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Abstract. We propose a new computational method for comprehensive
Gröbner systems by merging algorithms developed by Kapur-Sun-Wang,
Nabeshima, Suzuki-Sato-Nabeshima and Kalkbrener, and leveraging par-
allel processing. Furthermore, we have implemented this computational
method in the computer algebra system Risa/Asir, we evaluate its e�ec-
tiveness based on the results of computational experiments.
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1 Introduction

The concept of a comprehensive Gröbner system (and basis) was introduced,
constructed, and studied by V. Weispfenning [24] as a special basis for a para-
metric polynomial ideal and has been regarded as one of the important tools
for analyzing parametric ideals. After Weispfenning's paper was published, sig-
ni�cant developments in comprehensive Gröbner systems were made by Kapur
[5], Kapur-Sun-Wang [6,7], Kurata [8], Montes [10,11,12,13], Nabeshima [14,15],
Suzuki-Sato [21,22], Sato-Suzuki-Nabeshima [18,19] and Weispfenning [24,25,26]
in theory, software, and applications. However, the computational complexity of
the comprehensive Gröbner systems remains quite high; therefore, e�cient algo-
rithms and implementations capable of faster computations are highly desired.

In this paper, we present a novel computational method for comprehensive
Gröbner systems by integrating the algorithms developed by Kapur-Sun-Wang
[6,7] and Nabeshima [15], along with the results of Sato-Suzuki-Nabeshima [19]
and Kalkbrener [4], leveraging parallel processing techniques. In 2010, Kapur-
Sun-Wang published an e�ective algorithm based on the results of Kalkbrener
[4] for computing comprehensive Gröbner systems [6]. In 2024, Nabeshima in-
troduced another di�erent algorithm in [15], which utilizes Gröbner bases and
ideal quotients for computing comprehensive Gröbner systems. It was reported
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in [15] that the speed of the two algorithms depends on the speci�c problem;
namely, we cannot unconditionally determine which one is better. Notably, the
two algorithms share something in common, namely, the structure. Since the
structure of the two algorithms is essentially the same, we demonstrate that it is
easy to integrate them using processing techniques. Moreover, we also integrate
two more computational techniques that are for special types of comprehensive
Gröbner systems, such as a comprehensive Gröbner basis on an a�ne variety
de�ned by a prime ideal [4,19], and an alternative comprehensive Gröbner ba-
sis on a variety (ACGB-V) [19]. In some special situations, the algorithms for
computing the two special types of comprehensive Gröbner systems seem fast;
hence, the computational techniques may enhance the e�ectiveness of the new
computational method.

A lot of current computers have multiple cores, and several computer algebra
systems are equipped with the ability to perform parallel processing. By utiliz-
ing this capability, we have implemented the new computational method in the
computer algebra system Risa/Asir. We assess the e�ectiveness of our imple-
mentations through computational experiments and analysis of the results.

This paper is organized as follows: In Section 2, we review the de�nition
of comprehensive Gröbner systems. In Section 3, we recall two algorithms for
computing comprehensive Gröbner systems: Kapur-Sun-Wang's algorithm and
Nabeshima's algorithm. In Section 4, we also review how to compute a compre-
hensive Gröbner system on an a�ne variety de�ned by a zero dimensional ideal.
Finally, in Section 5, we present a new computational method for comprehensive
Gröbner systems along with the results of benchmark tests.

2 Preliminaries

Here we introduce some notation that will be utilized in this paper and recall
comprehensive Gröbner systems.

Let x = {x1, . . . , xn} and t = {t1, . . . , tm} be sets of variables, K a �eld
and K an any given algebraic closed extension of K. (We often regard t as
parameters.) Symbols Term(t), Term(x) and Term(t∪x) mean the set of terms
of t, the set of terms of x and the set of terms of t ∪ x, respectively.

Fix a term order ≻ on Term(x) and let f ∈ K[t][x] where K[t][x] is a polyno-
mial ring over K[t]. Then lt(f), lm(f) and lc(f) denote the leading term, leading
monomial and leading coe�cient of f i.e. lm(f) = lc(f) lt(f). For F ⊂ K[t][x]
and f1, . . . , fν ∈ K[t][x], we de�ne lt(F ) = {lt(f)|f ∈ F} ⊂ Term(x), lc(F ) =
{lc(f)|f ∈ F} and ⟨f1, . . . , fν⟩ = {

∑ν
i=1 hifi|h1, . . . , hν ∈ K[t][x]}.

The set of natural numbers N includes zero, Q is the �eld of rational numbers
and C is the �eld of complex numbers.

De�nition 1. Let ≻1 and ≻2 be term orders on Term(x) and Term(t), respec-
tively, and xα1 , xα2 ∈ Term(x), tβ1 , tβ2 ∈ Term(t),

xα1tβ1 ≻x,t x
α2tβ2 ⇐⇒ xα1 ≻1 xα2 or (xα1 = xα2 , and tβ1 ≻2 tβ2)
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where α1, α2 ∈ Nn and β1, β2 ∈ Nm. This type of term order ≻x,t is called a
block term order on Term(t ∪ x). The term order is written as (≻1,≻2).

De�nition 2. 1. A basis {xα1 , . . . , xαℓ} ⊂ Term(x) for a monomial ideal I,
in K[x] (or K[t][x], K[x]) is said to be minimal if no xαi in the basis divides
other xj for i ̸= j, where α1, . . . , αℓ ∈ Nn. Then, the minimal basis of I is
written as MB(I).

