
SUT Journal of Mathematics
Vol. ??, No. ? (20??), 1–???

Algorithms for computing Kashiwara operators and
s-parametric annihilators associated with isolated

hypersurface singularities

Shinichi Tajima, Katsusuke Nabeshima and Katsuyoshi Ohara

(Received ???? ??, 20??)

Abstract. The s-parametric annihilators and local b-functions associated with
isolated hypersurface singularities are considered in the context of symbolic com-
putation. A method is described for computing Kashiwara operators associated
with an isolated hypersurface singularity. As an application, a new efficient
method is proposed for computing generators of the s-parametric annihilators
and local b-functions. The key tool of our approach is the Poincaré-Birkhoff-
Witt algebra.
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§1. Introduction

In this paper, we consider local b-functions associated with isolated hyper-
surface singularities and the s-parametric annihilators in the context of sym-
bolic computation. By utilizing Poincaré-Birkhoff-Witt algebra, we provide
a method for computing “bon opérateur” introduced by M. Kashiwara. We
show, as an application, that kashiwara operators introduced in [12], can be
effectively used for computing local b-functions.

In [29, 31], M. Sato introduced the notion of b-functions in the study on
prehomogeneous vector spaces and conjectured their existence and the ratio-
nality of their roots for arbitrary holomorphic functions. In [4, 5], I. N. Bern-
stein independently defined b-functions in his study on fundamental solutions
of linear partial differential equations with constant coefficients. He proved
that any non-zero polynomial has a non-zero b-function. Soon thereafter, in
[6, 7], J. E. Björk extended the result of I. N. Bernstein to show the existence
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of b-functions associated with holomorphic functions. In [11], M. Kashiwara
investigated b-functions in the context of algebraic analysis and provided a
framework for studying b-functions. More precisely, let DX denote the sheaf,
on a complex manifold X, of linear partial differential operators with holo-
morphic coefficients. Let DX [s] = DX ⊗C C[s] where s is an indeterminate
that commutes with all differential operators. Let f be a non-zero holomor-
phic function on X. M. Kashiwara introduced the s-parametric annihilator
AnnDX [s](f

s) and the cyclic DX [s]-module Nf as

Nf = DX [s]f s = DX [s]/AnnDX [s](f
s).

M. Kashiwara proved in [12] the existence of b-functions and the rationality
of the roots of b-functions. He also determined, by using the fact that a holo-
morphic function is integral over its Jacobian ideal, the characteristic variety
of Nf . Using this result, M. Kashiwara proved the existence in AnnDX [s](f

s) of
partial differential operators, called “bon opérateur” in French in the literature
[8], of the form

P = sm +A1(x,
∂
∂x)s

m−1 +A2(x,
∂
∂x)s

m−2 + · · ·+Am(x, ∂
∂x),

where Aj(x,
∂
∂x) ∈ DX is a differential operator of order at most j.

Definition 1.1. We call an annihilator of the form P above, Kashiwara op-
erator for b-functions.

Note that the Kashiwara operator named above is completely different from
Kashiwara operators used in the theory of quantized enveloping algebra.

In [33], T. Yano developed the theory of b-functions. He studied the struc-
ture of s-parametric annihilators in an explicit manner and computed many in-
teresting b-functions. In [8], J. Briançon, M. Granger et al considered Newton
non-degenerate singularities and gave an algorithm for computing b-functions
associated with Newton non-degenerate singularities. Notably, the Kashiwara
operators play a definitive role both in [8, 33]. See also [1].

In [26, 27], T. Oaku gave a general algorithm for computing b-functions that
can be applied to an arbitrary polynomial. The main tool in his approach is
Gröbner basis computation in the Weyl algebra. In [9], J. Briançon and Ph.
Maisonobe showed that s-parametric annihilators can be computed by utilizing
Poincaré-Birkhoff-Witt algebras. See [3, 10, 15, 19] for the implementation
of the algorithms. These two approaches due to T. Oaku, J. Briançon and
Ph. Maisonobe are regarded as standard methods for computing b-functions.
However, since the cost of Gröbner basis computation in non-commutative
rings is quite high, it is difficult in general to compute b-functions even for the
case of isolated hypersurface singularities. It is desirable to design algorithms
which do not require non-commutative Gröbner basis computation.
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The aim of this paper is to propose an alternative approach for computing
local b-functions associated with isolated hypersurface singularities and the
s-parametric annihilators. We provide, upon utilizing the Poincaré-Birkhoff-
Witt algebra, an effective method for computing Kashiwara operators. We
also show as an application, a method for computing local b-functions.

