On the radical of a polynomial ideal with parameters

Ryosuke Kuramochi¹, Kazuki Tanaka², and Katsusuke Nabeshima³

 ¹ Graduate School of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku, Tokyo, Japan 1422513@ed.tus.ac.jp
 ² Graduate School of Science, Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji, Tokyo, Japan tanaka-kazuki@ed.tmu.ac.jp
 ³ Department of Applied Mathematics, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku, Tokyo, Japan nabeshima@rs.tus.ac.jp

Abstract. A parametric radical system is introduced as a new concept within parametric ideals. It is demonstrated that an algorithm for computing the radical of a non-parametric ideal can be generalized to its parametric version by utilizing several tools related to parametric ideals. The keys to this generalization are two types of comprehensive Gröbner systems.

Keywords: radical \cdot comprehensive Gröbner system \cdot parametric radical system.

1 Introduction

One of the major advantages of symbolic computation is its capability to precisely handle ideals with parameters, known as parametric ideals. For instance, a comprehensive Gröbner system (CGS) and quantifier elimination method (QE) are highly effective tools for analyzing parametric ideals. However, there is a scarcity of convenient tools and implementations specifically tailored for parametric ideals. There is a pressing need to develop numerous algorithms for analyzing parametric ideals.

In this paper, we investigate the computation of radicals for a parametric ideal, introducing a *parametric radical system* as a novel concept within parametric ideals in the realm of symbolic computation. The primary contribution of this study is the provision of an algorithm for computing a radical system of a parametric ideal.

In 1988, Gianni-Trager-Zacharias introduced an algorithm for computing the radical of an ideal, along with an algorithm for computing primary decomposition [4]. Currently, these algorithms are implemented in many computer algebra systems. However, there is a lack of algorithms and implementations for parametric ideals. The purpose of this paper is to generalize the algorithm presented by Gianni-Trager-Zacharias to parametric cases. We demonstrate that two types of comprehensive Gröbner systems are necessary for this generalization.

This paper is organized as follows: In Section 2, we review comprehensive Gröbner systems. In Section 3, we present several tools for parametric ideals. In Section 4, we introduce a parametric radical system as a new concept within parametric ideals. In Section 5, we describe an algorithm for computing a parametric radical system of a zero-dimensional ideal. In Section 6, we present the key result of this paper, which is a special type of comprehensive Gröbner system. Finally, in Section 7, we provide an algorithm for computing a parametric radical system of a non-zero-dimensional ideal.

2 Comprehensive Gröbner systems

Here we briefly recall comprehensive Gröbner systems that will be frequently used in this paper. We refer the reader to [5,6,7,8,10,12,13].

2.1 Preliminaries

Let $x = \{x_1, \ldots, x_n\}$, $t = \{t_1, \ldots, t_m\}$ and $u = \{u_1, \ldots, u_\rho\}$ be sets of variables, K a field with characteristic 0 and \overline{K} an algebraic closed extension of K. (We often regard t as parameters.) Moreover, let K(u) be a field of rational functions with u and $\overline{K(u)}$ an algebraic closed extension of K(u). Symbols Term(t), Term(x) and Term(t, x) mean the set of terms of t, the set of terms of x and the set of terms of $t \cup x$, respectively.

In what follow, we fix L = K or K(u).

Fix a term order \prec on Term(x) and let $f \in L[t][x]$. Then $\operatorname{lt}(f), \operatorname{lm}(f)$ and $\operatorname{lc}(f)$ denote the leading term, leading monomial and leading coefficient of f i.e. $\operatorname{lm}(f) = \operatorname{lc}(f) \operatorname{lt}(f)$. For $F \subset L[t][x]$ and $f_1, \ldots, f_{\nu} \in L[t][x]$, $\operatorname{lt}(F) = \{\operatorname{lt}(f) | f \in F\}$ and $\langle f_1, \ldots, f_{\nu} \rangle = \{\sum_{i=1}^{\nu} h_i f_i | h_1, \ldots, h_{\nu} \in L[t][x]\}$. The set of natural numbers \mathbb{N} includes zero, \mathbb{Q} is the field of rational numbers and \mathbb{C} is the field of complex numbers.

For $g_1, \ldots, g_\ell \in L[t]$, $\mathbf{V}_{\overline{L}}(g_1, \ldots, g_\ell) \subset \overline{L}^m$ denotes the affine variety of g_1, \ldots, g_ℓ , i.e. $\mathbf{V}_{\overline{L}}(g_1, \ldots, g_\ell) = \{\overline{t} \in \overline{L}^m | g_1(\overline{t}) = \cdots = g_\ell(\overline{t}) = 0\}$, and $\mathbf{V}_{\overline{L}}(0) = \overline{L}^m$. We call an algebraically constructible set of the form $\mathbf{V}_{\overline{L}}(f_1, \ldots, f_\ell) \setminus \mathbf{V}_{\overline{L}}(f_1', \ldots, f_\ell') \subset \overline{L}^m$, a stratum where $f_1, \ldots, f_\ell, f_1', \ldots, f_{\ell'} \in L[t]$. As it is clear that $\mathbf{V}_{\overline{L}}(1) = \emptyset$, thus $\mathbf{V}_{\overline{L}}(f_1, \ldots, f_\ell) \setminus \mathbf{V}_{\overline{L}}(1) = \mathbf{V}_{\overline{L}}(f_1, \ldots, f_\ell)$. For $\overline{t} \in \overline{L}^m$, the canonical specialization homomorphism $\sigma_{\overline{t}} : L[t][x] \to \overline{L}[x]$ (or $L[t] \to \overline{L}$) is defined as the map that substitutes t by \overline{t} in $f(t, x) \in L[t][x]$. The image $\sigma_{\overline{t}}$ of a set $F \subset L[t][x]$ is denoted by $\sigma_{\overline{t}}(F) = \{\sigma_{\overline{t}}(f) | f \in F\} \subset \overline{L}[x]$.

2.2 Comprehensive Gröbner systems

We adopt the following as a definition of comprehensive Gröbner system.

Definition 1. Fix a term ordering \prec on Term(x). Let $F \subset L[t][x], E_1, \ldots, E_s$, $N_1, \ldots, N_s \subset L[t], G_1, \ldots, G_s \subset L[t][x]$. If a finite set $\mathcal{G} = \{(E_1, N_1, G_1), \ldots, (E_s, N_s, G_s)\}$ of triples satisfies the properties such that

(i) for each i, $\mathbf{V}_{\overline{L}}(E_i) \setminus \mathbf{V}_{\overline{L}}(N_i) \neq \emptyset$,

- (ii) for $i \neq j$, $\left(\mathbf{V}_{\overline{L}}(E_i) \setminus \mathbf{V}_{\overline{L}}(N_i)\right) \cap \left(\mathbf{V}_{\overline{L}}(E_j) \setminus \mathbf{V}_{\overline{L}}(N_j)\right) = \emptyset$, and
- (iii) for all $\tilde{t} \in \mathbf{V}_{\overline{L}}(E_i) \setminus \mathbf{V}_{\overline{L}}(N_i)$ and $g \in G_i$, $\operatorname{lt}(g) = \operatorname{lt}(\sigma_{\bar{t}}(g))$ and $\{\sigma_{\bar{t}}(g)/\sigma_{\bar{t}}(1), (g)\} \in G_i\}$ is a minimal Gröbner basis of $\langle \sigma_{\bar{t}}(F) \rangle$ in $\overline{L}^m[x]$,

then \mathcal{G} is called a comprehensive Gröbner system (CGS) of $\langle F \rangle$ over \overline{L} w.r.t. \prec on $\bigcup_{i=1}^{s} (\mathbf{V}_{\overline{L}}(E_i) \setminus \mathbf{V}_{\overline{L}}(N_i))$. We call a triple (E_i, N_i, G_i) segment of \mathcal{G} . We simply say that \mathcal{G} is a comprehensive Gröbner system (CGS) of $\langle F \rangle$ over \overline{L} w.r.t. \prec if $\bigcup_{i=1}^{s} (\mathbf{V}_{\overline{L}}(E_i) \setminus \mathbf{V}_{\overline{L}}(N_i)) = \overline{L}^m$.

There exist several algorithms and implementations for computing the CGS for $L = \mathbb{Q}$ (\mathbb{R} or \mathbb{C}) [5,6,7,8,10].

Remark 1. There always exists a CGS \mathcal{G} of $\langle F \rangle \subset L[t][x]$ over \overline{L} such that \mathcal{G} forms $\mathcal{G} = \bigcup_{i=1}^{s} \{(E_i, \{p_i\}, G_i)\}$ where $p_1, \ldots, p_s \in L[t], E_1, \ldots, E_s \subset L[t]$, and $G_1, \ldots, G_s \subset L[t][x]$ i.e. N_i has one polynomial p_i . See [5,6]. Since this form makes the discussion easier, we adopt the form for all CGSs of this paper.

Example 1. Let $F = \{ax^3y^2 + y^2 + x^2y, x^4y + bxy\} \subset \mathbb{C}[a, b][x, y]$ where a, b are parameters. Let \prec be the lexicographic term order with $y \prec x$. Then, a CGS \mathcal{G} of $\langle F \rangle$ over \mathbb{C} w.r.t. \prec is $\mathcal{G} = \{(\{b\}, \{1\}, \{y^3, x^2y + y^2\}), (\{ab - 1\}, \{1\}, \{y^2, xy\}), (\{0\}, \{ab^2 - b\}, G_3)\}$ where $G_3 = \{(a^3b^3 - 3a^2b^2 + 3ab - 1)y^5 - b^2y^2, bxy + (a^2b^2 - 2ab + 1)y^3\}$. The set \mathcal{G} means the following:

- if (a, b) belongs to V_C(b) (i.e. b = 0), then {y³, x²y+y²} is a minimal Gröbner basis of ⟨F⟩ w.r.t. ≺,
- if (a, b) belongs to $\mathbf{V}_{\mathbb{C}}(ab-1)$ (i.e. ab-1=0), then $\{y^2, xy\}$ is a minimal Gröbner basis of $\langle F \rangle$ w.r.t. \prec , and
- if (a,b) belongs to $\mathbb{C}^2 \setminus \mathbf{V}_{\mathbb{C}}(ab^2 b)$, then G_3 is a minimal Gröbner basis of $\langle F \rangle$ w.r.t. \prec .

Next, let us consider the case L = K(u). It is possible to compute a CGS on $\overline{K(u)}^m$ by utilizing the algorithms that are introduced in [5,6,7,10]. The algorithm has been implemented in the computer algebra system Risa/Asir [11].