2. For q ∈ K[t], the squarefree part of q is written as
√
q.

For g1, . . . , gℓ ∈ K[t], V(g1, . . . , gℓ) ⊂ K
m

denotes the a�ne variety of
g1, . . . , gℓ, i.e. V(g1, . . . , gℓ) = {t̄ ∈ K

m|g1(t̄) = · · · = gℓ(t̄) = 0}, and V(0) =
K

m
. We call an algebraically constructible set of the form V(f1, . . . , fℓ)\V(f ′

1,
. . . , f ′

ℓ′) ⊂ K
m
, a stratum where f1, . . . , fℓ, f

′
1, . . . , f

′
ℓ′ ∈ K[t]. As it is clear that

V(1) = ∅, we have V(f1, . . . , fℓ)\V(1) = V(f1, . . . , fℓ).
For t̄ ∈ K

m
, the canonical specialization homomorphism σt̄ : K[t][x]→ K[x]

(or K[t]→ K) is de�ned as the map that substitutes t by t̄ in f(t, x) ∈ K[t][x].
The image σt̄ of a set F ⊂ K[t][x] is denoted by σt̄(F ) = {σt̄(f)|f ∈ F} ⊂ K[x].

In this paper, we adopt the following de�nition of comprehensive Gröbner
system.

De�nition 3. Fix a term order ≻ on Term(x). Let F ⊂ K[t][x], E1, . . . , Es,
N1, . . . , Ns ⊂ K[t], G1, . . . , Gs ⊂ K[t][x]. If a �nite set G = {(E1, N1, G1), . . . ,
(Eℓ, Nℓ, Gℓ)} of triples satis�es the properties such that

(i) for each i ∈ {1, . . . , ℓ}, V(Ei)\V(Ni) ̸= ∅,
(ii) for i ̸= j,

(
V(Ei)\V(Ni)

)
∩
(
V(Ej)\V(Nj)

)
= ∅, and

(iii) for all t̄ ∈ V(Ei)\V(Ni), σt̄(Gi) is a Gröbner basis of ⟨σt̄(F )⟩ w.r.t. ≻
in K

m
[x],

then G is called a comprehensive Gröbner system (CGS) of ⟨F ⟩ w.r.t. ≻ on∪r
i=1 (V(Ei)\V(Ni)). We call a triple (Ei, Ni, Gi) segment of G. We simply say

that G is a comprehensive Gröbner system (CGS) of ⟨F ⟩ w.r.t. ≻ if
∪r

i=1(V(Ei)

\V(Ni)) = K
m
.

We give an example of a comprehensive Gröbner system.

Example 1. Let F = {x2y+ax2+y2, x2+ bxy+y, y3+ bx2y+xy} ⊂ C[a, b][x, y]
where x, y are variable and a, b are parameters. Then, a comprehensive Gröbner
system G of ⟨F ⟩ w.r.t. the lexicographic term order ≻ such that x ≻ y is the
following.

G = {({a}, {a3(b4 + b) + 3a2b2 + 3ab3 + b4}, {by2, xy + y3, x2 + y}),
({a(b+ 1) + b}, {a3(b2 − b+ 1) + a2(b3 − 2b2 + 3b) + a(−b3 + 3b2) + b3}, {(−a−
b)y2 − a2y, xy + y3 − by2 − a2y,−x2 + by3 + (a2 − 1)y}),
({a, b}, {1}, {−y5 − y2, xy + y3, x2 + y}),
({a2(b2 − b+ 1) + a(−b2 + 2b) + b2}, {a+ b}, {(−a− b)y2 − a2y, xy + y3 − by2 −
a2y, x2 − by3 + b2y2 + (a2b+ 1)y}),
({0}, {a4(b3 + 1) + 3a3b+ 3a2b2 + ab3}, {y, x2 − by3 + b2y2 + (a2b+ 1)y})}.
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The set G means the following.

• If (a, b) belongs to V(a)\V(a3(b4 + b) + 3a2b2 + 3ab3 + b4) in C2, then
{by2, xy + y3, x2 + y} is a Gröbner basis of ⟨F ⟩ w.r.t. ≻ in C[x, y].
• If (a, b) belongs toV(a(b+1)+b)\V(a3(b2−b+1)+a2(b3−2b2+3b)+a(−b3+
3b2)+ b3), then {(−a− b)y2−a2y, xy+y3− by2−a2y,−x2+ by3+(a2−1)y}
is a Gröbner basis of ⟨F ⟩ w.r.t. ≻ in C[x, y].
• If (a, b) belongs to V(a, b) (i.e. a = b = 0), then {−y5 − y2, xy + y3, x2 + y}
is a Gröbner basis of ⟨F ⟩ w.r.t. ≻ in C[x, y].
• If (a, b) belongs to V(a2(b2 − b + 1) + a(−b2 + 2b) + b2)\V(a + b), then
{(−a − b)y2 − a2y, xy + y3 − by2 − a2y, x2 − by3 + b2y2 + (a2b + 1)y} is a
Gröbner basis of ⟨F ⟩ w.r.t. ≻ in C[x, y].
• If (a, b) belongs to C2\V(a4(b3+1)+3a3b+3a2b2+ab3), then {y, x2−by3+
b2y2 + (a2b+ 1)y} is a Gröbner basis of ⟨F ⟩ w.r.t. ≻ in C[x, y].