This paper is organized as follows. In Section 2, we briefly review our previ-
ous method and the notations that will be utilized in this paper. In Section 3,
we discuss the Poincaré-Birkhoff-Witt algebra and s-parametric annihilators,
and present algorithms for computing s-parametric annihilators. In Section 4,
we introduce algorithms for computing Kashiwara operators and generators
of s-parametric annihilators. In Section 5, we discuss local b-functions and
s-parametric annihilators.

§2. Preliminaries

Let X be an open neighborhood of the origin O of the n-dimensional complex
space Cn with coordinate x = x1, . . . , xn and let OX be the sheaf on X of
holomorphic functions, OX,O the stalk at the origin of OX .

We assume that ℓ polynomials f1, . . . , fℓ in K[x] satisfy the condition {x ∈
X | f1(x) = · · · = fℓ(x) = 0} = {O}, where K is a field of characteristic
zero. Let IO be the ideal generated by f1, . . . , fℓ in OX,O. Let I be the ideal
generated by f1, . . . , fℓ in the polynomial ring K[x].

2.1. Solving extended ideal membership problem

Here we briefly review our previous method for solving extended ideal mem-
bership problems for the local ring [20, 22].

Let fix a term order ≻ on x. Let

ϵi =
( (i+1)th

fi, 0, . . . , 0, 1, 0, . . . , 0
)
∈ (K[x])ℓ+1

where 1 ≤ i ≤ ℓ.
Consider a module M generated by ϵ1, ϵ2, . . . , ϵℓ in (K[x])ℓ+1 and its re-

duced Gröbner basis GM w.r.t. a POT (position over term) module order in
(K[x])ℓ+1. Set

G = {gj ∈ K[x] | (gj , aj1, aj2, . . . , ajℓ) ∈ GM , gj ̸= 0} ,
RG = {(gj , aj1, aj2, . . . , ajℓ) ∈ (K[x])ℓ+1 | (gj , aj1, aj2, . . . , ajℓ) ∈ GM , gj ̸= 0},
Syz =

{
(d1, . . . , dℓ) ∈ (K[x])ℓ

∣∣ (0, d1, . . . , dℓ) ∈ GM

}
.
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Then, it is known that the set G is the reduced Gröbner basis of I w.r.t. ≻
in K[x], (gj , aj1, aj2, . . . , ajs) ∈ RG satisfies gj =

∑ℓ
i=1 ajifi, and the set Syz

is the reduced Gröbner basis of the module of syzygies of f1, f2, . . . , fℓ.

Procedure 1 Extgb syz

Specification Extgb syz([f1, . . . , fℓ],≻)
Input: f1, . . . , fℓ ∈ K[x] with {x ∈ X|f1(x) = · · · = fℓ(x) = 0} = {O},
[f1, . . . , fℓ] is a list of ordered polynomials. ≻: a term order.
Output: (G,RG, Syz).
BEGIN
GM ← Compute the reduced Gröbner basis of a module generated by ϵ1, ϵ2,

. . . , ϵℓ in (K[x])ℓ+1;
G← {gj ∈ K[x] | (gj , aj1, aj2, . . . , ajℓ) ∈ GM , gj ̸= 0} ;
RG ← {(gj , aj1, aj2, . . . , ajℓ) ∈ (K[x])ℓ+1 | (gj , aj1, aj2, . . . , ajℓ) ∈ GM , gi ̸= 0};
Syz ←

{
(d1, d2, . . . , dℓ) ∈ (K[x])ℓ

∣∣ (0, d1, d2, . . . , dℓ) ∈ GM

}
;

return (G,RG, Syz);
END

Lemma 2.1 ([20]). Let h be a polynomial in K[x]. Then, h ∈ IO if and only
if there exists u ∈ I : h such that u /∈ m, where I : h = {u ∈ K[x]|uh ∈ I} is
the ideal quotient in K[x] and m is an ideal generated by x1, . . . , xn.

