?, yz + ay?}.

(1-1): A CGS of (Fy) over C w.r.t. the lexicographic term order z < y on
C2\ V¢(a) is {{0},{a}, {* + (—a?b—a)2?, 2® — ba’x + a’y})}. Take the
univariate polynomial z* + (—a?b — a)x?. Then,

SQUARE FREE({0},a,z* + (—ba® — a)z?,z)
outputs
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{({0}, {a(ab + 1)}, {2° + (=a®b — a)z}), ({ab + 1}, {1}, {z})}.
Thus, we have H = {({0}, {a(ab+ 1)}, Fy U {23 + (=ba? — a)z}), ({ab +
1}, (1), U {x})}.
(1-2): A CGS of (Fy) over C w.r.t. the lexicographic term order y < z on
C2\ Ve(a) is Gy = {({0}, {ab}, {ay* + (~ab — 1)y, ~bz — ay® + ),
({b}, {a}, {ay® -y, xy+ay?, 2* —a®y?})}. Take the univariate polynomial
ay* 4+ (—ab — 1)y? from the first segment of G,, and execute
SQUARE_FREE({0},ab, ay* + (—ab — 1)12,y).
Then, SQUARE FREE outputs
{({0}, {ab(ab + 1)}, ay® + (—ab — 1)y), ({ab + 1}, {1}, {y})}.

Thus, H is renewed as

H = {({0}, {ab(ab+ 1)}, Fy U{a® + (~ba? — a)z, ay® + (—ab — 1)y}),
({ab+1}, {1}, LUz, y})}-

Next, let us consider the second segment of G,. We take the univariate poly-
nomial ay? —y and apply the SQUARE_FREE algorithm with the inputs
(b,a,ay®—y,y). The output of SQUARE FREE is (b, a,ay® — y). There-
fore, H is updated to

H = {({0}, {ab(ab + 1)}, F1 U {2® + (—a®b — a)z,ay® + (—ab — 1)y}),
({ab + ]-}a {1}7 Fiu {LE, y})? ({b}a {a’}a Fu {x?, + (_a2b - a)x, ayS - y})}
(2) Second we consider the case (V¢(a)\ Ve(b), {y?, bx —y}). As b # 0, clearly
we obtain {({a}, {0}, {z,y})}.
(3) Last we consider the case (V¢(a,b), {x?,y}). Clearly, we obtain {({a, b}, {1},
{z,y})}.

Therefore, the following is a parametric radical system of (F’)

{({0},{ab(ab + 1)}, F; U {23 + (—a?b — a)z,ay® + (—ab — 1)y}),
({ab+ 1}, {1}, Fy U{z,y}), ({b}, {a}, FL U{z® + (=a®b — a)z,ay® — y}),
({a}, {0} {z.y}), ({a, b}, {1}, {z, y})}-

Note that each segment (E, {p}, G) of the parametric radical system above can
be replaced a CGS of (G) on V¢(E)\Vc(p). This optimization technique is
implemented in our implementation. Actually, our implementation outputs the
following as a parametric radical system of (F')

{({0}7 {ab(ab + 1)}a {xS + (70‘2[) - a)xv ayg + (7(11) - 1)ya T+ ay})v
({ab+ 1}, {1}, {=,y}), ({b}, {a},{2° — az,ay® —y, 2 + ay}),
({a},{b}, {2, 9}), ({a, 0}, {1}, {=,y})}.

This output means the following:

e if (a,b) belongs to C*\V¢(ab(ab+ 1)), then {23 4 (—a?b— a)z, ay® + (—ab—
L)y, + ay} is a basis of radc(y,, ((F)),

if (a,b) belongs to Vc(ab+ 1), then {z,y} is a basis of radc(,, ., ((F)),

f (a,b) belongs to Vc(b)\Vc(a), then {x,y} is a basis of radc,,,((F)),

if (a,b) belongs to V¢ (a)\V(b), then {x,y} is a basis of mdq;[gE y](<F>) and

f (a,b) belongs to Vc(a,b), then {x,y} is a basis of radci,,, ((F)).
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6 Key result

Here, we extend certain mathematical fundamentals to parametric scenarios. The
cornerstone of this generalization is a comprehensive Grobuner system (CGS) over
K (u) on A NK™, where A C mm

Before delving into the generalization, let’s quickly review some fundamental
concepts regarding the extension and contraction of ideals in mathematics.