3 Two algorithms for computing comprehensive Gröbner

systems

Here we review Kapur-Sun-Wang's algorithm and Nabeshima's algorithm, both
known for their e�ciency in computing comprehensive Gröbner systems. Further
details can be found in [6,7,15].

In this section, we establish that ≻x denotes a term order on Term(x), ≻t

represents a term order on Term(t), and ≻u signi�es a term order on Term(u)
where u ⊂ t.

3.1 Kapur-Sun-Wang algorithm

In [6,7], Kapur-Sun-Wang introduced the following nice theorem that is based
on the result of Kalkbrener [4].

Theorem 1 (Kapur-Sun-Wang [6,7]). Let F be a �nite set of polynomials
in K[t][x] and E a �nite set of polynomials in K[t] such that ⟨E⟩ is proper in
K[t]. Regard F ∪E as a set of polynomial in K[t, x] and let G be a Gröbner basis
of ⟨F ∪E⟩ w.r.t. a block term order (≻x,≻t) in K[t, x], and Gb = G\(G∩ ⟨E⟩).
Assume that Gb ̸= ∅ and let MB(⟨lt(Gb)⟩) = {w1, . . . , wℓ} in K[t][x]. For each
i ∈ {1, . . . , ℓ}, let Gwi = {g ∈ G| lt(g) = wi} and G′ = {g1, . . . , gℓ} where
gi ∈ Gwi (1 ≤ i ≤ ℓ).

Then, for all t̄ ∈ V(E)\V
(√∏ℓ

j=1 lc(gj)

)
, σt̄(G

′) is a minimal Gröbner

basis of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

The following corollary is a direct consequence of Theorem 1.

Corollary 1. Let F be a �nite set of polynomials in K[t][x]. Regard F as a
set of polynomial in K[t, x] and let G be a Gröbner basis of ⟨F ⟩ w.r.t. a block
term order (≻x,≻t) in K[t, x]. Let MB(⟨lt(G)⟩) = {w1, . . . , wℓ} in K[t][x]. For
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each i ∈ {1, . . . , ℓ}, let Gwi = {g ∈ G| lt(g) = wi} and G′ = {g1, . . . , gℓ} where
gi ∈ Gwi (1 ≤ i ≤ ℓ).

Then, for all t̄ ∈ K
m\V

(√∏ℓ
j=1 lc(gj)

)
, σt̄(G

′) is a minimal Gröbner basis

of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

We illustrate Corollary 1 with the following example.

Example 2. Let F = {t1x2 − xy + y2, t2xy + y, t1x
2 − y, (t2 + 1)xy2 + t1x} ⊂

C[t1, t2][x, y],≻x the graded lexicographic term order with x ≻ y on Term({x, y})
and≻t the graded reverse lexicographic term order with t2 ≻ t1 on Term({t1, t2}).
Then, the reduced Gröbner basis of ⟨F ⟩ ⊂ C[t1, t2, x, y] w.r.t. (≻x,≻t) is

G = {(t1 + t22 + t2)y, t1(t2 − 2)y2 + y, (t21 + 6t1 − t2 − 3)y, t1x+ t2y,
y2 − (t1 + 2t2 + 1)y, xy − (t1 + 2t2 + 2)y}

in C[t1, t2, x, y]. Regard G as a set in C[t1, t2][x, y], then MB(⟨lt(G)⟩) = {x, y}.
Set Gx = {t1x + t2y}, Gy = {(t1 + t22 + t2)y, (t

2
1 + 6t1 − t2 − 3)y} and G′ =

{t1x+ t2y, (t1 + t22 + t2)y}.
Therefore, for all t̄ ∈ C2\V(t1(t1 + t22 + t2)), σt̄(G

′) is a minimal Gröbner
basis of ⟨σt̄(F )⟩ w.r.t. ≻x in C[x, y].

In this paper, we de�ne V(∅) = K
m
, i.e. V(0) = V(∅) = K

m
.

The contents of Theorem 1 are summarized in the following algorithm.

Algorithm 1 (Kapur-Sun-Wang [6,7])

Speci�cation: KSW(E, p, F,≻x)
Input: E ⊂ K[t]: �nite set, p ∈ K[t] s.t. V(E)\V(p) ̸= ∅,

F ⊂ K[t][x] �nite set, ≻x: term order on Term(x).
Output: (E′, p′, G′, h′) : If E′ ̸= 1 and G′ ̸= {0}, then V(E′)\V(p′) ̸= ∅
and, for all t̄ ∈ V(E′)\V(p′), σt̄(G

′) is a Gröbner basis of ⟨σt̄(F )⟩ in K[x]
and V(E′)\V(p′) ⊂ V(E)\V(p). If G′ = {0}, then for all t̄ ∈ V(E′)\V(p′),
⟨σt̄(F )⟩ = {0}. Moreover, V(p′) = V(p) ∪V(h′).
BEGIN
≻t← Set a term order on Term(t);
G← Compute a reduced Gröbner basis of ⟨F ∪ E⟩ w.r.t. (≻x,≻t) in K[t, x];
Gb ← G\(G ∩ ⟨E⟩);
if Gb = ∅ then

return (E, p, {0}, 1);
end-if
{w1, . . . , wℓ} ←MB(⟨lt(Gb)⟩);
G′ ← ∅;
for each i = 1 to ℓ do

g ← Select one element g ∈ Gb that satis�es lt(g) = wi;
G′ ← G′ ∪ {g};

end-for
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h←
√∏

g∈G′⊂K[t][x] lc(g);

if V(E)\V(p · h) = ∅ then
return (1, p · h,G′, h);

end-if
return (E, p · h,G′, h);
END

We remark that algorithms for checking whether V(E)\V(p · h) = ∅ or not
are provided in [6,7,21]. Here, we omit the explanation of these algorithms.