Suppose that h ∈ K[x] and h ∈ IO. Then, there exits u ∈ I : ⟨h⟩ such that
u(O) ̸= 0 in K[x]. As uh ∈ I, there exits q1, q2, . . . , qℓ ∈ K[x] such that

uh = q1f1 + q2f2 + · · ·+ qℓfℓ.

Let G = {g1, . . . , gr} be a Gröbner basis of I w.r.t. ≻ in K[x]. Then,
Procedure 1 returns (gj , aj1, aj2, . . . , ajℓ) ∈ RG ⊂ (K[x])ℓ+1 that satisfies

gj = aj1f1 + aj2f2 + · · ·+ ajℓfℓ

where 1 ≤ j ≤ ℓ. As uh can be reduced to 0 by the Gröbner basis {g1, . . . , gr},
that satisfy

uh = b1g1 + b2g2 + · · ·+ brgr

can be obtained by the division algorithm. Therefore,

uh =

 r∑
j=1

bjaj1

 f1 +

 r∑
j=1

bjaj2

 f2 + · · ·+

 r∑
j=1

bjajℓ

 fℓ,

namely, qi =

 r∑
j=1

bjaji

, for 1 ≤ i ≤ ℓ.

This method will be utilized in Procedure 2.
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2.2. Integral dependence relation

Definition 2.2 (Integral dependence relation). Let J be an ideal in a ring R.
An element h ∈ R is said to be integral over J if there exists an integer λ and
ai ∈ J i, i = 1, 2, . . . , λ, such that

hλ + a1h
λ−1 + a2h

λ−2 + · · ·+ aλ−1h+ aλ = 0.

The smallest number λ that satisfies the equation above, is called integral
number of h w.r.t. J . The equation above is called an integral dependence
relation of h over J .

The generalization of the integral dependence relation is the following.

Definition 2.3 (Generalized integral dependence relation). Let h be integral
over J , λ the integral number of h w.r.t. J and k a non-zero natural number
with k < λ. If there exists b ∈ R and ai ∈ J i, i = 1, 2, . . . , k, such that

bhk + a1h
k−1 + a2h

k−2 + · · ·+ ak−1h+ ak = 0,

then, we call the equation above a generalized integral dependence relation of
h over J .

We consider integral number and generalized integral dependence relations
in OX,O. The computation methods of integral numbers and generalized inte-
gral dependence relations are described in [20, 22, 23].

§3. Poincaré-Birkhoff-Witt algebra and s-parametric annihilator

In this section, we first recall some basics on the Poincaré-Birkhoff-Witt alge-
bra and s-parametric annihilators. Next, we give a basic procedure and two
algorithms.

Let f be a holomorphic function defined on X. We assume throughout this
paper that f has an isolated singularity at the origin O. More precisely, let
Sing(f) be the singular set in X of f :

Sing(f) =

{
x ∈ X

∣∣∣∣ f(x) = ∂f

∂x1
(x) = · · · = ∂f

∂xn
(x) = 0

}
.

Then the singular set in X is the origin O i.e. Sing(f) = {O}. Let DX

denote the sheaf on X of linear partial differential operators with holomorphic
coefficients.
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3.1. Poincaré-Birkhoff-Witt algebra and s-parametric annihilator

Let DX [s, ∂
∂t ] be the Poincaré-Birkhoff-Witt algebra with

sP

(
x,

∂

∂x

)
= P

(
x,

∂

∂x

)
s,

∂

∂t
P

(
x,

∂

∂x

)
= P

(
x,

∂

∂x

)
∂

∂t
,

for P (x, ∂
∂x) ∈ DX , and

s
∂

∂t
− ∂

∂t
s =

∂

∂t
.

Note that, s corresponds to (− ∂
∂t)t.

Let

T0 = s+ f
∂

∂t
, Ti =

∂

∂xi
+
∂f

∂xi

∂

∂t
, i = 1, 2, . . . , n.