Definition 6. Let I be an ideal in K[x]. Then, the extension I¢ of I to K (u)[x\u]
is the ideal generated by the set I in the ring K[u][x\u] where u C x.

Definition 7. Let I be an ideal in K[z] and w C x. Then, the extension I¢ of I
to K (u)[z\u] is the ideal generated by the set I in the ring K (u)[z\u]. If J is an
ideal in K (u)[z\u], then the contraction J¢ of J to K|x] is defined as J N K|[x].

Lemma 2 (|2, Lemma 8.91]). Let u be a subset of x, F C Klz], < a term
order on Term(z\u). Suppose J is an ideal generated by F in K(u)[z\u], and
G is a Grébner basis of J C K(u)[x\u] w.r.t. < such that G C K[u|[z\u]. Let
I be the ideal generated by F in K[z], and set [ as a least common multiple of
{lc(g)lg € G} (i-e. f =1em{lc(g)|lg € G}), where lc(g) € Klu] is taken of g as
an element of K(u)[x\u]. Then, J¢=1: f*.

Lemma [2| provides instructions on computing the contraction J¢ as follows.

Step 1: Compute a Grobner basis G of J = (F) in K (u)[z\u].

Step 2: Compute f = lem{le(g)|g € G}.

Step 3: Compute a basis G’ of I : f* in K[z] where I = (F) in K[z].
As J° = (@), output G'.

Let us extend the computational method above to parametric cases. Specifi-
cally, we consider the scenario where the ideal J is in K (u)[t][z\u].

The parametric case cannot be solved by simply replacing the Grébner basis
with a CGS of J because we have three types of symbols

2\u: main variables, ¢: parameters, wu: variables of K (u).

The aim of this paper is to develop an algorithm for computing a parametric
radical system of a parametric ideal. A parametric ideal contains genuine pa-
rameters that do not belong to K (u). Since K is a subset of K (u), in order to
apply a CGS over K (u) to the parametric ideal, we need to restrict a stratum of
the CGS over K (u) to K™ Specifically, for A C mm, it is necessary to verify
whether ANK " is empty or not.

In a previous study by the third author [9], generic standard bases of para-
metric ideals were discussed in a local ring. One can employ the ideas from that
study to address this problem. The following proposition is adapted from [9].

Proposition 3. Let p be the cardinality of v in N and u = {u1,us,...,u,}. Let

VW(E> be a non-empty stratum in K(u) where E C Ku][t]. Set
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where u® = ui'uy? - - u,” for oo = (a1, az,...,a,) € N°.

Then, (V- W(E) ﬁfm) = V(T) holds.

Proof. As K" D V(T) and Vig5(E) D Vg(T), thus we have (Vgr5(E) N
K") D Vg(T). Assume that (Vgry(E) NK) 2 V(T), then exists b €
(VW(E) NK™) such that b ¢ V(T). Moreover, there exist p;(t),...,p,(t) €
T C K[t] and g € E such that pi(b) # 0,...,p,(b) # 0 and g = Y cqu® +
>oiq pi(t)u® where ¢, € K[t] and u®, ..., u* € N”. Since u®s and u®*, ..., u®
are linearly independent over K and p;(b)u® # 0, hence g(b) # 0. However, as
b e (VW(E) N Km), we have g(b) = 0. This is a contradiction. Therefore,

(Via(B) N K™) = V(T). O

Definition 8. Using the same notation as in Proposition[3, the set T is denoted
as Coef(E).

Ezample 4. Let E = {t3ufus+(ta+1)ua+t1 } in Cluy, us][t1, ta]. Then, Coef(E) =
{tl,tg +1 tl} and V o u2)( )N C" = V@(Coef( )) V(c(t1,t2 + 1)

Note that it is clear that (Vg5 (E)NEK ) = V(Coef(E)), and, for E, N C
Klu]lz],
(Ve B\ Vi (V) N K" = (Ve (E)N Fm)\(Vm(N) NK")
= V(Coef (E))\Vz(Coef(N)).
Hence, if rad g (Coef(E)) = rad [ (Coef(N)), then (V-
K™ =0, otherwise (Vgry(E)\Vgqy(N) NE™ #0.