In [6,7], Kapur-Sun-Wang developed an algorithm for computing a compre-
hensive Gröbner system by recursively utilizing Algorithm 1, as follows.

Algorithm 2 (CGS1) [6,7]

Speci�cation: CGS1(E, p, F,≻x)
Input: E ⊂ K[t]: �nite set, p ∈ K[t], F ⊂ K[t][x] �nite set,

≻x: term order on Term(x).
Output: G: comprehensive Gröbner system of ⟨F ⟩ on V(E)\V(p) w.r.t. ≻x.
BEGIN
G ← ∅;
if V(E)\V(p) = ∅ then return G; end-if

(E′, p′, G′, h)←KSW(E, p, F,≻);
if E ̸= 1 then
G ← G ∪ {(E, {p′}, G′)};

end-if
q ← 1;
h1h2 · · ·hℓ ← factorization(h); /*hi is an irreducible factor (1 ≤ i ≤ r). */
for each i = 1 to ℓ do
G ← G∪ CGS1(E ∪ {hi}, p · q, F,≻);
q ← q · hi;

end-for
return G;
END

One of the optimizations is the use of factorization(h) that outputs the fac-
torization of h in K[t]. The techniques described in [6,7,13,14,19], are applicable
to obtain small and nice outputs of a comprehensive Gröbner system.

3.2 Nabeshima algorithm

In [15], the second author of this paper introduced an algorithm di�erent from
Kapur-Sun-Wang's for computing comprehensive Gröbner systems. Here, we re-
view the algorithm.

Let u be a subset of t and E ⊂ K[t] and F ⊂ K[t][x]. Then, E ∪ F can be
regards as a subset of K(t)[x] or K(u)[x, \u] where K(t) and K(u) are �elds of
rational functions with t and u, respectively. Let G be a (reduced) Gröbner basis
of ⟨E ∪ F ⟩ in K(t)[x] or K(u)[x, t\u].
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In what follows, we assume that the Gröbner basis G satis�es either G ⊂
K[t][x] or G ⊂ K[u][x, t\u], meaning that all coe�cients are in K[t] or K[u].

Theorem 2 (Nabeshima [15]). Let F be a �nite set of polynomials in K[t][x],

G a reduced Gröbner basis of ⟨F ⟩ w.r.t. ≻x in K(t)[x]. Let h =
√∏

g∈G lc(g) in

K[t][x]. Consider F to be a subset of K[t, x], and let S to be a reduced Gröbner
basis of the ideal quotient ⟨F ⟩ : ⟨G⟩ w.r.t. a block term order (≻x,≻t) in K[t, x].
Then, the following holds:

(1) S ∩K[t] ̸= ∅,
(2) for all t̄ ∈ K

m\ (V(S ∩K[t]) ∪V(h)), σt̄(G) is the reduced Gröbner basis of
⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

Corollary 2 (Nabeshima [15]). Using the same notation as in Theorem 2,
let q ∈ S ∩K[t]. Then, for all t̄ ∈ K

m\V(h · q), σt̄(G) is the reduced Gröbner
basis of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

We illustrate Theorem 2 and Corollary 2 with the following example.

Example 3. Let F = {t1x2 − xy + y2, t2xy + y, t1x
2 − y, (t2 + 1)xy2 + t1x} ⊂

C[t1, t2][x, y],≻x the graded lexicographic term order with x ≻ y on Term({x, y})
and≻t the graded reverse lexicographic term order with t2 ≻ t1 on Term({t1, t2}).
This setting is the same as Example 2.

The reduced Gröbner basis of ⟨F ⟩ ⊂ C(t1, t2)[x, y] w.r.t. ≻x is {x, y}. The
reduced Gröbner basis S of the ideal quotient ⟨F ⟩ : ⟨x, y⟩ w.r.t. (≻x,≻t) is

S = {(t2 − 2)t21 + t1, t
2
1 + t1t

2
2 + t1t2,−t31 − 6t21 + (t2 + 3)t1,

−y + 2t21 + (5t2 + 3)t1,−t1x+ t21 + (2t2 + 2)t1}.

As S ∩C[t1, t2] = {(t2 − 2)t21 + t1, t
2
1 + t1t

2
2 + t1t2,−t31 − 6t21 + (t2 + 3)t1}, for all

t̄ ∈ C2\V((t2 − 2)t21 + t1, t
2
1 + (t22 + t2)t1,−t31 − 6t21 + (t2 + 3)t1), {x, y} is the

reduced Gröbner basis of ⟨σt̄(F )⟩ w.r.t. ≻x in C[x, y].
If we apply Corollary 2 and select t21 + t1t

2
2 + t1t2 from S ∩ C[t1, t2], then it

holds that for all t̄ ∈ C2\V(t21 + t1t
2
2 + t1t2), {x, y} is the reduced Gröbner basis

of ⟨σt̄(F )⟩ w.r.t. ≻ in C[x, y].

De�nition 4. Let I be a proper ideal of K[x] and u = {u1, . . . , ur} a subset of
x. Then, u is called independent modulo I if I ∩ K[u] = {0}. Moreover, u is
called a maximally independent set (MIS) modulo I if it is independent modulo
I and the cardinality of u is equal to the dimension of I.