Let IPBW be the left ideal in DX [s, ∂
∂t ] generated by T0, T1, . . . , Tn, and let

AnnDX [s](f
s) be the annihilator in DX [s] of f s:

IPBW = (T0, T1, T2, . . . , Tn),

AnnDX [s](f
s) = {P (s) ∈ DX [s] | P (s)f s = 0}.

J. Briançon and Ph. Maisonobe [9] obtained the following.

Theorem 3.1. The following holds.

IPBW ∩ DX [s] = AnnDX [s](f
s).

We refer the reader to [2, 3] for the proof. See also [27, 28] for a classical
approach for computing s-parametric annihilators.

Note that, for 1 ≤ i, j,≤ n,

∂f

∂xj

∂

∂xi
− ∂f

∂xi

∂

∂xj
=

∂f

∂xj
Ti −

∂f

∂xi
Tj

are in IPBW ∩ DX [s] = AnnDX [s](f
s). Note that T. Yano [33] showed the

following.

Proposition 3.2. Assume that f has an isolated singularity at the origin.
Then, the following holds.

AnnDX [s](f
s) ∩ DX =

∑
DX

(
∂f

∂xj

∂

∂xi
− ∂f

∂xi

∂

∂xj

)
.

We give some examples for illustration.
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Example 3.3. Let a0(x), a1(x), . . . , an(x) be holomorphic functions such that

(3.1) a0(x)f(x) + a1(x)
∂f

∂x1
+ a2(x)

∂f

∂x2
+ · · ·+ an(x)

∂f

∂xn
= 0

Then,

a0T0 + a1T1 + · · ·+ anTn = a0s+ a1
∂

∂x1
+ a2

∂

∂x2
+ · · ·+ an

∂

∂xn
∈ DX [s]

holds. Since a0To + a1T1 + · · ·+ anTn ∈ IPBW , we have

a0s+ a1
∂

∂x1
+ a2

∂

∂x2
+ · · ·+ an

∂

∂xn
∈ AnnDX [s](f

s).

Note that T. Yano [33, p. 135, Th. 2.21] proved the following

Proposition 3.4. Assume that f has an isolated singularity at the origin,
Then, AnnDX [s](f

s)∩ (DXs+DX) is generated by the first order annihilators
given in Proposition 3.2 and Example 3.3.

It is easy to see that, in the Poincaré-Birkhoff-Witt algebra DX [s, ∂
∂t ], the

following relations holds.

f2
(
∂

∂t

)2

= f
∂

∂t
T0 − (s− 1)T0 + s(s− 1),

f
∂f

∂xi

(
∂

∂t

)2

=

(
f
∂

∂t
+ 1

)
Ti −

∂

∂xi
T0 + (s− 1)

∂

∂xi
,

∂f

∂xi

∂f

∂xj

(
∂

∂t

)2

=
∂f

∂xi

∂

∂t
Tj −

∂

∂xj
Ti +

∂2

∂xi∂xj
+

∂2f

∂xi∂xj

∂

∂t
,

where 1 ≤ i, j ≤ n.

Now we define L
(2)
0 , L

(2)
i , L

(2)
i,j as

L
(2)
0 = s(s− 1)− f2

(
∂

∂t

)2

,

L
(2)
i = (s− 1)

∂

∂xi
− f ∂f

∂xi

(
∂

∂t

)2

,

L
(2)
i,j =

∂2

∂xi∂xj
+

∂2f

∂xi∂xj

(
∂

∂t

)
− ∂f

∂xi

∂f

∂xj

(
∂

∂t

)2

.

Notice that these operators L
(2)
0 , L

(2)
i , L

(2)
i,j are in the ideal IPBW .
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Example 3.5. Let a0(x), ai(x), i = 1, 2, . . . , n, ai,j(x), 1 ≤ i ≤ j ≤ n be
holomorphic functions. Let

r1(x) =
∑
i

ai(x)
∂f

∂xi
, r2(x) =

∑
i,j

ai,j(x)

(
∂f

∂xi

)(
∂f

∂xj

)
.