Example 2. Let $F = \{3u_1x^2 + 2axy, ax^2 + 3u_2y^2\} \subset \mathbb{C}(u_1, u_2)[a][x, y]$ where a is a parameter and x, y are variables. Let \prec be the graded lexicographic term order with $y \prec x$. Then, a comprehensive Gröbner system \mathcal{G} of $\langle F \rangle$ w.r.t. \prec is the following:

$$\begin{aligned} \mathcal{G} &= \{ (\{0\}\{(4u_1a^3+27u_1^3u_2)a\}, \{y^3, 3u_1x^2+2axy, 2a^2xy-9u_1u_2y^2\}), \\ &\quad (\{a\}, \{1\}, \{x^2, y^2\}), (\{4u_1a^3+27u_1^3u_2\}, \{1\}, \{3u_1xy+2ay^2, 9u_1^2x^2-4a^2y^2\}) \}. \end{aligned}$$

This output means the following:

- if the parameter a belongs to $\overline{L}^2 \setminus \mathbf{V}_{\overline{L}}((4u_1a^3 + 27u_1^3u_2)a)$ (i.e. $(4u_1a^3 + 27u_1^3u_2)a \neq 0$), then $\{y^3, 3u_1x^2 + 2axy, 2a^2xy 9u_1u_2y^2\}$ is a minimal Gröbner basis of $\langle F \rangle$ w.r.t. \prec ,
- if the parameter a belongs to $\mathbf{V}_{\overline{L}}(a)$ (i.e. a = 0), then $\{x^2, y^2\}$ is a minimal Gröbner basis of $\langle F \rangle$ w.r.t. \prec , and
- if the parameter a belongs to $\mathbf{V}_{\overline{L}}(4u_1a^3+27u_1^3u_2)$, then $\{3u_1xy+2ay^2, 9u_1^2x^2-4a^2y^2\}$ is a minimal Gröbner basis of $\langle F \rangle$ w.r.t. \prec ,

where $L = \mathbb{C}(u_1, u_2)$.

3 Tools for parametric ideals

In order to compute a radical of a parametric ideal, we need to compute the followings:

- (1) Dimensions of a parametric ideal,
- (2) Squarefree-part of a univariate polynomial with parameters,
- (3) Intersection of parametric ideals,
- (4) Least common multiples of parametric polynomials, and
- (5) Saturation for a parametric ideal.

Here, we introduce these computational methods.

3.1 Dimensions of a parametric ideal

For a finite subset u, the cardinality of u is written by |u|.

Definition 2. Let I be a proper ideal in K[x] and $u = \{u_1, \ldots, u_r\}$ a subset of x. Then, u is called an independent set modulo I if $I \cap K[u] = \{0\}$. The dimension dim(I) is defined as

 $\dim(I) = \max\{|u| | u \subseteq x \text{ is an independet set modulo } I\}.$

Moreover, $u \subset x$ is called a maximal independent set (MIS) modulo I if it is an independent set modulo I and the cardinality of u is equal to dim(I).

Algorithms, introduced in [2,3], for computing a MIS modulo I are based on the following theorem.

Theorem 1 ([2, p.448]). Let I be a proper ideal in K[x] and G a Gröbner basis of I w.r.t. a graded degree term order. Then, $\dim(I) = \dim(\langle \operatorname{lt}(G) \rangle)$.

By utilizing a CGS of a parametric ideal, the parameter dependence of the dimensions can be obtained as follows.

Algorithm 1 (Dimensions of parametric ideal)

Specification: PARA DIM(F)

Computation of dimensions of parametric ideal $\langle F \rangle$. **Input:** $F \subset K[t][x]$ finite set. **Output:** (Z, N, W): $Z = \{(E_1, \{p_1\}, G_1), \dots, (E_{\ell}, \{p_{\ell}\}, G_{\ell})\}, N = \{(E'_1, \{p'_1\}, G'_1), \dots, (E'_{\ell'}, \{p'_{\ell'}\}, G'_{\ell'})\}, W = \{(D_1, \{h_1\}, H_1), \dots, (D_s, \{h_s\}, H_s)\}$. For each

 $\begin{aligned} G_{1}^{\prime}, \dots, (E_{\ell'}^{\prime}, \{p_{\ell'}^{\prime}\}, G_{\ell'}^{\prime})\}, & \mathcal{W} = \{(D_{1}, \{h_{1}\}, H_{1}), \dots, (D_{s}, \{h_{s}\}, H_{s})\}. \text{ For each } \\ 1 \leq i \leq \ell, \forall \bar{a} \in \mathbf{V}_{\overline{K}}(E_{i}) \setminus \mathbf{V}_{\overline{K}}(p_{i}), \dim(\langle \sigma_{\bar{a}}(G_{i}) \rangle) = 0. \text{ For each } 1 \leq j \leq \ell', \forall \bar{b} \in \mathbf{V}_{\overline{K}}(E_{j}') \setminus \mathbf{V}_{\overline{K}}(p_{j}'), \dim(\langle \sigma_{\bar{b}}(G_{j}') \rangle) \neq 0. \text{ For each } 1 \leq k \leq s, \forall \bar{c} \in \mathbf{V}_{\overline{K}}(D_{k}) \setminus \mathbf{V}_{\overline{K}}(h_{k}), \langle \sigma_{\bar{c}}(H_{k}) \rangle \text{ is not proper where } \overline{K}^{m} = \left(\bigcup_{i=1}^{\ell} \mathbf{V}_{\overline{K}}(E_{i}) \setminus \mathbf{V}_{\overline{K}}(p_{i})\right) \cup \left(\bigcup_{j=1}^{\ell} \mathbf{V}_{\overline{K}}(E_{j}') \setminus \mathbf{V}_{\overline{K}}(p_{j}')\right) \cup \left(\bigcup_{k=1}^{s} \mathbf{V}_{\overline{K}}(D_{k}) \setminus \mathbf{V}_{\overline{K}}(h_{k})\right). \\ \mathbf{BEGIN} \\ \mathcal{Z} \leftarrow \emptyset; & \mathcal{N} \leftarrow \emptyset; & \mathcal{W} \leftarrow \emptyset; \prec \leftarrow \text{A graded degree term order}; \\ \mathcal{G} \leftarrow \text{ Compute a CGS of } \langle F \rangle \text{ over } \overline{K} \text{ w.r.t. } \prec; \end{aligned}$

for each $(E, \{p\}, G) \in \mathcal{G}$ do

 $\begin{array}{l} \mbox{if } G = \{1\} \mbox{ or } G = \{0\} \mbox{ then } \\ \mathcal{W} \leftarrow \mathcal{W} \cup \{(E, \{p\}, G)\}; & /*\langle G \rangle \mbox{ is not proper } */ \\ \mbox{else if a MIS modulo } \langle \operatorname{lt}(G) \rangle \mbox{ is } \emptyset \mbox{ then } \\ \mathcal{Z} \leftarrow \mathcal{Z} \cup \{(E, \{p\}, G)\}; & /*\operatorname{dim}(\langle G \rangle) = 0 \; */ \\ \mbox{else } \\ \mathcal{N} \leftarrow \mathcal{N} \cup \{(E, \{p\}, G)\}; & /*\operatorname{dim}(\langle G \rangle) \neq 0 \; */ \\ \mbox{end-if } \\ \mbox{end-for } \\ \mbox{return } (\mathcal{Z}, \mathcal{N}, \mathcal{W}); \\ \mbox{END } \end{array}$

According to the definition of CGS and Theorem 1, Algorithm 1 is guaranteed to work correctly.

3.2 Squarefree part of a univariate polynomial with parameters

Here, we present an algorithm for computing the squarefree parts of a univariate polynomial with parameters.

Let x_i be a variable in x. Let $f = \prod_{1 \le j \le \ell} f_j^{e_j}$ be the irreducible factorization of the monic polynomial $f \in K[x_i]$, with distinct monic irreducible f_1, \ldots, f_ℓ and positive $e_1, \ldots, e_r \in \mathbb{N}$. We define the squarefree part \sqrt{f} of f to be $\prod_{1 \le j \le \ell} f_j$. It is well-known that $\sqrt{f} = f/\gcd(f, \frac{\partial f}{\partial x_i})$ for the field K of characteristic zero where $\gcd(f, \frac{\partial f}{\partial x_i})$ is the greatest common divisor of f and $\frac{\partial f}{\partial x_i}$ in $K[x_i]$.

For parametric polynomials in $K[t][x_i]$, it is convenient to replace the usual division with remainder by using a well-known pseudo-division method, which computes $q, r \in K[t][x_i]$ from $f, g \in K[t][x_i]$ $(g \neq 0)$ such that

$$\operatorname{lc}(g)^{1+\operatorname{deg}(f)-\operatorname{deg}(g)}f = qg+r$$
, where $\operatorname{deg}(r) < \operatorname{deg}(g)$.

Note that for $f \in K[t][x_i]$, we can obtain the (parametric) greatest common divisors of f and $\frac{\partial f}{\partial x_i}$ by computing a comprehensive Gröbner system of $\langle f, \frac{\partial f}{\partial x_i} \rangle$. Therefore, by combining pseudo-division with the comprehensive Gröbner system, we present the following algorithm for computing the squarefree parts of a univariate polynomial with parameters.

Algorithm 2 (Squarefree parts of a univariate polynomial)

Specification: SQUARE FREE (E, p, f, x_i)

Computation of squarefree parts of a univariate polynomial with parameters. **Input:** $E \subset K[t]$: finite set, $p \in K[t]$, $f \in K[t][x_i]$, $x_i \in x$.

For all $\overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$, $\sigma_{\overline{t}}(f) \neq 0$. $(\operatorname{char}(K) = 0)$ **Output:** $\mathcal{P} = \{(E_1, \{p_1\}, h_1), \dots, (E_{\ell}, \{p_{\ell}\}, h_{\ell})\}$: For all $\overline{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)$ $(1 \leq i \leq \ell), \sigma_{\overline{t}}(h_i) / \sigma_{\overline{t}}(\operatorname{lc}(h_i))$ is the squarefree part of $\sigma_{\overline{t}}(f) / \operatorname{lc}(\sigma_{\overline{t}}(f))$ where ℓ

$$\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1} \left(\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i) \right).$$

$\mathcal{P} \leftarrow \emptyset; \ \mathcal{G} \leftarrow \text{Compute a CGS of } \langle f, \frac{\partial f}{\partial x_i} \rangle \text{ over } \overline{K} \text{ on } \mathbf{V}_{\overline{K}}(E) \backslash \mathbf{V}_{\overline{K}}(p);$

6

 $\begin{array}{l} \textbf{for each } (E', \{p'\}, \{g\}) \in \mathcal{G} \ \textbf{do} \\ q \leftarrow \text{Compute } q \text{ s.t. } \operatorname{lc}(g)^{1 + \operatorname{deg}(f) - \operatorname{deg}(g)} f = qg + r \quad (\operatorname{deg}(r) < \operatorname{deg}(g)); \\ (by \text{ pseudo-division}) \\ \mathcal{P} \leftarrow \mathcal{P} \cup \{(E', \{p'\}, q)\} \\ \textbf{end-for} \\ \textbf{return } \mathcal{P}; \\ \textbf{END} \end{array}$

Theorem 2. Algorithm 2 works correctly.