By using a MIS modulo ⟨E⟩, Theorem 2 can be generalized as follows.

Theorem 3 (Nabeshima [15]). Let F be a �nite set of polynomials in K[t][x],
E a �nite set of polynomials in K[t] with ⟨E⟩ ≠ ⟨1⟩, u ⊂ t a MIS modulo ⟨E⟩
in K[t]. Regard F ∪ E as a set of K(u)[x, t\u], and let G be a Gröbner basis of
⟨F ∪E⟩ w.r.t. (≻x,≻t\u) in K(u)[x, t\u], Gb = G\(G∩⟨E⟩) and MB(⟨lt(Gb)⟩) =
{w1, . . . , wℓ} in (K(u)[t\u])[x]. For each i ∈ {1, . . . , ℓ}, denote Gwi = {f ∈
Gb| lt(f) = wi} and take one polynomial gi from Gwi . Set G

′ = {g1, . . . , gℓ} ⊂
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K[t][x]. Let S be the reduced Gröbner basis of the ideal quotient ⟨F ∪ E⟩ : ⟨G′⟩
w.r.t. a block term order (≻t\u,x,≻u) in K[t, x] where ≻t\u,x= (≻x,≻t\u) is the
block term order on Term(x ∪ {t\u}). Then, the following holds:

(1) S ∩K[u] ̸= ∅,
(2) for all t̄ ∈ V(E)\ (V(S ∩K[u]) ∪V(h)), σt̄(G

′) is a minimal Gröbner basis

of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x] where h =
√∏

g∈G′ lc(g).

Corollary 3 (Nabeshima [15]). Using the same notation as in Theorem 3,
let q ∈ S in K[u]. Then, for all t̄ ∈ V(E)\V(h · q), σt̄(G

′) is a minimal Gröbner
basis of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

By utilizing Corollaries 2 and 3, we can construct the following algorithm.

Algorithm 3 (Nabeshima [15])

Speci�cation: NABESHIMA(E, p, F, u,≻x)
Input: E ⊂ K[t]: ⟨E⟩ is proper in K[t], p ∈ K[t] s.t. V(E)\V(p) ̸= ∅,

F ⊂ K[t][x]: �nite set, u ⊂ x: MIS module ⟨E⟩,
≻x: term order on Term(x).

Output: (E′, p′, G′, h′) : If E′ ̸= 1 and G′ ̸= {0}, then V(E′)\V(p′) ̸= ∅
and, for all t̄ ∈ V(E′)\V(p′), σt̄(G

′) is a Gröbner basis of ⟨σt̄(F )⟩ in K[x]
and V(E′)\V(p′) ⊂ V(E)\V(p). If G′ = {0}, then for all t̄ ∈ V(E′)\V(p′),
⟨σt̄(F )⟩ = {0}. Moreover, V(p′) = V(p) ∪V(h′).
BEGIN
G← Compute a reduced Gröbner basis of ⟨F∪E⟩ w.r.t. (≻x,≻t\u) inK(u)[t\u][x]

where ≻t\u is a term order on Term(t\u);
Gb ← G\(G ∩ ⟨E⟩);
if Gb = ∅ then

return (E, p, {0}, 1);
end-if
{w1, . . . , wℓ} ←MB(⟨lt(Gb)⟩);
G′ ← ∅;
for each i = 1 to ℓ do

g ← Select one element g ∈ Gb that satis�es lt(g) = wi;
G′ ← G′ ∪ {g};

end-for
S ← Compute the reduced Gröbner basis of ⟨F ∪E⟩ : ⟨G⟩ w.r.t. (≻x,≻t)

in K[x, t] where ≻t is a term order on Term(x);
q ←Take one element from S ∩K[u];

h←
√
q ×

∏
g∈G′⊂K[t][x] lc(g) in K[t];

if V(E)\V(p · h) = ∅ then
return (1, p · h,G′, h);

end-if
return (E, p · h,G′, h);
END
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Note that if u = t, we regard (≻x,≻t\u) as ≻x. In fact, NABESHIMA (Algo-
rithm 3) is essentially same as KSW (Algorithm 1) if u = t. Thus, we apply the
algorithm CGS1 to compute comprehensive Gröbner systems in the case.

In [15], the second author shows that by replacing KSW with NABESHIMA
in Algorithm 2 we obtain the following algorithm for computing comprehensive
Gröbner systems.

Algorithm 4 (CGS2) [6,7]

Speci�cation: CGS2(E, p, F,≻x)
Computing a comprehensive Gröbner system.
Input: E: �nite subsets of K[t], p ∈ K[t], F : �nite subset of K[t][x],

≻x: term order on Term(x).
Output: G: comprehensive Gröbner system of ⟨F ⟩ on V(E)\V(p) w.r.t. ≻x.
BEGIN
G ← ∅;
u← MIS modulo ⟨E⟩ in K[t];
if V(E)\V(N) = ∅ then return G; end-if

(E, p′, G′, h)←NABESHIMA(E, p, F, u,≻x);

if E ̸= 1 then
G ← G ∪ {(E, {p′}, G′)};

end-if
q ← 1;
h1h2 · · ·hℓ ← factorization(h); /*hi is an irreducible factor (1 ≤ i ≤ r). */
for each i = 1 to ℓ do

u′ ← A MIS modulo ⟨E ∪ {hi}⟩ in K[t];
if u′ ̸= ∅ then
G ← G∪ CGS2(E ∪ {hi}, p · q, u′, F,≻x);

else
G ← G∪ CGS1(E ∪ {hi}, p · q, F,≻x);

end-if
q ← q · hi;

end-for
return G;
END

We have reviewed two algorithms, namely CGS1 and CGS2, for computing
comprehensive Gröbner systems. It was reported in [15] that we cannot uncon-
ditionally determine which one is superior.