Assume that a0(x), r1(x), r2(x) satisfy the following

(3.2) a0(x)f(x)
2 + r1(x)f(x) + r2(x) = 0.

Let R(2) = a0(x)L
(2)
0 +

∑
i

ai(x)L
(2)
i +

∑
i,j

ai,j(x)L
(2)
i,j .

Then, R(2) ∈ IPBW and

R(2) = a0(x)(s
2 − s) + (s− 1)

∑
i

ai(x)
∂

∂xi
+

∑
i,j

ai,j(x)
∂2

∂xi∂xj

+
∑
i,j

ai,j(x)
∂2f

∂xi∂xj

(
∂

∂t

)
.

Now we can utilize T0 = s + f ∂
∂t , Ti = ∂

∂xi
+ ∂f

∂xi

∂
∂t , i = 1, 2, . . . , n to

eliminate ∂
∂t . Let u1(x), b0(x), bi(x), i = 1, 2, . . . , n be holomorphic function

such that

(3.3) u1(x)

∑
i,j

ai,j(x)
∂2f

∂xi∂xj

+ b0(x)f(x) +
∑
i

bi(x)
∂f

∂xi
= 0.

Then,

u1(x)

a0(x)(s2 − s) + (s− 1)
∑
i

ai(x)
∂

∂xi
+
∑
i,j

ai,j(x)
∂2

∂xi∂xj


+b0(x)s+

∑
i

bi(x)
∂

∂xi

belongs to IPBW ∩ DX [s] = AnnDX [s](f
s).

Notably, for the case where a0(x) = u1(x) = 1, the annihilating operator
constructed in the example above is a Kashiwara operator. Note also that
the relations (3.1), (3.2) can be regarded as a generalization of integral de-
pendence relation, in the local ring, of f with respect to the Jacobian ideal
( ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

).

Recall that T. Yano [33, p.150-p. 151, Prop 2.31] proved the following.
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Proposition 3.6. Assume that f has an isolated singularity at the origin and
the integral number of f w.r.t. the Jacobian ideal is equal to 2. Assume that

(i)
∑

i,j ai,j(x)
∂2f

∂xi∂xj
in Example 3.5 is not in the ideal (f, ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xn

),

(ii) there exist a Kashiwara operator of order 3.

Then, AnnDX [s](f
s) ∩ (DXs

2 + DXs + DX) is generated by the first order
annihilators given in Proposition 3.2 and Example 3.3, and the second order
annihilators constructed in Example 3.5.

An algorithm for solving system of equations of the forms (3.3) is in [20].

3.2. Algorithms for computing first and second order annihilators

First and second order annihilators were discussed in Section 3.1. Example 3.3
and 3.5 give computation methods of the first and second order annihilators.
Here, we summarize the methods as algorithms.

Procedure 2 that computes standard bases of the ideal quotient (f1, . . . , fℓ) :
f and syzygies of [f, f1, . . . , fℓ], is the main part of Algorithm 1 and Algo-
rithm 2 for computing first and second order annihilators.

Procedure 2 Ann syz

Specification Ann syz(f, [f1, . . . , fℓ],≻)
Input: f, f1, . . . , fℓ ∈ K[x]. ≻: a term order on x. ({x ∈ X|f(x) = f1(x) =
· · · = fℓ(x) = 0} = {O}, [f1, . . . , fℓ] is a list of ordered polynomials.)
Output: P ⊂ K[x]ℓ+1: ∀(p0, p1, . . . , pℓ) ∈ P , p0f + p1f1 + · · ·+ pℓfℓ = 0.
BEGIN
P ← ∅; I ← Make an ideal generated by f1, . . . , fℓ in K[x];
(G,RG, Syz)← Extgb syz([f1, . . . , fℓ],≻);
Q← Compute a basis of the ideal quotient I : f in K[x];
SB ← Compute the reduced standard basis of (Q) in OX,O;
while SB ̸= ∅ do

Select sb from SB; SB ← SB\{sb};
U ← Compute a basis of the ideal quotient (Q) : sb in K[x];
u← Select u from U such that u(O) ̸= 0;
(b1, . . . , br)← Compute (b1, . . . , br) by dividing usbf by G = {g1, . . . , gr};