Proof. Let us consider $(E', \{p'\}, \{g\})$ in the **while-loop**. Since, for all $\overline{t} \in \mathbf{V}_{\overline{K}}(E') \setminus \mathbf{V}_{\overline{K}}(p'), \{\sigma_{\overline{t}}(g)/\operatorname{lc}(\sigma_{\overline{t}}(g))\}$ is the minimal Gröbner basis of $\langle \sigma_{\overline{t}}(f), \sigma_{\overline{t}}(\frac{\partial f}{\partial x_i}) \rangle$ in $\overline{K}[x_i]$, hence $\sigma_{\overline{t}}(g)/\operatorname{lc}(\sigma_{\overline{t}}(g))$ is the greatest common divisor of $\sigma_{\overline{t}}(f)$ and $\sigma_{\overline{t}}(\frac{\partial f}{\partial x_i})$. As \overline{K} is a filed, we have $\sigma_t(g)|\sigma_{\overline{t}}(f)$. By the pseudo-division, there exists $q, r \in K[t][x_i]$ such that

 $\operatorname{lc}(g)^{1+\operatorname{deg}(f)-\operatorname{deg}(g)}f = qg + r \ (\operatorname{deg}(r) < \operatorname{deg}(g)).$

Hence the fact $\sigma_t(g) | \sigma_{\bar{t}}(f)$ implies $\sigma_{\bar{t}}(r) = 0$, namely,

$$\sigma_{\bar{t}}(\mathrm{lc}(g)^{1+\mathrm{deg}(f)-\mathrm{deg}(g)})\sigma_{\bar{t}}(f) = \sigma_{\bar{t}}(q)\sigma_{\bar{t}}(g) + \sigma_{\bar{t}}(r) = \sigma_{\bar{t}}(q)\sigma_{\bar{t}}(g).$$

Therefore, $\sigma_{\bar{t}}(q)/\sigma_{\bar{t}}(\operatorname{lc}(q))$ is the squarefree part of $\sigma_{\bar{t}}(f)/\operatorname{lc}(\sigma_{\bar{t}}(f))$. \Box

3.3 Intersection of parametric ideals

Here we present an algorithm for computing an intersection of parametric ideals in K[x].

Theorem 3 ([3, Theorem 11]). Let $I = \langle f_1, \ldots, f_r \rangle$ and $J = \langle g_1, \ldots, g_\ell \rangle$ be ideals in K[x], and G a Gröbner basis of $\langle wf_1, \ldots, wf_r, (1-w)g_1, \ldots, (1-w)g_\ell \rangle$ in K[x,w] w.r.t. a block term order $x \ll w$ on $Term(x \cup \{w\})$ where w is an auxiliary variable. Then, $I \cap J = \langle G \cap K[x] \rangle$.

Essentially, by substituting the Gröbner basis with the CGS in the theorem mentioned above, we can compute the intersection of parametric ideals as follows.

Algorithm 3 (Intersection of parametric ideals)Specification:PARA INTERSECTION(E, p, F, G)

Computation of intersections of two parametric ideals. **Input:** $E \subset K[t]$: finite set, $p \in K[t]$, $F, G \subset K[t][x]$: finite sets. **Output:** $\mathcal{P} = \{(E_1, \{p_1\}, G_1), (E_2, \{p_2\}, G_2), \dots, (E_\ell, \{p_\ell\}, G_\ell)\}$: For all $\bar{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i) \subset \overline{K}^m$ $(1 \leq i \leq \ell), \langle \sigma_{\overline{t}}(F) \rangle \cap \langle \sigma_{\overline{t}}(G) \rangle = \langle \sigma_{\overline{t}}(G_i) \rangle$ where $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1}^{\ell} (\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)).$ **BEGIN**

 $I \leftarrow \langle \{wf | f \in F\} \cup \{(1-w)g | g \in G\} \rangle \text{ where } w \text{ is an auxiliary variable;} \\ \prec \leftarrow A \text{ block term order with } x \ll w \text{ on } Term(x \cup \{w\});$

 $\mathcal{G} \leftarrow \text{Compute a CGS of } I \text{ over } \overline{K} \text{ on } \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) \text{ w.r.t. } \prec \text{ in } K[t][x \cup \{w\}];$

 $\mathcal{P} \leftarrow \{(E', \{p'\}, G' \cap K[t][x]) \mid (E', \{p'\}, G') \in \mathcal{G}\};$ return \mathcal{P} ; END

According to the definition of CGS and Theorem 3, Algorithm 3 is guaranteed to work correctly.

3.4 Least common multiples of parametric polynomials

An algorithm for computing the least common multiple of polynomials in K[x] is provided in [3], based on the following proposition.

Proposition 1 ([3, Proposition 13]).

- (i) The intersection $I \cap J$ of two principal ideals, $I, J \subset K[x]$ is a principal ideal.
- (ii) If $I = \langle f \rangle$, $J = \langle g \rangle$ and $I \cap J = \langle h \rangle$ in K[x], then h is the least common multiple of f and g i.e. $h = \operatorname{lcm}\{f, g\}$.

Combining this proposition with Algorithm 3 yields an algorithm for computing the least common multiples of parametric polynomials, as follows.

Algorithm 4 (Least common multiples of parametric polynomials)Specification:PARA LCM(E, p, F)

Least common multiples of parametric polynomials. Input: $E \subset K[t]$: finite set, $p \in K[t]$, $F \subset K[t][x]$: finite set. Output: $\{(E_1, \{p_1\}, \{g_1\}), \dots, (E_\ell, \{p_\ell\}, \{g_\ell\})\}$: For all $\bar{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)$ $(1 \le i \le \ell), \operatorname{lcm}\{\sigma_{\bar{t}}(F)\} = \sigma_{\bar{t}}(g_i) \text{ where } \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1}^{\ell} (\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)).$ BEGIN $\mathcal{G} \leftarrow \emptyset; f \leftarrow$ Select one polynomial f from $F; F \leftarrow F \setminus \{f\};$ $\mathcal{H} \leftarrow \{(E, \{p\}, \{f\})\};$ for each $h \in F$ do for each $(E', \{p'\}, \{f'\}) \in \mathcal{H}$ do $\mathcal{L} \leftarrow \operatorname{PARA_INTERSECTION}(E', p', \{f'\}, \{h\}); \mathcal{G} \leftarrow \mathcal{G} \cup \mathcal{L};$ end-for

 $\mathcal{H} \leftarrow \mathcal{G};$ end-for return $\mathcal{H};$ END

3.5 Saturation for a parametric ideal

Here, we introduce how to compute saturation for a parametric ideal.

Definition 3. Let I be an ideal in K[x] and $f \in K[x]$.

(1) $I: f = \{g \in K[x] | gf \in I\}.$

- 8 R. Kuramochi, K. Tanaka and K. Nabeshima
- (2) For the ideal I, the saturation w.r.t. f is defined by the ideal I : $f^{\infty} = \bigcup_{k>1} (I:f^k)$.

Proposition 2 ([2, Proposition 6.37]). Let $I = \langle f_1, \ldots, f_r \rangle$ and $f \in K[x]$. Set $J = \langle f_1, \ldots, f_r, 1 - wf \rangle$ where w is an auxiliary variable. Then, $I : f^{\infty} = J \cap K[x]$.

Let G be a Gröbner basis of J w.r.t. a block term order with $x \ll w$. Then, by the proposition above, $G \cap K[x]$ becomes a basis of the ideal $I : f^{\infty}$.

For parametric ideals, we can extend the method described above to K[t][x] by substituting the Gröbner basis with the CGS, as follows.

 $\begin{array}{l} \label{eq:specification:PARA_SAT(E, p, F, f, \prec) \\ & \text{Computation of the saturation } \langle F \rangle : f^{\infty}. \\ \mbox{Input: } E \subset K[t] : finite set, p \in K[t], F \subset K[t][x]: finite set, f \in K[t][x], \\ & \prec: term \mbox{ order on } Term(x). \\ \mbox{Output: } \{(E_1, \{p_1\}, G_1), (E_2, \{p_2\}, G_2), \dots, (E_\ell, \{p_\ell\}, G_\ell)\} : For \mbox{ all } \bar{t} \in \mathbf{V}_{\overline{K}}(E_i) \\ & \setminus \mathbf{V}_{\overline{K}}(p_i) \ (1 \leq i \leq \ell), \sigma_{\bar{t}}(G_i) \mbox{ is a basis of } \langle \sigma_{\bar{t}}(F) \rangle : \sigma_{\bar{t}}(f)^{\infty} \mbox{ where } \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) \\ = \bigcup_{i=1}^{\ell} (\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)). \\ \mbox{BEGIN} \\ I \leftarrow \langle F \cup \{1 - wf\} \rangle \subset K[t][x,w] \mbox{ where } w \mbox{ is an auxiliary variable;} \\ \prec' \leftarrow \mbox{ A block term order, with } x \ll w \mbox{ and } \prec, \mbox{ on } Term(x \cup \{w\}) \ ; \\ \mathcal{G} \leftarrow \mbox{ Compute a CGS of } I \mbox{ over } \overline{K} \mbox{ w.r.t. } \prec' \mbox{ on } \mathbf{V}_{\overline{K}}(p); \\ \mathcal{P} \leftarrow \{(E', \{p'\}, G' \cap K[t][x]) \mid (E', \{p'\}, G') \in \mathcal{G}\}; \\ \mbox{ return } \mathcal{P}; \\ \mbox{ END} \end{array}$

4 Parametric radical system

The aim of this paper is to develop an algorithm for computing the radical system of a parametric ideal.

Definition 4. Let $I \subset L[x]$ be an ideal (where L = K or K(u)). The radical of I, denoted $rad_{L[x]}(I)$, is the set $\{f | f^r \in I \text{ for some integer } r \geq 1\}$. I is called a radical ideal if $I = rad_{L[x]}(I)$.

In this paper, we extend the algorithm introduced by Gianni-Trager-Zacharias in [4] for computing the radical of an ideal to its parametric version. We achieve this by utilizing two types of comprehensive Gröbner systems.