In Section 5, we integrate the two algorithms using parallel processing tech-
niques.

4 Zero-dimensional cases

Here we review special types of comprehensive Gröbner systems (or bases) on
an a�ne variety de�ned by a zero dimensional ideal. As in Section 3, let ≻x be
a term order on Term(x) and ≻t a term order on Term(t) in this section.



10 N. Wada and K. Nabeshima

4.1 Gröbner basis in a polynomial ring over a commutative von
Neumann regular ring

In 1987, V. Weispfenning studied, in [23], the theory of Gröbner bases in polyno-
mial rings over a commutative von Neumann regular ring and gave an algorithm
for computing them. After that A. Suzuki and Y. Sato connected the Weispfen-
ning's theory of the Gröbner bases to comprehensive Gröbner bases. For the
theory of Gröbner bases, we refer the reader to [17,18,21,23,26].

De�nition 5. A commutative ring R with identity 1 is called a commutative
von Neumann regular ring if it has the following property: ∀a ∈ R, ∃b ∈ R such
that a2b = a.

Lemma 1 ([18, Lemma 1]). Let I be a zero dimensional radical ideal in K[t].
Then, K[t]/I becomes a commutative von Neumann regular ring.

The following theorem is borrowed from [18] and tells us how to compute a
comprehensive Gröbner system (or basis) of an given ideal on V(E) where ⟨E⟩
is zero dimensional in K[t].

Theorem 4 ([18, Theorem 2]). Let F be a �nite set of polynomials in K[t][x]
and E a �nite set of polynomials in K[t]. Suppose that ⟨E⟩ is proper and a zero
dimensional radical ideal in K[t]. Let G be a (strati�ed) reduced Gröbner basis
of ⟨F ⟩ w.r.t. ≻x in (K[t]/⟨E⟩)[x] where we regard (K[t]/⟨E⟩)[x] as a polynomial
ring over a commutative von Neumann regular ring K[t]/⟨E⟩. Then, for all
t̄ ∈ V(E), σt̄(G) is the reduced Gröbner basis of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

Remark 1. An algorithm for computing a Gröbner basis of an ideal in R[x] is
given in [23] where R is a commutative von Neumann regular ring. For the case
K[t]/⟨E⟩ above, Y. Kurata and M. Noro provided an e�ective algorithm, that
utilizing modular dynamic evaluation method, for computing the Gröbner basis
above in [9]. Moreover, they implemented the algorithm in the computer algebra
system Risa/Asir [16]. One can obtain the Gröbner basis G, in Theorem 4, by
utilizing their implementation.

Theorem 4 is summarized in the following algorithm.

Algorithm 5
Speci�cation: ZERO1(E,F,≻)
Input: E ⊂ K[t]: �nite set s.t. ⟨E⟩ is zero-dimensional in K[t],

F ⊂ K[t][x] �nite set, ≻: term order on Term(x).
Output: (E′, G) : G is a (strati�ed) reduced Gröbner basis of ⟨F ⟩ w.r.t. ≻ in
(K[t]/⟨E′⟩)[x] and ⟨E′⟩ =

√
⟨E⟩.

BEGIN
E′ ← Compute a basis of the radical of ⟨E⟩ in K[t];
G← Computer a (strati�ed) reduced Gröbner basis of ⟨F ⟩ with respect to ≻

in (K[t]/⟨E′⟩)[x];
return (E′, G);
END
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Remark 2. The output (E′, G) above satis�es that, for all t̄ ∈ V(E), σt̄(G) is
the reduced Gröbner basis of ⟨σt̄(F )⟩ in K[x]. However, for ā, b̄ ∈ V(E) (ā ̸= b̄),
we may have lt(σā(G) ̸= lt(σb̄(G)).

Remark 3. In [19], the output G of Algorithm 5 is referred to as an alternative
comprehensive Gröbner basis on variety (ACGB-V).

4.2 Zero dimensional prime ideal

Let J be a zero dimensional prime ideal in K[t] (i.e. J is maximal) and
√
J

a radical of J . Then, a comprehensive Gröbner system on V(J) can be easily
obtained as follows.

Theorem 5 ([4, Theorem 3.3], [18]). Let F ⊂ K[t][x], E ⊂ K[t] and ≻x a
term order on Term(t). Suppose that ⟨E⟩ is a zero dimensional prime ideal in
K[t]. Let G be the reduced Gröbner basis of ⟨F ∪ E⟩ w.r.t. (≻x,≻t) in K[t, x]
and G′ = G\(G ∩ ⟨E⟩). Assume that G ̸= ∅. Then, for all t̄ ∈ V(E), σt̄(G

′) is
the reduced Gröbner basis of ⟨σt̄(F )⟩ w.r.t. ≻x in K[x].

Let
√
J = P1 ∩P2 ∩ · · · ∩Pr be a minimal prime decomposition of

√
J where

P1, P2, . . . , Pr are prime ideals in K[t]. For each i ∈ {1, . . . , r}, we can compute
the redcued Gröbner basis of ⟨F ⟩ ∪ Pi w.r.t. (≻x,≻t) in K[t, x]. Therefore, we
can obtain a comprehensive Gröbner system of ⟨F ⟩ on V(J) where V(J) =∪r

i=1 V(Pi).
Note that there exists several algorithm for computing the prime decom-

position of the radical of an ideal. In general, the algorithm is faster than an
algorithm for computing a primary decomposition of J . See [1,3,20].