/* usbf =
∑r

i=1 bigi */
(p1, . . . , pn)← (

∑r
i=1 biai1,

∑r
i=1 biai2, . . . ,

∑r
i=1 biain)

where gj =
∑ℓ

i=1 ajifj , (gj , aj1, . . . , ajn) ∈ RG;
(p′1, . . . , p

′
n)← Reduce (p1, . . . , pn) by Syz;

P ← P ∪ {((−1)usb, p′1, . . . , p′n)};
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end-while
return P ;
END

Note that the standard bases can be computed via local cohomology classes
associated with the ideal. See [21].

We introduce an algorithm for computing first order annihilators as Algo-
rithm 1.

Algorithm 1 (First order partial differential operators)

Input: f ∈ K[x]. ≻: a term order. (Sing(f) = {O} in Cn.)
Output: P ⊂ AnnDX [s](f

s): a set of first order partial differential operators

whose highest power of s is 1 (i.e. a0s +
∑n

i=1 ai
∂
∂xi

where a0, a1, . . . , an ∈
K[x]).
BEGIN
P ← ∅;
G← Ann syz(f, [ ∂f∂x1

, . . . , ∂f
∂xn

],≻);
while G ̸= ∅ do

Select (a0, a1, . . . , an) from G; G← G\{(a0, a1, . . . , an)};
P ← P ∪ {a0s+

∑n
i=1 ai

∂
∂xi
};

end-while
return P ;
END

Let a0s+
∑n

i=1 ai
∂
∂xi

be a first order partial differential operator in AnnDX [s]

(f s) where a0 ̸= 0, a1, . . . , an ∈ K[x]. As Ann syz computes the reduced
standard basis SB of the ideal quotient ( ∂f

∂x1
, . . . , ∂f

∂xn
) : f in Algorithm 1,

thus a0 belongs to the ideal (SB). Therefore, the output of Algorithm 1 and
{ ∂f
∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤ i, j ≤ n} generate first order partial differential operators

whose highest power of s, is less than or equal to 1.

Example 3.7. Let us consider f = x4+ y14+xy11 in C[x, y] and let IPBW =
(s + f ∂

∂t ,
∂
∂x + ∂f

∂x
∂
∂t ,

∂
∂y + ∂f

∂y
∂
∂t) in DX [s, ∂

∂t ]. Then, we obtain the following

relations that are from the output of Ann syz(f, [∂f∂x ,
∂f
∂y ]).

(x+ 14
11y

3)f + (−1
4x

2 − 7
22xy

3)∂f∂x + (− 3
44xy −

1
11y

4)∂f∂y = 0,

(−1331y2 + 10976)y5f + (13314 xy7 − 2744xy5 + 121
2 y

10)∂f∂x
+(−22x2 + 28xy3 + 363

4 y
8 − 784y6)∂f∂y = 0.

Hence, we gets the following two first order partial differential operators that
belong to IPBW ∩ DX [s].
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(x+ 14
11y

3)s+ (−1
4x

2 − 7
22xy

3) ∂
∂x + (− 3

44xy −
1
11y

4) ∂
∂y ,

(−1331y2 + 10976)y5s+ (13314 xy7 − 2744xy5 + 121
2 y

10) ∂
∂x

+(−22x2 + 28xy3 + 363
4 y

8 − 784y6) ∂
∂y .

Notice that {x+ 14
11y

3, y5} is a standard basis of the ideal quotient ( ∂f∂x ,
∂f
∂y ) :

f .

Next, we introduce an algorithm for computing second order annihilators
as Algorithm 2.