We define the radical of a parametric ideal as follows.

Definition 5. Fix a term order \prec on Term(x). Let $E_1, E_2, \ldots, E_s \subset K[t]$, $N_1, N_2, \ldots, N_s \in K[t]$ and $F, G_1, G_2, \ldots, G_s \subset K[t][x]$. If a finite set

 $\mathcal{G} = \{ (E_1, N_1, G_1), (E_2, N_2, G_2), \dots, (E_s, N_s, G_s) \}$

of triples satisfies the properties such that

- for each i, $\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(N_i) \neq \emptyset$,
- for $i \neq j$, $\left(\mathbf{V}_{\overline{K}}^{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}^{\overline{K}}(N_i)\right) \cap \left(\mathbf{V}_{\overline{K}}(E_j) \setminus \mathbf{V}_{\overline{K}}(N_j)\right) = \emptyset$, and for all $\overline{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(N_i)$, $\sigma_{\overline{t}}(G_i)$ is a basis of $rad_{\overline{K}[x]}(\langle \sigma_{\overline{t}}(F) \rangle)$ in $\overline{K}[x]$,

then, \mathcal{G} is called a parametric radical system (PRS) of $\langle F \rangle$ on $\bigcup_{i=1}^{s} (\mathbf{V}_{\overline{K}}(E_i))$ $\mathbf{V}_{\overline{K}}(N_i)$). We call a triple (E_i, N_i, G_i) segment of \mathcal{G} . We simply say \mathcal{G} is a parametric radical system of $\langle F \rangle$ if $\bigcup_{i=1}^{s} (\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(N_i)) = \overline{K}^m$

In Section 5, we explore the computation of a parametric radical system for a zero-dimensional ideal. In Section 6 we introduce a specialized type of comprehensive Gröbner system commonly employed for computing a parametric radical system for non-zero dimensional ideals. Finally, in Section 7, we present an algorithm for computing a parametric radical system for non-zero dimensional ideals.

$\mathbf{5}$ Zero dimensional case

Here, we present an algorithm for computing a parametric radical system of a zero dimensional ideal with parameters. This algorithm is essentially based on the following lemma.

Lemma 1 ([2, Lemma 8.19]). Let $I = \langle f_1, \ldots, f_r \rangle$ be a zero dimensional ideal in K[x]. For $1 \leq i \leq n$, let g_i be the unique monic polynomial of minimal degree in $I \cap K[x_i]$. Then, $rad_{K[x]}(\langle F \rangle) = \langle f_1, \ldots, f_r, \sqrt{g_1}, \ldots, \sqrt{g_n} \rangle$ where $\sqrt{g_i}$ is the squarefree part of g_i .

If I is a zero dimensional ideal on $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$ where $E \subset K[t]$ and $p \in K[t]$, then, for each $x_i \in x$, the parametric univariate polynomial g_i can be obtained by computing a CGS w.r.t. a elimination term order. After obtaining g_i , SQUARE FREE (E, p, g_i, x_i) outputs squarefree parts of the parametric univariate polynomial g_i on $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$.

Algorithm 6 (Parametric radical system of a zero dim. ideal)

Specification: PRS ZERO(E, p, F)

Computation of a parametric radical system of a zero dim. ideal $\langle F \rangle$. **Input:** $E \subset K[t]$: finite set, $p \in K[t]$, $F \subset K[t][x]$ finite set.

(For all $\overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$, dim $(\langle \sigma_{\overline{t}}(F) \rangle) = 0$.)

Output: \mathcal{P} : parametric radical system of $\langle F \rangle$ on $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$. BEGIN $\mathcal{P} \leftarrow \{ (E, \{p\}, F) \};$ for each i = 1 to n do /*n variables */ $\mathcal{H} \leftarrow \emptyset; \prec \leftarrow$ Set a block term order with $x_i \ll x \setminus \{x_i\};$ $\mathcal{G} \leftarrow \text{Compute a CGS of } \langle F \rangle \text{ over } \overline{K} \text{ w.r.t } \prec \text{ on } \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p);$ for each $(E', \{p'\}, G') \in \mathcal{G}$ do $g \leftarrow$ Select the polynomial g of minimal degree in $G' \cap K[t][x_i]$ $\mathcal{B} \leftarrow \mathbf{SQUARE} \quad \mathbf{FREE}(E', p', g, x_i);$ for each $(E'', \{h\}, b) \in \mathcal{B}$ do

Remark 2. Let us consider $(\mathbf{V}_{\overline{K}}(E'') \setminus \mathbf{V}_{\overline{K}}(h)) \cap (\mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d))$. Then,

$$\begin{aligned} (\mathbf{V}_{\overline{K}}(E'') \setminus \mathbf{V}_{\overline{K}}(h)) \cap (\mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)) &= (\mathbf{V}_{\overline{K}}(E'') \cap \mathbf{V}_{\overline{K}}(D)) \setminus (\mathbf{V}_{\overline{K}}(h) \cup \mathbf{V}_{\overline{K}}(d)) \\ &= \mathbf{V}_{\overline{K}}(E'' \cup D) \setminus \mathbf{V}_{\overline{K}}(hd). \end{aligned}$$

Thus, if $rad_{K[x]}(\langle E'' \cup D \rangle) \ni hd$, we have $(\mathbf{V}_{\overline{K}}(E'') \setminus \mathbf{V}_{\overline{K}}(h)) \cap (\mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)) = \emptyset$, otherwise, $(\mathbf{V}_{\overline{K}}(E'') \setminus \mathbf{V}_{\overline{K}}(h)) \cap (\mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)) \neq \emptyset$.

Notice that $\mathbf{V}_{\overline{K}}(hd) = \mathbf{V}_{\overline{K}}(\sqrt{hd})$, and we can replace $E'' \cup D$ a Gröbner basis of $\langle E'' \cup D \rangle$ or a basis of $rad_{K[t]}(E'' \cup D)$.

Remark 3. To compute the univariate polynomials with parameters, we have developed an algorithm for computing the minimal polynomial modulo $\langle F \rangle$ with respect to x_i $(1 \le i \le n)$. (For details on the minimal polynomials, please refer to [1].) However, our implementation of the (parametric) minimal polynomial is slower than our implementation of the CGS. As a result, we have utilized CGS computation to obtain the univariate polynomials.

Since Algorithm 6 is a natural generalization of Lemma 1 to parametric ideals, its correctness and termination are guaranteed by Lemma 1, SQUARE_FREE, and Remark 2.

Example 3. Let $F = \{x^2 + axy, xy^2 - bx + y\} \subset \mathbb{Q}[a, b][x, y]$ where a, b are parameters and x, y are variables. Then, **PARAZERO**(F) outputs $(\mathcal{Z}, \emptyset, \emptyset)$ where $\mathcal{Z} = \{(\{0\}, \{a\}, \{bx + ay^3 - y, x^2 - a^2y^2, yx + ay^2\}), (\{a\}, \{b\}, \{y^2, bx - y\}), (\{a, b\}, \{1\}, \{x^2, y\})\}.$

This implies that for all $(a,b) \in \mathbb{C}^2$, $\langle F \rangle$ is zero dimensional. We execute Algorithm 6 for each segment.

- (1): First we consider the case $(\mathbb{C}^2 \setminus \mathbf{V}_{\mathbb{C}}(a), \{bx + ay^3 y, x^2 a^2y^2, yx + ay^2\})$ and set $F_1 = \{bx + ay^3 - y, x^2 - a^2y^2, yx + ay^2\}.$
 - (1-1): A CGS of $\langle F_1 \rangle$ over \mathbb{C} w.r.t. the lexicographic term order $x \prec y$ on $\mathbb{C}^2 \setminus \mathbf{V}_{\mathbb{C}}(a)$ is $\{\{0\}, \{a\}, \{x^4 + (-a^2b a)x^2, x^3 ba^2x + a^2y\})\}$. Take the univariate polynomial $x^4 + (-a^2b a)x^2$. Then, **SQUARE FREE**($\{0\}, a, x^4 + (-ba^2 - a)x^2, x$)

outputs

 $\{(\{0\}, \{a(ab+1)\}, \{x^3 + (-a^2b - a)x\}), (\{ab+1\}, \{1\}, \{x\})\}.$ Thus, we have $\mathcal{H} = \{(\{0\}, \{a(ab+1)\}, F_1 \cup \{x^3 + (-ba^2 - a)x\}), (\{ab + a^2 - a^2\}), (\{ab + a^2 - a^2), (\{a + a^2 - a^2), (\{a + a^2 - a^2), (\{a +$ 1, $\{1\}, F_1 \cup \{x\}$).

(1-2): A CGS of $\langle F_1 \rangle$ over $\mathbb C$ w.r.t. the lexicographic term order $y \prec x$ on $\mathbb{C}^2 \setminus \mathbf{V}_{\mathbb{C}}(a) \text{ is } \mathcal{G}_y = \{(\{0\}, \{ab\}, \{ay^4 + (-ab - 1)y^2, -bx - ay^3 + y\}), \\ (\{b\}, \{a\}, \{ay^3 - y, xy + ay^2, x^2 - a^2y^2\})\}. \text{ Take the univariate polynomial}$ $ay^4 + (-ab - 1)y^2$ from the first segment of \mathcal{G}_u , and execute **SQUARE FREE** $(\{0\}, ab, ay^4 + (-ab - 1)y^2, y)$. Then, SQUARE FREE outputs

 $\{(\{0\}, \{ab(ab+1)\}, ay^3 + (-ab-1)y), (\{ab+1\}, \{1\}, \{y\})\}.$ Thus, \mathcal{H} is renewed as

$$\mathcal{H} = \{(\{0\}, \{ab(ab+1)\}, F_1 \cup \{x^3 + (-ba^2 - a)x, ay^3 + (-ab - 1)y\}), \\ (\{ab+1\}, \{1\}, F_1 \cup \{x, y\})\}.$$

Next, let us consider the second segment of \mathcal{G}_{u} . We take the univariate polynomial $ay^3 - y$ and apply the **SQUARE** FREE algorithm with the inputs $(b, a, ay^3 - y, y)$. The output of **SQUAR** \overline{E} **FREE** is $(b, a, ay^3 - y)$. Therefore, \mathcal{H} is updated to

$$\mathcal{H} = \{(\{0\}, \{ab(ab+1)\}, F_1 \cup \{x^3 + (-a^2b - a)x, ay^3 + (-ab - 1)y\}), \\ (\{ab+1\}, \{1\}, F_1 \cup \{x, y\}), (\{b\}, \{a\}, F_1 \cup \{x^3 + (-a^2b - a)x, ay^3 - y\})\}.$$

- (2) Second we consider the case $(\mathbf{V}_{\mathbb{C}}(a) \setminus \mathbf{V}_{\mathbb{C}}(b), \{y^2, bx y\})$. As $b \neq 0$, clearly we obtain $\{(\{a\}, \{b\}, \{x, y\})\}$.
- $\{x, y\}\}$.