7 EN\Vi (V) N

Corollary 1. Let E C K[u][t] and f € K[u][t]. Then, if the radical of (Coef(E))
includes f in K(u)[t], then (Vs u)( )\VK(H)(f)) N Km = (), otherwise

(Ve EN\Vm () NE" #0

Proof. Since (V i,y (f)NK ") = V(Coef({f}), if the radical of (Coef(E)) in-
cludes f, then V z(Coef({f}) D Vi (Coef(E)). Therefore, (VK(u)( )\VK(U)(f))
NL™ = V(Coef(E))\V g (Coef({ f}) = 0. If the radical of (Coef(E)) does not
include f in K (u)[t], then V g (Coef({f}) 7 V#(Coef(F)). Therefore,
(Ve BN\ Vi (H) NK™ # 0.0

In what follows, we assume that any segment (E, {p}, G) of a CGS over K (u)
in K (u)[t][z\u] satisfies “E C Ku][t], p € K[u]t] and G C K[u|[t][z\u],” namely,
all coefficients are in KJu].
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The CGS over K (u) is modified as follows by Proposition 3| and Corollary

Algorithm 7 (CGS over K(u) on A C K)
Specification: CGS RATIONAL(E,p, F,u, <)
Computation of a CGS over K (u) on (VW(E)\VW(p)) NK™.

Input: E C KJt] : finite set, p € K[u][t], F C K(u)[t][x \ u] finite set, u C z,

<: term order on Term(x \ u) L
Output: Q: a CGS of (F) ¢ K(u)[t][z \ u] over K(u) on ANK'" where A =
Ve BNV ()
BEGIN
Q s o
G < Compute a CGS of (F) over K (u) on (Viy(E)\Vis(p) w.tr. <;
for each (F',{p'},G') € G do

T < Coef(E");
if p’ & rad i (,)((T')) then
Q— QU{(T,{r'}, &)}

end-if

end-for

return Q;
END

Algorithm 7 is a crucial tool in this paper.

Remark 4. A segment of Q is formed by (E,{p'},G’) where E C KJt], p' €
K[u][t], and G' C Ku][t][z\u]. It is important to note that p’ may still contain
the symbol u. However, p’ behaves like Coef(q) C K]Jt], as indicated by the
fact that Vm(p’ YNK" = V(Coef(p')) and Corollary In other words,
the symbol u in p’ is not affected by any other computations in this paper.
Conversely, by keeping p’ € KJu|[t], we maintain simplicity in the style of our
algorithms. This serves as one of our optimization techniques.

Thanks to CGS RATIONAL, we can generalize the computational method
for contracting an ideal to parametric cases.

Algorithm 8 (Contraction of parametric ideals)
Specification:PARA CONT(E,p, F,u, <)
Computation of the contraction for parametric ideals.
Input: F C K[t] : finite set, p € K[u][t], F C K(u)[t][x \ u]: finite set, u C z,
<: a term order on Term(z).
Output: C = {(E1,{p1},G1),...,(Er,{pr},Gy)}: For all t € Viz(E;)\Vz(Coef
(pi)) (1<i<r),op(G;)is a Grobner basis of (o7(F))¢ w.r.t. < in K[z] where
Ve B\VE(®) = UL, (VE(ENVE(p):
BEGIN
C + 0; <14 A term order on Tern(z\u);
G« CGS_RATIONAL(E, p, F,u, <1);
for each (F',{p'},G') € G do
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LC «+ {lc(g)|lg € G'}; H +PARA _LCM(FE',p', LC);
for each (D,{d}, f) € H do
Z « PARA_SAT(D,d,G',f,<); C+ ZUC;
end-for
end-for

return C;
END

Next, we discuss the contraction of J¢, where J C Kt][z].
The following proposition and lemma provide us with the relation between
I and I°¢, where I is an ideal in K{z].

Proposition 4 (|2, Proposition 8.94]). Let < be a term order on Term(z\u),
and suppose I is an ideal of K[x] and G is a Grébner basis of I w.r.t. <
in K(u)[z\u]. Set ¢ as a least common multiple of {lc(g)lg € G} (i.e. ¢ =
lem{lc(g)|g € G}), where lc(g) € Ku] is taken of g as an element of K (u)[x\u].
Then, 1°¢ =1 : ¢*°.

Lemma 3 (]2, Lemma 8.95]). Let I = (f1,..., fr) C K[z]|. Suppose q € K|x]
and s € N\{0} are such that I : ¢ =1:q>. Then, I = (f1,..., fr,¢*)N (I : ¢°).