Algorithm 2 (Second order partial differential operators)

Input:f ∈ K[x]. ≻: a term order. (Sing(f) = {O} in Cn.)
Output: P ⊂ AnnDX [s](f

s): a set of second order partial differential opera-
tors whose highest power of s, is 2.
BEGIN
P ← ∅; J1 ← {f · ∂f

∂x1
, . . . , f · ∂f

∂xn
};

J2 ← {( ∂f
∂xi

)( ∂f
∂xj

)|1 ≤ i ≤ j ≤ n};
G← Ann syz(f2, [J1 ∪ J2],≻);
while G ̸= ∅ do
Select (a0, a1, . . . , an, a1,1, a1,2, . . . , ai,j , . . . , an,n) from G;
G← G\{(a0, a1, . . . , an, a1,1, a1,2, . . . , ai,j , . . . , an,n)};
p← a0(s

2 − s) + (s− 1)
∑n

i=1 ai
∂
∂xi

+
∑

i≤j ai,j
∂2

∂xi∂xj
;

h←
∑

i≤j ai,j
∂2f

∂xi∂xj
;

H ← Ann syz(h, [f, ∂f
∂x1

, . . . , ∂f
∂xn

],≻);
while H ̸= ∅ do
Select (b′, b0, b1, . . . , bn) from H; H ← H\{(b′, b0, b1, . . . , bn)};
P ← P ∪ {b′p+ b0s+

∑n
i=1 bi

∂
∂xi
};

end-while
end-while
return P ;
END

In Algorithm 2, the procedure Ann syz computes the reduced standard
bases of the ideal quotient (f ∂f

∂x , f
∂f
∂y , (

∂f
∂x )

2, (∂f∂x )(
∂f
∂y ), (

∂f
∂y )

2) : f2 and (f, ∂f
∂x1

,

. . . , ∂f
∂xn

) :
∑

i,j ai,j(x)
∂2f

∂xi∂xj
. (See Example 3.5.) Hence, Algorithm 2 returns

generators of second order partial differential operators whose highest power
of s, is 2.

Example 3.8. Let us consider f = x4 + y14 + xy11 in Example 1, again.
Then, Algorithm 2 outputs the following three second order partial differential
operators that belong to IPBW ∩ DX [s].
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p1 = (1331y2 − 10976)x(s2 − s) + (s − 1)(392x2 ∂
∂x(

54571
392 x

2 + 1568xy) ∂
∂y ) +

(588x3− 1331
16 x

3y2− 91
2 y

11)( ∂
∂x)

2+(−54571
1568 x

3− 363
8 x

2y3− 28x2y− 11
4 xy

6+
7
2y

9) ∂2

∂x∂y+(−14883
1568 x

2y− 2651
392 xy

4−56xy2− 1
56y

7)( ∂
∂y )

2+(214177 xy2+21560x)s

+(−57717
112 x

2y2 + 3626x2) ∂
∂x + (2034011568 x

2 − 99055
784 xy

3 + 2268xy − 41
56y

6) ∂
∂y ,

p2 = −x((1331y2 − 10976)y(s2 − s) + (190333392 x2 + 5488xy) ∂
∂x + (399328 xy +

17640
11 y2) ∂

∂y+(−190333
1568 x

3− 1331
16 x

2y3−686x2y)( ∂
∂x)

2+(−107811
1568 x

2y− 37147
784 xy

4

−4410
11 xy

2− 11
56y

7) ∂2

∂x∂y+(−1089
112 xy

2+ 1
11x−

759
112y

5− 644
11 y

3)( ∂
∂y )

2)+(185009196 x2+
124264

11 xy)s + (−134431
224 x3 − 3993

16 x
2y3 − 53704

11 x2y + 5
2y

9) ∂
∂x + (−77319

392 x
2y −

8635
98 xy

4 − 1568xy2 − 5
28y

7) ∂
∂y ,

p3 = −y((1331y2 − 10976)y(s2 − s) + (190333392 x2 + 5488xy) ∂
∂x + (399328 xy +

17640
11 y2) ∂

∂y+(−190333
1568 x

3− 1331
16 x

2y3−686x2y)( ∂
∂x)

2+(−107811
1568 x

2y− 37147
784 xy

4

−4410
11 xy

2− 11
56y

7) ∂2

∂x∂y+(−1089
112 xy

2+ 1
11x−

759
112y

5− 644
11 y

3)( ∂
∂y )

2)+(4791649 xy+
128184

11 y2)s − (9543271568 x
2y + 3993

16 xy
4 + 54684

11 xy2) ∂
∂x − (156453784 xy2 − 10

11x +
34595
392 y

5 + 17528
11 y3) ∂

∂y .