Therefore, the following is a parametric radical system of $\langle F \rangle$

 $\{(\{0\}, \{ab(ab+1)\}, F_1 \cup \{x^3 + (-a^2b - a)x, ay^3 + (-ab - 1)y\}),\$ $(\{ab+1\},\{1\},F_1\cup\{x,y\}),(\{b\},\{a\},F_1\cup\{x^3+(-a^2b-a)x,ay^3-y\}),$ $(\{a\},\{b\},\{x,y\}),(\{a,b\},\{1\},\{x,y\})\}.$

Note that each segment $(E, \{p\}, G)$ of the parametric radical system above can be replaced a CGS of $\langle G \rangle$ on $\mathbf{V}_{\mathbb{C}}(E) \setminus \mathbf{V}_{\mathbb{C}}(p)$. This optimization technique is implemented in our implementation. Actually, our implementation outputs the following as a parametric radical system of $\langle F \rangle$

$$\begin{array}{l} \{(\{0\},\{ab(ab+1)\},\{x^3+(-a^2b-a)x,ay^3+(-ab-1)y,x+ay\}),\\ (\{ab+1\},\{1\},\{x,y\}),(\{b\},\{a\},\{x^3-ax,ay^3-y,x+ay\}),\\ (\{a\},\{b\},\{x,y\}),(\{a,b\},\{1\},\{x,y\})\}. \end{array}$$

This output means the following:

- if (a,b) belongs to $\mathbb{C}^2 \setminus \mathbf{V}_{\mathbb{C}}(ab(ab+1))$, then $\{x^3 + (-a^2b a)x, ay^3 + (-ab a)x, ay^$ 1)y, x + ay} is a basis of rad_{ℂ[x,y]}(⟨F⟩),
 if (a, b) belongs to V_ℂ(ab + 1), then {x,y} is a basis of rad_{ℂ[x,y]}(⟨F⟩),
- if (a, b) belongs to $\mathbf{V}_{\mathbb{C}}(b) \setminus \mathbf{V}_{\mathbb{C}}(a)$, then $\{x, y\}$ is a basis of $rad_{\mathbb{C}[x, y]}(\langle F \rangle)$,
- if (a, b) belongs to $\mathbf{V}_{\mathbb{C}}(a) \setminus \mathbf{V}_{\mathbb{C}}(b)$, then $\{x, y\}$ is a basis of $rad_{\mathbb{C}[x,y]}(\langle F \rangle)$, and
- if (a, b) belongs to $\mathbf{V}_{\mathbb{C}}(a, b)$, then $\{x, y\}$ is a basis of $rad_{\mathbb{C}[x, y]}(\langle F \rangle)$.

6 Key result

Here, we extend certain mathematical fundamentals to parametric scenarios. The cornerstone of this generalization is a comprehensive Gröbner system (CGS) over $\overline{K(u)}$ on $\mathbb{A} \cap \overline{K}^m$, where $\mathbb{A} \subset \overline{K(u)}^m$.

Before delving into the generalization, let's quickly review some fundamental concepts regarding the extension and contraction of ideals in mathematics.

Definition 6. Let I be an ideal in K[x]. Then, the extension I^e of I to $K(u)[x \setminus u]$ is the ideal generated by the set I in the ring $K[u][x \setminus u]$ where $u \subset x$.

Definition 7. Let I be an ideal in K[x] and $u \subset x$. Then, the extension I^e of I to $K(u)[x\backslash u]$ is the ideal generated by the set I in the ring $K(u)[x\backslash u]$. If J is an ideal in $K(u)[x\backslash u]$, then the contraction J^c of J to K[x] is defined as $J \cap K[x]$.

Lemma 2 ([2, Lemma 8.91]). Let u be a subset of $x, F \subset K[x], \prec a$ term order on $\operatorname{Term}(x\backslash u)$. Suppose J is an ideal generated by F in $K(u)[x\backslash u]$, and G is a Gröbner basis of $J \subset K(u)[x\backslash u]$ w.r.t. \prec such that $G \subset K[u][x\backslash u]$. Let I be the ideal generated by F in K[x], and set f as a least common multiple of $\{\operatorname{lc}(g)|g \in G\}$ (i.e. $f = \operatorname{lcm}\{\operatorname{lc}(g)|g \in G\}$), where $\operatorname{lc}(g) \in K[u]$ is taken of g as an element of $K(u)[x\backslash u]$. Then, $J^c = I : f^{\infty}$.

Lemma 2 provides instructions on computing the contraction J^c as follows.

- Step 1: Compute a Gröbner basis G of $J = \langle F \rangle$ in $K(u)[x \setminus u]$.
- Step 2: Compute $f = \operatorname{lcm} \{\operatorname{lc}(g) | g \in G\}$.
- Step 3: Compute a basis G' of $I : f^{\infty}$ in K[x] where $I = \langle F \rangle$ in K[x]. As $J^c = \langle G' \rangle$, output G'.

Let us extend the computational method above to parametric cases. Specifically, we consider the scenario where the ideal J is in $K(u)[t][x \setminus u]$.

The parametric case cannot be solved by simply replacing the Gröbner basis with a CGS of J because we have three types of symbols

 $x \setminus u$: main variables, t: parameters, u: variables of K(u).

The aim of this paper is to develop an algorithm for computing a parametric radical system of a parametric ideal. A parametric ideal contains genuine parameters that do not belong to $\overline{K(u)}$. Since \overline{K}^m is a subset of $\overline{K(u)}$, in order to apply a CGS over $\overline{K(u)}$ to the parametric ideal, we need to restrict a stratum of the CGS over $\overline{K(u)}$ to \overline{K}^m . Specifically, for $\mathbb{A} \subset \overline{K(u)}^m$, it is necessary to verify whether $\mathbb{A} \cap \overline{K}^m$ is empty or not.

In a previous study by the third author [9], generic standard bases of parametric ideals were discussed in a local ring. One can employ the ideas from that study to address this problem. The following proposition is adapted from [9].

Proposition 3. Let ρ be the cardinality of u in \mathbb{N} and $u = \{u_1, u_2, \ldots, u_{\rho}\}$. Let $\mathbf{V}_{\overline{K(u)}}(E)$ be a non-empty stratum in $\overline{K(u)}^m$ where $E \subset K[u][t]$. Set

$$T = \bigcup_{g \in E} \left\{ c_{\alpha_i} \in K[t] \, \middle| \, g = \sum_{i=1}^r c_{\alpha_i} u^{\alpha_i}, \alpha_i \in \mathbb{N}^\ell, \alpha_j \neq \alpha_k \ (1 \le j < k \le r) \right\}$$

where $u^{\alpha} = u_1^{a_1} u_2^{a_2} \cdots u_{\rho}^{a_{\rho}}$ for $\alpha = (a_1, a_2, \dots, a_{\rho}) \in \mathbb{N}^{\rho}$. Then, $\left(\mathbf{V}_{\overline{K(u)}}(E) \cap \overline{K}^m \right) = \mathbf{V}_{\overline{K}}(T)$ holds.

Proof. As $\overline{K}^m \supset \mathbf{V}_{\overline{K}}(T)$ and $\mathbf{V}_{\overline{K}(u)}(E) \supset \mathbf{V}_{\overline{K}}(T)$, thus we have $(\mathbf{V}_{\overline{K}(u)}(E) \cap \overline{K}^m) \supset \mathbf{V}_{\overline{K}}(T)$. Assume that $(\mathbf{V}_{\overline{K}(u)}(E) \cap \overline{K}^m) \supseteq \mathbf{V}_{\overline{K}}(T)$, then exists $b \in (\mathbf{V}_{\overline{K}(u)}(E) \cap \overline{K}^m)$ such that $b \notin \mathbf{V}_{\overline{K}}(T)$. Moreover, there exist $p_1(t), \ldots, p_\nu(t) \in T \subset K[t]$ and $g \in E$ such that $p_1(b) \neq 0, \ldots, p_\nu(b) \neq 0$ and $g = \sum_{\alpha} c_{\alpha} u^{\alpha} + \sum_{i=1}^{\nu} p_i(t) u^{\alpha_i}$ where $c_{\alpha} \in K[t]$ and $u^{\alpha_1}, \ldots, u^{\alpha_\nu} \in \mathbb{N}^{\rho}$. Since u^{α_s} and $u^{\alpha_1}, \ldots, u^{\alpha_\nu}$ are linearly independent over \overline{K} and $p_i(b) u^{\alpha_i} \neq 0$, hence $g(b) \neq 0$. However, as $b \in (\mathbf{V}_{\overline{K}(u)}(E) \cap \overline{K}^m)$, we have g(b) = 0. This is a contradiction. Therefore, $(\mathbf{V}_{\overline{K}(u)}(E) \cap \overline{K}^m) = \mathbf{V}_{\overline{K}}(T)$. \Box

Definition 8. Using the same notation as in Proposition 3, the set T is denoted as Coef(E).

Example 4. Let $E = \{t_1^2 u_1^2 u_2 + (t_2 + 1)u_2 + t_1\}$ in $\mathbb{C}[u_1, u_2][t_1, t_2]$. Then, $\operatorname{Coef}(E) = \{t_1^2, t_2 + 1, t_1\}$ and $\mathbf{V}_{\overline{\mathbb{C}}(u_1, u_2)}(E) \cap \mathbb{C}^n = \mathbf{V}_{\mathbb{C}}(\operatorname{Coef}(E)) = \mathbf{V}_{\mathbb{C}}(t_1, t_2 + 1)$.

Note that it is clear that $\left(\mathbf{V}_{\overline{K(u)}}(E) \cap \overline{K}^m\right) = \mathbf{V}_{\overline{K}}(\operatorname{Coef}(E))$, and, for $E, N \subset K[u][x]$,

$$\left(\mathbf{V}_{\overline{K(u)}}(E) \backslash \mathbf{V}_{\overline{K(u)}}(N) \right) \cap \overline{K}^m = \left(\mathbf{V}_{\overline{K(u)}}(E) \cap \overline{K}^m \right) \backslash \left(\mathbf{V}_{\overline{K(u)}}(N) \cap \overline{K}^m \right)$$
$$= \mathbf{V}_{\overline{K}}(\operatorname{Coef}(E)) \backslash \mathbf{V}_{\overline{K}}(\operatorname{Coef}(N)).$$

Hence, if $rad_{K[t]}(\operatorname{Coef}(E)) = rad_{K[t]}(\operatorname{Coef}(N))$, then $\left(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(N)\right) \cap \overline{K}^m = \emptyset$, otherwise $\left(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(N)\right) \cap \overline{K}^m \neq \emptyset$.