Notice that

rad k1) (1) = rad g (({fl, e fri U {qs}>) N rad g ) (I : qoo))
= rad g [4] (({fl, o frpuU {q}>) N rad gy (I : qoo)).

Therefore, the integer s is not necessary for computing the basis of rad k(. (I);
only the polynomial ¢ € KJu] is required. Since, in Proposition 4] the Grobner
basis G of I C K(u)[z\u] is computed to obtain the polynomial ¢, the algo-
rithm CGS RATIONAL is again necessary to generalize Proposition E| and
Lemma |§| to parametric cases.

Algorithm 9 (Cut (F)¢° down to (F))
Specification: PARA EXTCONT(E,p, F,u)

Cut (F)°® down to (F) on V(E)\Vx(p).
Input: £ C K[t] : finite set, p € K[u|[t], F C K]|t][z]: finite set, u C z,
<: a term order on Term(x).
Output: £ = {(Ela {pl}v ql)v LR (Ef‘v {pr}a qr)}: For all ¢ € V?(El)\vf(pl)
(1<i<n),

radg ) ((02(F))) = radg ), ({(o:(F' U {a:}))) N radz,) ({07 (F)))

where q1,...,q. € K[t] [U] and Vf(E)\V?(p) = U::]_ Vf(El)\Vf(pZ)
BEGIN
L+ 0
g+ CGS_RATIONAL(E,]D, Fu,<);
for each (F',{p'},G') € G do
LC « {lc(g)lg € G};
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H+PARA LCM(E' {p'},LC); L+ LUH,
end-for
return £;
END

7 Non-zero dimensional case

Here, we describe an algorithm for computing a parametric radical system of
a non-zero dimensional ideal with parameters. The following lemma is a well-
known fact and is utilized to reduce the problem to the zero dimensional case
by means of the extension/contraction method.

Lemma 4 (|2, Lemma 7.47]). Let I be an ideal in K[z], If w C = is a MIS
modulo I, then I¢ is a zero dimensional ideal of K(u)[x\u].

Let E C K[t], p € K[t] and G C K][t][z]. Assume that a triple (E, {p}, G)
satisfies conditions: for all £ € V z(E)\V z(p), dim({1t(G))) # 0. Set u a MIS
modulo (1t(G)). Then, for all ¢ € Vz(E)\Vz(p), (0e(G)) a zero dimensional
ideal in K (u)[x\ul.

To compute a parametric radical system of a non-zero dimensional ideal with
parameters, we first compute a parametric radical system of (G)® in K (u)[t][z\u].
Essentially, this algorithm is the same as Algorithm 6 (PRS ZERO). However,

since the coefficient domain is K (u), it is necessary to compute a CGS over K (u)
of (G)¢. This requires using the algorithm CGS RATIONAL again.

The following algorithm, which modifies Algorithm 2 (SQUARE FREE)
using CGS _RATIONAL, outputs the squarefree parts of a parametric poly-
nomial in K (u)[t][z;].

Algorithm 10 (Squarefree part of [ in K (u)[t][x;])
Specification: SQUARE _RATIONAL(E,p, f,u, x;)
Computation of squarefree parts of f in K (u)[t][xs].
Input: £ C K[t]: finite set, p € K[u][t], f € (K[u][t])[zi], v C z, z; € z\u.
For all t € Vi (E)\V%(p), o¢(f) # 0. (char(K) = 0)

OUtPUt: P = {(Elv {pl}a h1)7 BRI} (E€7 {pé}a hf)} :Forall t € V?(El)\vf(pz)
(1 <@ <), og(h;)/og(lc(h;)) is the squarefree part of oz(f)/lc(oz(f)) where
Vie(E\VE(®) = Uiz (V&(E)\ V().
BEGIN
P« 0; G« CGS_RATIONAL(E,p, {f, 2L}, u, <);
for each (E',{p'},{9}) € G do '

q + Compute ¢ s.t. lc(g)t+dee(H)=deslo) f — g+ r (deg(r) < deg(g));

(by pseudo-division)

P« PU{(E{r'}. )}
end-for
return P;
END
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Algorithm 11, which modifies PRS ZERO using the CGS RATIONAL
algorithm, computes a parametric radical system in K (u)[t][z\u].