Algorithm 6
Speci�cation: ZERO2(E, p, F,≻)
Input: E ⊂ K[t]: �nite set s.t. ⟨E⟩ is zero-dimensional in K[t],

p ∈ K[t] s.t. V(E)\V(p) ̸= ∅,
F ⊂ K[t][x] �nite set, ≻: term order on Term(x).

Output: L: comprehensive Gröbner system of ⟨F ⟩ on V(E)\V(p) w.r.t. ≻.
BEGIN
L ← ∅; ≻t,x← A block term order with x≫ t;

P1, . . . , Pr ← Compute a minimal prime decomposition of
√
⟨E⟩ in K[t];

for each i = 0 to r do
ifV(Pi)\V(p) ̸= ∅ then

G← Compute reduced Gröbner basis of ⟨F ∪ Pi⟩ w.r.t. ≻t,x in K[t, x];
G′ ← G\(G ∩ ⟨Pi⟩);
if G′ ̸= ∅ then
L ← L ∪ {(Pi, {p}, G′)};

else
L ← L ∪ {(Pi, {p}, {0})};

end-if
end-if
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end-for
end-if
return L;
END

In Section 5, we will see how the utilization of ZERO2 signi�cantly enhances
computational e�ciency in speci�c problems.

4.3 Standard way

As we describe in Section 3.2, CGS2 is essentially the same as CGS1 if the MIS
modulo ⟨E⟩ is empty. Thus, we utilize CGS1 as the third method of the zero
dimensional ideal ⟨E⟩ as follows.

Algorithm 7

Speci�cation: ZERO3(E, p, F,≻)
Input: E ⊂ K[t]: ⟨E⟩ is zero-dimensional in K[t], p ∈ K[t] s.t. V(E)\V(p) ̸= ∅,

F ⊂ K[t][x] �nite set, ≻: term order on Term(x).
Output: G: comprehensive Gröbner system of ⟨F ⟩ w.r.t. ≻ on V(E)\V(p).
BEGIN
G ← CGS1(E, p, F,≻);
return G;
END

5 Merging comprehensive Gröbner system algorithms

using parallel processing

First, we present a new computational method for comprehensive Gröbner sys-
tems by integrating several algorithms introduced in Sections 3 and 4, utilizing
parallel processing. Second, we provide the results of benchmark tests conducted
after implementing the computational method in the computer algebra system
Risa/Asir [16].

Our basic strategy for the new computational method of CGS is as follows:
If the ideal ⟨E⟩ in K[t] is not zero-dimensional, we execute two algorithms, KSW
and NABESHIMA, in parallel and adopt the result that outputs the fastest among
the two implementations. Otherwise, if ⟨E⟩ is zero-dimensional, we execute three
algorithms, ZERO1, ZERO2, and ZERO3, in parallel and adopt the result that
outputs the fastest among the three implementations

It is empirically known that the computational speed of comprehensive Gröb-
ner systems depends on the result of the �rst recursive computation. Therefore,
we also propose methods in which the initial selection, whether it is KSW or
NABESHIMA, remains �xed. Hence, we have three strategies.

strategy 1: Execute KSW and NABESHIMA in parallel, and adopt the output
of the fastest implementation. Terminate the ongoing process once
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the result is adopted. Repeat this strategy until ⟨E⟩ ⊂ K[t] is zero-
dimensional.

strategy 2: Execute KSW, then proceed with strategy 1.
strategy 3: Execute NABESHIMA, then proceed with strategy 1.

Now, we are ready to present the following new computational method for
comprehensive Gröbner systems.

Algorithm 8

Speci�cation: MCGS(strategy,E, p, F, u,≻)
Input: strategy∈ {1, 2, 3}, E ⊂ K[t]: �nite set, p ∈ K[t],

F ⊂ K[t][x] �nite set, ≻: term order on Term(x).
Output: G: comprehensive Gröbner system of ⟨F ⟩ w.r.t. ≻ on V(E)\V(p).
BEGIN
G ← ∅;
if V(E)\V(p) = ∅ then return G; end-if
if strategy = 1 then

(E′, p′, G′, h)←

� �
Execute KSW(E, p, F,≻) and NABESHIMA(E, p,
F, u,≻) in parallel, and then adopt the result that
is output the fastest among the two implementa-
tions. After adopting the result, terminate the pro-
cess that is still executing.� �

;

else if strategy = 2 then
(E′, p′, G′, h)← KWS(E, p, F,≻);

else if strategy = 3 then
(E′, p′, G′, h)← NABESHIMA(E, p, F, u,≻);

end-if
if E′ ̸= 1 then
G ← G ∪ {(E, {p′}, G′)};

end-if
h1h2 · · ·hℓ ← factorization(h); /*hi is an irreducible factor (1 ≤ i ≤ r). */
q ← 1;
for each i = 1 to ℓ do

u′ ←MIS modulo ⟨E ∪ {hi}⟩;
if u′ = ∅ then

L ←

� �
Execute ZERO1(E ∪ hi, F,≻), ZERO2(E ∪ hi, p · q, F,≻),
and ZERO3(E ∪ hi, p · q,≻) in parallel, and then adopt
the result that is output the fastest among the three im-
plementations. After adopting the result, terminate the
processes that are still executing.� �

;

G ← G ∪ L;
else
G ← G∪ MCGS(0, E ∪ {hi}, p · q, F, u′,≻);
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end-if
q ← q · hi;
end-for
return G;
END

Algorithm 8 shares the same structure as algorithms CGS1 and CGS2, ensur-
ing correctness and termination in accordance with those algorithms.