Corollary 1. Let $E \subset K[u][t]$ and $f \in K[u][t]$. Then, if the radical of $\langle \operatorname{Coef}(E) \rangle$ includes f in K(u)[t], then $(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(f)) \cap \overline{K}^m = \emptyset$, otherwise $(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(f)) \cap \overline{K}^m \neq \emptyset$.

Proof. Since $(\mathbf{V}_{K(u)}(f) \cap \overline{K}^m) = \mathbf{V}_{\overline{K}}(\operatorname{Coef}(\{f\}))$, if the radical of $\langle \operatorname{Coef}(E) \rangle$ includes f, then $\mathbf{V}_{\overline{K}}(\operatorname{Coef}(\{f\}) \supset \mathbf{V}_{\overline{K}}(\operatorname{Coef}(E)))$. Therefore, $(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(f)) \cap \overline{L}^m = \mathbf{V}_{\overline{K}}(\operatorname{Coef}(E)) \setminus \mathbf{V}_{\overline{K}}(\operatorname{Coef}(\{f\})) = \emptyset$. If the radical of $\langle \operatorname{Coef}(E) \rangle$ does not include f in K(u)[t], then $\mathbf{V}_{\overline{K}}(\operatorname{Coef}(\{f\}) \not\supseteq \mathbf{V}_{\overline{K}}(\operatorname{Coef}(E)))$. Therefore, $(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(f)) \cap \overline{K}^m \neq \emptyset$. \Box

In what follows, we assume that any segment $(E, \{p\}, G)$ of a CGS over $\overline{K(u)}$ in $K(u)[t][x \setminus u]$ satisfies " $E \subset K[u][t], p \in K[u][t]$ and $G \subset K[u][t][x \setminus u]$," namely, all coefficients are in K[u].

The CGS over $\overline{K(u)}$ is modified as follows by Proposition 3 and Corollary 1.

$\overline{\text{Algorithm 7 (CGS over } \overline{K(u)} \text{ on } \mathbb{A} \subset \overline{K}^m)}$
Specification: CGS_RATIONAL(E, p, F, u, \prec)
Computation of a CGS over $\overline{K(u)}$ on $\left(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(p)\right) \cap \overline{K}^m$.
Input: $E \subset K[t]$: finite set, $p \in K[u][t]$, $F \subset K(u)[t][x \setminus u]$ finite set, $u \subset x$,
\prec : term order on $Term(x \setminus u)$
Output: \mathcal{Q} : a CGS of $\langle F \rangle \subset K(u)[t][x \setminus u]$ over $\overline{K(u)}$ on $\mathbb{A} \cap \overline{K}^m$ where $\mathbb{A} =$
$\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(p).$
BEGIN
$\mathcal{Q} \leftarrow \emptyset;$
$\mathcal{G} \leftarrow \text{Compute a CGS of } \langle F \rangle \text{ over } \overline{K(u)} \text{ on } \left(\mathbf{V}_{\overline{K(u)}}(E) \setminus \mathbf{V}_{\overline{K(u)}}(p) \right) \text{ w.t.r. } \prec;$
for each $(E', \{p'\}, G') \in \mathcal{G}$ do
$T \leftarrow \operatorname{Coef}(E');$
$\mathbf{if} \ p' \not\in rad_{K(u)}(\langle T \rangle) \ \mathbf{then}$
$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(T, \{p'\}, G')\};$
$\mathbf{end} ext{-if}$
end-for
return Q ;
END

Algorithm 7 is a crucial tool in this paper.

Remark 4. A segment of \mathcal{Q} is formed by $(E, \{p'\}, G')$ where $E \subset K[t], p' \in K[u][t]$, and $G' \subset K[u][t][x \setminus u]$. It is important to note that p' may still contain the symbol u. However, p' behaves like $\operatorname{Coef}(q) \subset K[t]$, as indicated by the fact that $\mathbf{V}_{\overline{K(u)}}(p') \cap \overline{K}^m = \mathbf{V}_{\overline{K}}(\operatorname{Coef}(p'))$ and Corollary 1. In other words, the symbol u in p' is not affected by any other computations in this paper. Conversely, by keeping $p' \in K[u][t]$, we maintain simplicity in the style of our algorithms. This serves as one of our optimization techniques.

Thanks to **CGS**_**RATIONAL**, we can generalize the computational method for contracting an ideal to parametric cases.

Algorithm 8 (Contraction of parametric ideals)

 $\begin{aligned} & \textbf{Specification:PARA_CONT}(E, p, F, u, \prec) \\ & \textbf{Computation of the contraction for parametric ideals.} \\ & \textbf{Input:} \ E \subset K[t] : \text{finite set, } p \in K[u][t], \ F \subset K(u)[t][x \setminus u]: \text{finite set, } u \subset x, \\ & \prec: \text{ a term order on } Term(x). \\ & \textbf{Output:} \ \mathcal{C} = \{(E_1, \{p_1\}, G_1), \dots, (E_r, \{p_r\}, G_r)\}: \text{ For all } \overline{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(\text{Coef}(p_i)) \ (1 \leq i \leq r), \ \sigma_{\overline{t}}(G_i) \text{ is a Gröbner basis of } \langle \sigma_{\overline{t}}(F) \rangle^c \text{ w.r.t. } \prec \text{ in } \overline{K}[x] \text{ where } \\ & \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1}^r \left(\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)\right). \\ & \textbf{BEGIN} \\ & \mathcal{C} \leftarrow \emptyset; \prec_1 \leftarrow \text{ A term order on } Tern(x \setminus u); \\ & \mathcal{G} \leftarrow \textbf{CGS_RATIONAL}(E, p, F, u, \prec_1); \\ & \textbf{for each } (\overline{E'}, \{p'\}, G') \in \mathcal{G} \ \mathbf{do} \end{aligned}$

 $\begin{array}{c} LC \leftarrow \{\operatorname{lc}(g) | g \in G'\}; \, \mathcal{H} \leftarrow \mathbf{PARA_LCM}(E',p',LC); \\ \quad \text{for } \operatorname{each} (D,\{d\},f) \in \mathcal{H} \text{ do} \\ \qquad \qquad \mathcal{Z} \leftarrow \mathbf{PARA_SAT}(D,d,G',f,\prec); \ \mathcal{C} \leftarrow \mathcal{Z} \cup \mathcal{C}; \\ \quad \text{end-for} \\ \text{return } \mathcal{C}; \\ \mathbf{END} \end{array}$

Next, we discuss the contraction of J^e , where $J \subset K[t][x]$.

The following proposition and lemma provide us with the relation between I and I^{ec} , where I is an ideal in K[x].

Proposition 4 ([2, Proposition 8.94]). Let \prec be a term order on $\operatorname{Term}(x \setminus u)$, and suppose I is an ideal of K[x] and G is a Gröbner basis of I w.r.t. \prec in $K(u)[x \setminus u]$. Set q as a least common multiple of $\{\operatorname{lc}(g) | g \in G\}$ (i.e. q = $\operatorname{lcm}\{\operatorname{lc}(g) | g \in G\}$), where $\operatorname{lc}(g) \in K[u]$ is taken of g as an element of $K(u)[x \setminus u]$. Then, $I^{ec} = I : q^{\infty}$.

Lemma 3 ([2, Lemma 8.95]). Let $I = \langle f_1, \ldots, f_r \rangle \subset K[x]$. Suppose $q \in K[x]$ and $s \in \mathbb{N} \setminus \{0\}$ are such that $I : q^s = I : q^\infty$. Then, $I = \langle f_1, \ldots, f_r, q^s \rangle \cap (I : q^s)$.

Notice that

$$rad_{K[x]}(I) = rad_{K[x]}\left(\langle\{f_1, \dots, f_r\} \cup \{q^s\}\rangle\right) \cap rad_{K[x]}\left(I : q^\infty\right)\right)$$
$$= rad_{K[x]}\left(\langle\{f_1, \dots, f_r\} \cup \{q\}\rangle\right) \cap rad_{K[x]}\left(I : q^\infty\right)\right).$$

Therefore, the integer s is not necessary for computing the basis of $rad_{K[x]}(I)$; only the polynomial $q \in K[u]$ is required. Since, in Proposition 4, the Gröbner basis G of $I \subset K(u)[x \setminus u]$ is computed to obtain the polynomial q, the algorithm **CGS_RATIONAL** is again necessary to generalize Proposition 4 and Lemma 3 to parametric cases.

 $\begin{array}{l} \hline \mathbf{Algorithm 9} \ (\mathbf{Cut} \ \langle F \rangle^{ec} \ \mathbf{down to} \ \langle F \rangle) \\ \\ \mathbf{Specification: PARA} \ \mathbf{EXTCONT}(E, p, F, u) \\ & \mathrm{Cut} \ \langle F \rangle^{ec} \ \mathrm{down to} \ \langle \overline{F} \rangle \ \mathrm{on} \ \mathbf{V}_{\overline{K}}(E) \backslash \mathbf{V}_{\overline{K}}(p). \\ \\ \mathbf{Input:} \ E \subset K[t] : \mathrm{finite set}, \ p \in K[u][t], \ F \subset K[t][x]: \mathrm{finite set}, \ u \subset x, \\ & \prec: \mathrm{a \ term \ order \ on \ Term(x).} \\ \\ \mathbf{Output:} \ \mathcal{L} \ = \ \{(E_1, \{p_1\}, q_1), \dots, (E_r, \{p_r\}, q_r)\}: \ \mathrm{For \ all} \ \overline{t} \in \mathbf{V}_{\overline{K}}(E_i) \backslash \mathbf{V}_{\overline{K}}(p_i) \\ (1 \leq i \leq r), \\ & rad_{\overline{K}[x]}(\langle \sigma_{\overline{t}}(F) \rangle) = rad_{\overline{K}[x]}(\langle \sigma_{\overline{t}}(F \cup \{q_i\}) \rangle) \cap rad_{\overline{K}[x]}(\langle \sigma_{\overline{t}}(F) \rangle^{ec}) \\ \\ \mathrm{where} \ q_1, \dots, q_r \in K[t][u] \ \mathrm{and} \ \mathbf{V}_{\overline{K}}(E) \backslash \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1}^r \mathbf{V}_{\overline{K}}(E_i) \backslash \mathbf{V}_{\overline{K}}(p_i). \\ \\ \\ \mathbf{BEGIN} \\ \\ \mathcal{L} \leftarrow \emptyset; \\ \mathcal{G} \leftarrow \mathbf{CGS} \ \mathbf{RATIONAL}(E, p, F, u, \prec); \\ \mathbf{for \ each} \ (\overline{E'}, \{p'\}, G') \in \mathcal{G} \ \mathbf{do} \\ & LC \leftarrow \{\mathrm{lc}(g)|g \in G\}; \end{array} \end{array}$

```
\mathcal{H} \leftarrow \mathbf{PARA\_LCM}(E', \{p'\}, LC); \mathcal{L} \leftarrow \mathcal{L} \cup \mathcal{H};
end-for
return \mathcal{L};
END
```

7 Non-zero dimensional case

Here, we describe an algorithm for computing a parametric radical system of a non-zero dimensional ideal with parameters. The following lemma is a wellknown fact and is utilized to reduce the problem to the zero dimensional case by means of the extension/contraction method.