Algorithm 11 (Parametric radical system of (F)¢)
Specification:PRS  MIS(E,p, I, u)
Computation of a parametric radical system of (F)¢ in K (u)[z\u].
Input: E C KJt] : finite set, p € K[u][t], F C K][t][z] finite set,
u C z: MIS modulo (1t(F)).
Output: P: parametric radical system of (F') C K (u)[t][z\u] on Vi(E)\V#(p).
BEGIN
P—{(E L )} y={y1,. - 9} < 2\u
for each i =1 to p do /*p variables */
H <+ 0; << Set a block term order with y; < y\{v:};
G « CGS_RATIONAL(E, p, F,u, <);
for each (E',{p'},G") € G do
g < Select the polynomial g of minimal degree in G’ N K (u)[t][y:];
B +SQUARE_ RATIONAL(E'.p, g,u,y;);
for each (E”,{h},b) € B do
W« P;
for each (D,{d},H) €W do
if (Vg(E")\Vg(h) N (VE(D)\Vi(d)) # ) then
H+— HU{(E"UD,{Vhd}, HU{b})};
end-if
end-for
end-for
end-for
P<—H;
end-for
return P;

END

Let us execute PRS MIS(E,p,G,u), where E,p,G are taken from the
discussion immediately after Lemma [4] and u is a MIS modulo (1t(G)). Then,
the output P satisfies: V(E', {p'},G’) € P and Vt € Vi (E')\Vx(p'),

rad e () o\ ((08(G)) ) = (03(G")) in K (u)[z\u].

Let us apply our contraction method to (E’, p’, G', u, <),i.e., PARA CONT
(E',p,u, <), where < is a term order on Term(x). Then, the output C satis-
fies: V(D,{(ﬁ, H) € C and Va € Vg(D)\Vg(d), (radg )., (0a(G))%))" =
(oa(H)) in K[x] In fact, by the following lemma, we have radg,)((0a(G))*) =
(oa(H)) in Klz].

Lemma 5 (]2, Lemma 8.97]). (i) If I is an ideal in K (u)[x\u], then
(rad g (wyf\u) (1)) = rad g 2) (1°)-
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(i) I and Iy are ideals of K[x], then rad k) (11N12) = rad g(z)(11) N rad g5 (12).
(ii) If I is an ideal of K[z], then (radk(y)(1))¢ = rad g (u)[z\u) (1)

Recall Proposition [l and Lemma [5| There exists ¢ € K[t][u] such that Va €
VE(D\VE(d),

radze, ((0a(G))) = radg, ((0a(G U {g}))) N radg, ((0a(G))*).

By applying the algorithm PARA EXTCONT, the polynomial ¢ can be ob-
tained. Therefore, if we have a basis of radz,;((ca(G U q))), we can obtain the
basis of radz,)({(0a(G))) by computing their intersection.

Since the same computation can be done recursively for (G U {q}), we can

devise an algorithm for computing a parametric radical system of a parametric
ideal as follows.

Algorithm 12 (Parametric radical system of non-zero dim. ideal)

Specification: PRS NONZERO(E, p, F, <)
Computation of a parametric radical system of a non-zero dim. ideal.
Input: E C K[t] : finite set, p € K[u][t], F C K[t][z] finite set,
<: term order on Term(z).
(VF € Vi(E)\Ve(p), dim((oy(F)) # 0, {o7(F)) £ {0} and {o7(F)) £ (1).)
Output: N Z: parametric radical system of (F) on V(E)\V#(p).
BEGIN
NZ + 0; G+ Compute a CGS of (F) over K on Vi(E)\V#(p);
for each (F',{p'},G') € G do
u < Compute a MIS modulo {It(G"));
Z +<PRS_ MIS(E',p', G’ u);
for each (E,,{p.},Z) € Z do
C+ PARA CONT(E.,p.,Z,u,<);
D +PARA_EXTCONT(E',p, G, u);
for each (E4,{pa},q4) € D do
for each (E.,{p.},G.) € C do
if Vie(Eq U E.)\Vi(\/papc) # 0 then
L +~PRS_NONZERO(E. U Eqg, \/pcpa, G U {qa}, <);
end-if
for each (F;,{p},L) € L do
A+~PARA INTERSECTION(E;,p;,L,G.);
NZ — NZ U A
end-for
end-for
end-for
end-for
end-for
return NZ;
END

Remark 5. (i) As (Vg(E)\Vg(n)) C (Vg(E)\Vz(p.)), thus we have
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(VR(E)\Vz(m)) N (Vg(E)\VrPe) = (Ve(E)\Vi(n)).