We have implemented CGS1, CGS2 and MCGS in the computer algebra sys-
tem Risa/Asir. One can download the source codes from the website

https://www.rs.tus.ac.jp/~nabeshima/softwares.html

Remark 4. As reported in [15], our experience indicates that the implementation
of Risa/Asir is faster than that of Singular in both Gröbner basis computation
in K(t)[x] and in the computation of ideal quotients. Therefore, the computer
algebra system Risa/Asir is highly suitable for implementing the NABESHIMA
algorithm. In fact, we were unable to replicate the same benchmark test results
when using the computer algebra system Singular [2].

Here, we present the results of benchmark tests. Table 1 provides comparisons
of the implementations. The implementations output a comprehensive Gröb-
ner system w.r.t. the graded reverse lexicographic term order, such as (x, y) or
(x, y, z). The examples in this paper were computed on a PC with the following
speci�cations: OS: Windows 10, CPU: Intel(R) Core(TM) i9-C7900X CPU @
3.30 GHz, RAM: 256GB. The time is measured in seconds. In Table 1, "> 24h"
indicates that it took more than 24 hours, and seg. refers to the number of
segments.

The columns labeledmethods in Table 1 contain �ve-tuples (n1, n2, n3, n4, n5)
where each component (n1, n2, n3, n4, n5) ∈ N5. The value n1 indicates how
many times the KSW algorithm is utilized for CGS computation, while n2 repre-
sents the frequency of the NABESHIMA algorithm's usage. Similarly, n3, n4, and
n5 correspond to the occurrences of ZERO1, ZERO2, and ZERO3, respectively.

Here, we present the results for the following 15 problems.

S1 = {y4z + xy2 + x3, y2zax3 + 4bx3y2, xy3 + y3 + ayz},
S2 = {y2z4 + xy + ax, y3z + axyz + 2bx, xy3z4 + y3 + axz},
S3 = {x5 + xy2 + ay3, x3y3 + x2 + bx2, x2y + y2 + xy},
S4 = {x6z4 + ay2, xy5z2 + bxy2z + 2cx2, x2y3z4 + y3 + dxz},
S5 = {x5y5 + ax2 + x2y, x5 + bxy2 + y, x2y + ax},
S6 = {x5y4 + by2 + x2y, x4y + axy2 + y, x2y + ax2},
S7 = {x3y6 + xy3 + ay, x2y + y2 + xy, x6y + by2},
S8 = {y4z4 + cy2 + ax, y5z + axy + 4bxy, x2y3z4 + cy3 + axz},
S9 = {x6 + xy2 + ay3, x6 + y5, x3y3 + x2 + bx3y, x4y + x3 + ax2y},
S10 = {x5y3+az4+ bxz+5xy, x4yz+ax3z2+y4, 4y5z+xy6+xy2+ by3z+x},
S11 = {y3z2 + xy + ax, y5z + axyz + 2bx, xy3z4 + y3 + axz},
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S12 = {y3z2 + ax2y2 + x3, y3z2 + ax2yz + 2bx, xy3z4 + y3 + az},
S13 = {x3y + ax4 + bxz + 5y, x2y + ax3z2 + y4, 4x5z + xy6 + y2 + bx5z2},
S14 = {x4 + y2x+ y3, y3 + x3 + bx3y, x3y3 + y4 + ax2y},
S15 = {x3y6 + xy3 + ay, x2y + y2 + xy, x6y + by2}.

The main variables are x, y, z (or x, y) and the parameters are a, b, c, d. The
graded reverse lexicographic term order with (x, y, z) (or (x, y)) is used for the
benchmark tests.

Table 1. Comparison of comprehensive Gröbner systems

In problems S6 and S8, both strategy 1 and strategy 2 of MCGS outper-
form CGS1 (KSW) and CGS2 (NABESHIMA), likely due to the utilization of two
methods, KSW and NABESHIMA. In problem S9, strategy 1 exhibits the highest
speed, possibly because it employs both KSW and NABESHIMA. This trend is
also observed in problem S10, where strategy 1 and strategy 2 of MCGS surpass
CGS1 and CGS2, likely attributed to the use of ZERO2.

For problem S11, MCGS signi�cantly outperforms CGS1 and CGS2, again
owing to the utilization of ZERO2. However, in problems S12, CGS1 demonstrates
the fastest performance, while in problems S5, S13, S14, and S15, CGS2 takes the
lead. Although it's challenging to determine the unequivocal superiority between
the methods, Table 1 indicates that both strategy 1 and strategy 2 of MCGS
consistently deliver results within 24 hours across all the mentioned problems.

In all problems, ZERO1 is not utilized, indicating that it is slower compared
to the others. Therefore, ZERO1 may not be necessary.

The signi�cant contribution of this paper is the introduction of a novel com-
putational method for comprehensive Gröbner systems, achieved by integrating
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several existing methods using parallel processing. This paper presents a new
option for computing comprehensive Gröbner systems, distinct from CGS1 and
CGS2, which are known for their e�ectiveness.
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