Lemma 4 ([2, Lemma 7.47]). Let I be an ideal in K[x], If $u \subset x$ is a MIS modulo I, then I^e is a zero dimensional ideal of $K(u)[x \setminus u]$.

Let $E \subset K[t]$, $p \in K[t]$ and $G \subset K[t][x]$. Assume that a triple $(E, \{p\}, G)$ satisfies conditions: for all $\overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$, dim $(\langle \operatorname{lt}(G) \rangle) \neq 0$. Set u a MIS modulo $\langle \operatorname{lt}(G) \rangle$. Then, for all $\overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$, $\langle \sigma_{\overline{t}}(G) \rangle$ a zero dimensional ideal in $\overline{K}(u)[x \setminus u]$.

To compute a parametric radical system of a non-zero dimensional ideal with parameters, we first compute a parametric radical system of $\langle G \rangle^e$ in $K(u)[t][x \setminus u]$. Essentially, this algorithm is the same as Algorithm 6 (**PRS_ZERO**). However, since the coefficient domain is K(u), it is necessary to compute a CGS over $\overline{K(u)}$ of $\langle G \rangle^e$. This requires using the algorithm **CGS_RATIONAL** again.

The following algorithm, which modifies Algorithm 2 (SQUARE_FREE) using CGS_RATIONAL, outputs the squarefree parts of a parametric polynomial in $\overline{K(u)[t][x_i]}$.

Algorithm 10 (Squarefree part of f in $K(u)[t][x_i]$) Specification: SQUARE RATIONAL (E, p, f, u, x_i) Computation of squarefree parts of f in $K(u)[t][x_i]$. **Input:** $E \subset K[t]$: finite set, $p \in K[u][t]$, $f \in (K[u][t])[x_i]$, $u \subset x$, $x_i \in x \setminus u$. For all $\overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p), \sigma_{\overline{t}}(f) \neq 0$. $(\operatorname{char}(K) = 0)$ **Output:** $\mathcal{P} = \{(E_1, \{p_1\}, h_1), \dots, (E_\ell, \{p_\ell\}, h_\ell)\}$: For all $\overline{t} \in \mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i)$ $(1 \leq i \leq \ell), \sigma_{\bar{t}}(h_i)/\sigma_{\bar{t}}(\operatorname{lc}(h_i))$ is the squarefree part of $\sigma_{\bar{t}}(f)/\operatorname{lc}(\sigma_{\bar{t}}(f))$ where $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p) = \bigcup_{i=1}^{\ell} \left(\mathbf{V}_{\overline{K}}(E_i) \setminus \mathbf{V}_{\overline{K}}(p_i) \right).$ BEGIN $\mathcal{P} \leftarrow \emptyset; \ \mathcal{G} \leftarrow \mathbf{CGS} \ \mathbf{RATIONAL}(E, p, \{f, \frac{\partial f}{\partial r_i}\}, u, \prec);$ for each $(E', \{p'\}, \{g\}) \in \mathcal{G}$ do $q \leftarrow \text{Compute } q \text{ s.t. } \operatorname{lc}(q)^{1 + \operatorname{deg}(f) - \operatorname{deg}(g)} f = qq + r \ (\operatorname{deg}(r) < \operatorname{deg}(q));$ (by pseudo-division) $\mathcal{P} \leftarrow \mathcal{P} \cup \{(E', \{p'\}, q)\}$ end-for return \mathcal{P} ; END

Algorithm 11, which modifies **PRS_ZERO** using the **CGS_RATIONAL** algorithm, computes a parametric radical system in $K(u)[t][x \setminus u]$.

Algorithm 11 (Parametric radical system of $\langle F \rangle^e$)

Specification:PRS MIS(E, p, F, u)Computation of a parametric radical system of $\langle F \rangle^e$ in $K(u)[x \setminus u]$. **Input:** $E \subset K[t]$: finite set, $p \in K[u][t]$, $F \subset K[t][x]$ finite set, $u \subset x$: MIS modulo $\langle \operatorname{lt}(F) \rangle$. **Output:** \mathcal{P} : parametric radical system of $\langle F \rangle \subset K(u)[t][x \setminus u]$ on $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$. BEGIN $\mathcal{P} \leftarrow \{ (E, \{p\}, F) \}; \ y = \{ y_1, \dots, y_\rho \} \leftarrow x \backslash u;$ for each i = 1 to ρ do $/*\rho$ variables */ $\mathcal{H} \leftarrow \emptyset; \ \prec \leftarrow \text{ Set a block term order with } y_i \ll y \setminus \{y_i\};$ $\mathcal{G} \leftarrow \mathbf{CGS} \quad \mathbf{RATIONAL}(E, p, F, u, \prec);$ for each $(E', \{p'\}, G') \in \mathcal{G}$ do $g \leftarrow$ Select the polynomial g of minimal degree in $G' \cap K(u)[t][y_i]$; $\mathcal{B} \leftarrow \mathbf{SQUARE} \quad \mathbf{RATIONAL}(E', p', g, u, y_i);$ for each $(E'', \{h\}, b) \in \mathcal{B}$ do $\mathcal{W} \leftarrow \mathcal{P};$ for each $(D, \{d\}, H) \in \mathcal{W}$ do if $(\mathbf{V}_{\overline{K}}(E'') \setminus \mathbf{V}_{\overline{K}}(h)) \cap (\mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)) \neq \emptyset$ then $\mathcal{H} \leftarrow \mathcal{H} \cup \{ (E'' \cup D, \{\sqrt{hd}\}, H \cup \{b\}) \};$ end-if end-for end-for end-for $\mathcal{P} \leftarrow \mathcal{H};$ end-for return \mathcal{P} ; END

Let us execute **PRS_MIS**(E, p, G, u), where E, p, G are taken from the discussion immediately after Lemma 4, and u is a MIS modulo $\langle \operatorname{lt}(G) \rangle$. Then, the output \mathcal{P} satisfies: $\forall (E', \{p'\}, G') \in \mathcal{P}$ and $\forall \overline{t} \in \mathbf{V}_{\overline{K}}(E') \setminus \mathbf{V}_{\overline{K}}(p')$,

$$rad_{\overline{K}(u)[x\setminus u]}(\langle \sigma_{\overline{t}}(G)\rangle^e) = \langle \sigma_{\overline{t}}(G')\rangle \text{ in } \overline{K}(u)[x\setminus u].$$

Let us apply our contraction method to (E', p', G', u, \prec) , i.e., **PARA_CONT** (E', p, u, \prec) , where \prec is a term order on Term(x). Then, the output \mathcal{C} satisfies: $\forall (D, \{d\}, H) \in \mathcal{C}$ and $\forall \bar{a} \in \mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)$, $(rad_{\overline{K}(u)[x \setminus u]}(\langle \sigma_{\bar{a}}(G) \rangle^{e}))^{c} =$ $\langle \sigma_{\bar{a}}(H) \rangle$ in $\overline{K}[x]$. In fact, by the following lemma, we have $rad_{\overline{K}[x]}(\langle \sigma_{\bar{a}}(G) \rangle^{ec}) =$ $\langle \sigma_{\bar{a}}(H) \rangle$ in $\overline{K}[x]$.

Lemma 5 ([2, Lemma 8.97]). (i) If I is an ideal in $K(u)[x \setminus u]$, then $(rad_{K(u)[x \setminus u]}(I))^c = rad_{K[x]}(I^c)$.

(ii) I_1 and I_2 are ideals of K[x], then $rad_{K[x]}(I_1 \cap I_2) = rad_{K[x]}(I_1) \cap rad_{K[x]}(I_2)$. (iii) If I is an ideal of K[x], then $(rad_{K[x]}(I))^e = rad_{K(u)[x \setminus u]}(I^e)$.

Recall Proposition 4 and Lemma 5. There exists $q \in K[t][u]$ such that $\forall \bar{a} \in \mathbf{V}_{\overline{K}}(D) \setminus \mathbf{V}_{\overline{K}}(d)$,

$$rad_{\overline{K}[x]}(\langle \sigma_{\bar{a}}(G) \rangle) = rad_{\overline{K}[x]}(\langle \sigma_{\bar{a}}(G \cup \{q\}) \rangle) \cap rad_{\overline{K}[x]}(\langle \sigma_{\bar{a}}(G) \rangle^{ec}).$$

By applying the algorithm **PARA_EXTCONT**, the polynomial q can be obtained. Therefore, if we have a basis of $rad_{\overline{K}[x]}(\langle \sigma_{\overline{a}}(G \cup q) \rangle)$, we can obtain the basis of $rad_{\overline{K}[x]}(\langle \sigma_{\overline{a}}(G) \rangle)$ by computing their intersection.

Since the same computation can be done recursively for $\langle G \cup \{q\} \rangle$, we can devise an algorithm for computing a parametric radical system of a parametric ideal as follows.