Hence, we adopted PARA INTERSECTION(E;, p;, L,G.) in the algo-
rithm.

(i) Since algorithms for computing a CGS output a finite number of strata, the
stratum Vi (E)\V(p) is divided into a finite number of strata. We note
that by the MIS u, we have (G') N K (t)[u] = 0. It follows that the inclusion
(G.) C (G.U{qq}) is proper in K (t)[z]. We observe that the recursive calls of
PRS NONZERO gives rise to a strictly ascending chain of ideals, which
cannot be infinite since K (¢)[x] is Noetherian. This occurs for each stratum
Vi (E. U Eg)\Vi(y/Pcpd)- Therefore, the algorithm terminates.

Ezample 5. Let F = {az?z + zy?, (y + 2)? + ax®2?} C Cla][z,y, 2] and < the
graded reverse lexicographic term order with = < y < z where a is a parameter
and x,y, z are variables. A CGS of (F') over C w.r.t. < is

{({0},{a}, G), ({a}, {1} {y", 2%2% + 22yz + ¢,y 2 }) }

where {az2x3 + 2222 + 2zyx + y2, —a?2%2% + y4, azx® + yzx}.

Let us consider the first segment ({0}, {a}, G). Then, a MIS modulo (It(G)) is
{z}. Thus, (G) is not zero dimensional on C\V¢(a). Then, PRS MIS({0},qa, G,
{z}) outputs {({0}, {a}, GU Z)} where

Z = {aydx +y3 — 2ay* + a®y, a? 232t + 202323 + (23 — 2a%2%)2? + 20227 + a2}

Next, PARA CONT({0}, a, Z, {z}, <) outputs {({0}, {a}, {azz+y?, (az?y
+2a%2%)2? + 22yx + 3azy — 2a°z, —az?a® + (2azy — 2?)2? — 3azx — 2ay})}, and
PRS EXTCONT({0},a,G) outputs {({0},{a}, {a®z* + 2az® + 22})}.

Due to the page limitation, the computation process from here is omitted.
After computing PARA NONZERO({0},a,G U {a?z* + 2az3 + 22}, <), we
obtain a parametric radical system P of (G) on C\ V¢(a) as follows.

P = {({0},{a},{azz + y?, az?2® + (—2azy + 2%)z* + 3azx + 2ay})}.

Repeat the same procedure for ({a}, {1}, {y*, 2222 + 22yx + y?, y?z). Then,
we obtain a parametric radical system of (F') as follows

{({0},{a} {azz+y?, 02?2’ + (- 202y + 2%)2® + Bazz +2ay}), ({a}, {1}, {y, z2})}.

The following is the algorithm for computing a parametric radical system of
a parametric ideal.

Algorithm 13
Specification: PRS(F), <)
Computation of a parametric radical system of a parametric ideal.
Input: F' C K[t][z]: finite set, <: term order on Term(z).
Output: £: parametric radical system of (F').
BEGIN
(Z,N,W) « PARA_DIM(F);
P+ U(E,{p},G)eZ PRS ZERO(E,p,G);
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Q — U(E’,{p’},G’)EN PRS_NONZERO(E/, {p/}7 G’l7 —<),
£<_ {(EIN7 Coef(p//),G//) | (E//,{p//}7G//) c Q}UPUW;
return L;

END

Algorithm 13 has been implemented in the computer algebra system Risa/Asir.
The code is available on the web:
https://www.rs.tus.ac.jp/ nabeshima/softwares.html.

Ezample 6. Let F = {ax?z + zy*, (z + y)® + bz322%,y% + bzy} C Qla, b][x,y, 2]
where a,b are parameters and z,y, z are variables. Then, our implementation
outputs the following parametric radical system of (F').

{({v? — 3b+ 3},{ab}, {3azx + (=b + 3)ay, 3yz> — byz + 3yz}), ({0}, {(b* — 4b> +
662 —3b)a}, {(b* —4b3 +6b% — 3b)ax + (b° — 4b? +6b—3)ay, (b° —4b> +6b—3)azz +
(3az3+ (=202 +5b—3)az)y}), ({b—1}, {(b> —3b>+3b)a}, {y, z}), ({a}, {b°>—3b%+
3b}, {ya (sz—l—l)l‘}), ({a7 b? _3b+3}7 {b2 _3b}7 {ya (322 —b+3)$(:}), ({a7 b}7 {1}u {y,
z}), ({0}, {a}, {=, yl})}-
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