Algorithm 12 (Parametric radical system of non-zero dim. ideal) Specification: PRS NONZERO (E, p, F, \prec)

Computation of a parametric radical system of a non-zero dim. ideal. **Input:** $E \subset K[t]$: finite set, $p \in K[u][t]$, $F \subset K[t][x]$ finite set, \prec : term order on Term(x). $(\forall \overline{t} \in \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p), \dim(\langle \sigma_{\overline{t}}(F) \rangle) \neq 0, \langle \sigma_{\overline{t}}(F) \rangle \neq \{0\} \text{ and } \langle \sigma_{\overline{t}}(F) \rangle \neq \langle 1 \rangle.)$ **Output:** $\mathcal{N}Z$: parametric radical system of $\langle F \rangle$ on $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$. BEGIN $\mathcal{N}Z \leftarrow \emptyset; \ \mathcal{G} \leftarrow \text{Compute a CGS of } \langle F \rangle \text{ over } \overline{K} \text{ on } \mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p);$ for each $(E', \{p'\}, G') \in \mathcal{G}$ do $u \leftarrow \text{Compute a MIS modulo } \langle \operatorname{lt}(G') \rangle;$ $\mathcal{Z} \leftarrow \mathbf{PRS} \quad \mathbf{MIS}(E', p', G', u);$ for each $(E_z, \{p_z\}, Z) \in \mathcal{Z}$ do $\mathcal{C} \leftarrow \mathbf{PARA} \quad \mathbf{CONT}(E_z, p_z, Z, u, \prec);$ $\mathcal{D} \leftarrow \mathbf{PARA} \quad \mathbf{EXTCONT}(E', p', G', u);$ for each $(E_d, \{p_d\}, q_d) \in \mathcal{D}$ do for each $(E_c, \{p_c\}, G_c) \in \mathcal{C}$ do if $\mathbf{V}_{\overline{K}}(E_d \cup E_c) \setminus \mathbf{V}_{\overline{K}}(\sqrt{p_d p_c}) \neq \emptyset$ then $\mathcal{L} \leftarrow \mathbf{PRS} \quad \mathbf{NONZERO}(E_c \cup E_d, \sqrt{p_c p_d}, G_c \cup \{q_d\}, \prec);$ end-if for each $(E_l, \{p_l\}, L) \in \mathcal{L}$ do $\mathcal{A} \leftarrow \mathbf{PARA} \quad \mathbf{INTERSECTION}(E_l, p_l, L, G_c);$ $\mathcal{N}Z \leftarrow \mathcal{N}Z \cup \mathcal{A};$ end-for end-for end-for end-for end-for return $\mathcal{N}Z$; END

Remark 5. (i) As $(\mathbf{V}_{\overline{K}}(E_l) \setminus \mathbf{V}_{\overline{K}}(p_l)) \subset (\mathbf{V}_{\overline{K}}(E_c) \setminus \mathbf{V}_{\overline{K}}(p_c))$, thus we have

$$\left(\mathbf{V}_{\overline{K}}(E_l) \setminus \mathbf{V}_{\overline{K}}(p_l)\right) \cap \left(\mathbf{V}_{\overline{K}}(E_c) \setminus \mathbf{V}_{\overline{K}}(p_c)\right) = \left(\mathbf{V}_{\overline{K}}(E_l) \setminus \mathbf{V}_{\overline{K}}(p_l)\right)$$

Hence, we adopted **PARA_INTERSECTION** (E_l, p_l, L, G_c) in the algorithm.

(ii) Since algorithms for computing a CGS output a finite number of strata, the stratum $\mathbf{V}_{\overline{K}}(E) \setminus \mathbf{V}_{\overline{K}}(p)$ is divided into a finite number of strata. We note that by the MIS u, we have $\langle G' \rangle \cap K(t)[u] = 0$. It follows that the inclusion $\langle G_c \rangle \subset \langle G_c \cup \{q_d\} \rangle$ is proper in K(t)[x]. We observe that the recursive calls of **PRS_NONZERO** gives rise to a strictly ascending chain of ideals, which cannot be infinite since K(t)[x] is Noetherian. This occurs for each stratum $\mathbf{V}_{\overline{K}}(E_c \cup E_d) \setminus \mathbf{V}_{\overline{K}}(\sqrt{p_c p_d})$. Therefore, the algorithm terminates.

Example 5. Let $F = \{ax^2z + xy^2, (y + xz)^2 + ax^3z^2\} \subset \mathbb{C}[a][x, y, z]$ and \prec the graded reverse lexicographic term order with $x \prec y \prec z$ where a is a parameter and x, y, z are variables. A CGS of $\langle F \rangle$ over \mathbb{C} w.r.t. \prec is

$$\{(\{0\},\{a\},G),(\{a\},\{1\},\{y^4,z^2x^2+2zyx+y^2,y^2x\})\}$$

where $\{az^2x^3 + z^2x^2 + 2zyx + y^2, -a^2z^2x^2 + y^4, azx^2 + y^2x\}$.

Let us consider the first segment $(\{0\}, \{a\}, G)$. Then, a MIS modulo $\langle \operatorname{lt}(G) \rangle$ is $\{x\}$. Thus, $\langle G \rangle$ is not zero dimensional on $\mathbb{C} \setminus V_{\mathbb{C}}(a)$. Then, **PRS_MIS**($\{0\}, a, G, \{x\}$) outputs $\{(\{0\}, \{a\}, G \cup Z)\}$ where

$$Z = \{ay^{3}x + y^{3} - 2ay^{2} + a^{2}y, a^{2}z^{3}x^{4} + 2az^{3}x^{3} + (z^{3} - 2a^{2}z^{2})x^{2} + 2az^{2}x + a^{2}z\}.$$

Next, **PARA_CONT**({0}, *a*, *Z*, {*x*}, \prec) outputs {({0}, {*a*}, {*azx*+*y*², (*az*²*y* + 2*a*²*z*²)*x*² + *z*²*yx* + 3*azy* - 2*a*²*z*, -*az*²*x*³ + (2*azy* - *z*²)*x*² - 3*azx* - 2*ay*})}, and **PRS_EXTCONT**({0}, *a*, *G*) outputs {({0}, {*a*}, {*a*²*x*⁴ + 2*ax*³ + *x*²})}.

Due to the page limitation, the computation process from here is omitted. After computing **PARA_NONZERO**($\{0\}, a, G \cup \{a^2x^4 + 2ax^3 + x^2\}, \prec$), we obtain a parametric radical system \mathcal{P} of $\langle G \rangle$ on $\mathbb{C} \setminus \mathbf{V}_{\mathbb{C}}(a)$ as follows.

$$\mathcal{P} = \{(\{0\}, \{a\}, \{azx + y^2, az^2x^3 + (-2azy + z^2)x^2 + 3azx + 2ay\})\}.$$

Repeat the same procedure for $(\{a\}, \{1\}, \{y^4, z^2x^2 + 2zyx + y^2, y^2x)$. Then, we obtain a parametric radical system of $\langle F \rangle$ as follows

$$\{(\{0\},\{a\},\{azx+y^2,az^2x^3+(-2azy+z^2)x^2+3azx+2ay\}),(\{a\},\{1\},\{y,zx\})\}$$

The following is the algorithm for computing a parametric radical system of a parametric ideal.

Algorithm 13

Specification: $PRS(F, \prec)$ Computation of a parametric radical system of a parametric ideal. Input: $F \subset K[t][x]$: finite set, \prec : term order on Term(x). Output: \mathcal{L} : parametric radical system of $\langle F \rangle$. BEGIN $(\mathcal{Z}, \mathcal{N}, \mathcal{W}) \leftarrow PARA_DIM(F);$ $\mathcal{P} \leftarrow \bigcup_{(E, \{p\}, G) \in \mathcal{Z}} PRS_ZERO(E, p, G);$

$$\begin{split} \mathcal{Q} &\leftarrow \bigcup_{(E', \{p'\}, G') \in \mathcal{N}} \textbf{PRS_NONZERO}(E', \{p'\}, G', \prec); \\ \mathcal{L} &\leftarrow \{(E'', \operatorname{Coef}(p''), G'') \mid (E'', \{p''\}, G'') \in \mathcal{Q}\} \cup \mathcal{P} \cup \mathcal{W}; \\ \textbf{return } \mathcal{L}; \\ \textbf{END} \end{split}$$

Algorithm 13 has been implemented in the computer algebra system Risa/Asir. The code is available on the web:

https://www.rs.tus.ac.jp/~nabeshima/softwares.html.

Example 6. Let $F = \{ax^2z + xy^4, (x+y)^3 + bx^3z^2, y^2 + bxy\} \subset \mathbb{Q}[a,b][x,y,z]$ where a, b are parameters and x, y, z are variables. Then, our implementation outputs the following parametric radical system of $\langle F \rangle$.

 $\begin{array}{l} \{(\{b^2-3b+3\},\{ab\},\{3ax+(-b+3)ay,3yz^3-byz+3yz\}),(\{0\},\{(b^4-4b^3+6b^2-3b)a\},\{(b^4-4b^3+6b^2-3b)ax+(b^3-4b^2+6b-3)ay,(b^3-4b^2+6b-3)azx+(3az^3+(-2b^2+5b-3)az)y\}),(\{b-1\},\{(b^3-3b^2+3b)a\},\{y,x\}),(\{a\},\{b^3-3b^2+3b\},\{y,(bz^2+1)x\}),(\{a,b^2-3b+3\},\{b^2-3b\},\{y,(3z^2-b+3)x\}),(\{a,b\},\{1\},\{y,x\}),(\{b\},\{a\},\{x,y]\})\}. \end{array}$

Acknowledgements: This work has been partly supported by JSPS Grant-in-Aid for Scientific Research(C)(No. 23K03076).

References

- 1. Abbott, J. Bigatti, A.M., Palezzato, E. and Robbiano, L.: Computing and using minimal polynomials. J. Symb. Comp., 100, 137-163, (2020).
- 2. Becker, T. and Weispfenning, V.: Gröbner Bases, A Computational Approach to Commutative Algebra (GTM 141). Springer, (1993)
- 3. Cox, D., Little, J. and O'Shea, D.: Ideal, Varieties, and Algorithm (2nd edition). Springer, (1997)
- 4. Gianni, P., Trager, B. and Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comp., 6, 149-167, (1988)
- 5. Kapur, D., Sun, Y. and Wang, D.: A new algorithm for computing comprehensive Gröbner systems. *Proc. ISSAC 2010*, 29-36, ACM, (2010)
- Kapur, D., Sun, Y. and Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comp., 49, 74-44, (2013)
- 7. Montes, A.: The Gröbner Cover. Springer Nature Switzerland AG 2018
- Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. Proc. CASC 2012, LNCS, 7442, 248-259, Springer, (2012)
- Nabeshima, K. and Tajima, S.: CSSg method for several genericities of parametric systems. Japan J. Industrial and Applied Mathematics, 40, 315-337, (2023)
- Nabeshima, K.: Generic Gröbner basis of a parametric ideal and its application to a comprehensive Gröbner systems. Applicable Algebra in Engineering, Communication and Computing, 35, 55-70, (2024)
- Noro, M. and Takeshima, T.: Risa/Asir A computer algebra system. Proc. ISSAC 1992, 387-396, ACM, (1992) http://www.math.kobe-u.ac.jp/Asir/asir.html
- 12. Suzuki, A. and Sato, Y. : A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. *Proc. ISSAC 2006*, 326-331, ACM, (2006)
- Weispfenning, V. : Comprehensive Gröbner bases. J. Symb. Comp., 14, 1-29, (1992)