The reduced standard basis of (f ∂f
∂x , f

∂f
∂y , (

∂f
∂x )

2, (∂f∂x )(
∂f
∂y ), (

∂f
∂y )

2) : f2 is
{x, y}.

Note that the leading coefficients of p1, p2, p3 are

(1331y2 − 10976)x,−x(1331y2 − 10976)y,−y(1331y2 − 10976)y,

respectively. Thus, the highest power of s in p2 − (−x)p1, is 1. Therefore,
p2 is a redundant element. In order to keep the algorithm simple and under-
standability, we omit the optimization technique. One can easily delete the
redundant element to check the coefficients of s2.

§4. s-parametric annihilators

The existence of the Kashiwara operator in AnnDX [s](f
s) was proved by M.

Kashiwara. First, we introduce an algorithm for computing the Kashiwara
operator. Next, we present an algorithm for computing a basis of AnnDX [s](f

s)
where the integral number of f w.r.t. the Jacobian ideal is less than equal to
2, and the order of a Kashiwara operator is less than equal to 3.

4.1. Computing Kashiwara operators

As we describe in Theorem 3.1, a basis of AnnDX [s](f
s) can be obtained

by computing a Gröbner basis of IPBW w.r.t. a elimination term order
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∂
∂t ≫ s, x, ∂

∂x in K[x][s, ∂
∂t ,

∂
∂x ]. We are able to follow the same way to com-

pute a Kashiwara operator, namely, if we get a Kashiwara operator during
the Gröbner basis computation of IPBW , we break the computation. Algo-
rithm 3 for computing a Kashiwara operator is essentially the same as the
Buchberger algorithm. We omit several optimization techniques for comput-
ing non-commutative Gröbner bases in the algorithm. In Algorithm 3, S(p, q)

means an S-polynomial of the pair (p, q) and S(p, q)
G
means the reduction of

S(p, q) by G where p, q ∈ K[x][s, ∂
∂t ,

∂
∂x ], G ⊂ K[x][s, ∂

∂t ,
∂
∂x ] and main symbols

are s, ∂
∂t ,

∂
∂x . Likewise, g

h is the reduction of g by h where g, h ∈ K[x][s, ∂
∂t ,

∂
∂x ].

Let P be a Kashiwara operator in AnnDX [s](f
s), and let u ∈ K[x] such

that u(O) ̸= 0, Then, we also call uP a Kashiwara operator.

Algorithm 3 (Kashiwara operator)

Input: f ∈ K[x]. (Sing(f) = {O} in Cn.) ≻: a block term order such that
∂
∂t ≫ {s,

∂
∂x} ≫ x, and a graded degree term order is imposed on {s, ∂

∂x} with
s > ∂

∂x .
Output: a Kashiwara operator.
BEGIN
G← {s+ f ∂

∂t} ∪ {
∂
∂xi

+ ∂f
∂xi

∂
∂t |i = 1, 2, . . . , n};

P ← {(p, q)|p, q ∈ G, p ̸= q};
while P ̸= ∅ do

Select (p, q) from P ; P ← P\{(p, q)};
h← S(p, q)

G
in K[x][s, ∂

∂t ,
∂
∂x ];

if h is a Kashiwara operator then
return h;
end-if
if h ̸= 0 then
G′ ← ∅;
while G ̸= ∅ do

Select g from G;
if gh is a Kashiwara operator then

return gh;
end-if

G′ ← G′ ∪ {gh};
end-while
G← G′; P ← P ∪ {(h, g)|g ∈ G}; G← G ∪ {h};

end-if
end-while
END

Theorem 4.1. Algorithm 3 terminates in a finite number of steps and cor-
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rectly computes a Kashiwara operator.

Proof. As describe earlier in the algorithm, Algorithm 3 is essentially the
same as the Buchberger algorithm for computing a Gröbner basis. Thus,
Algorithm 3 terminates in a finite number of steps.

Let

P = sm +A1(x,
∂
∂x)s

m−1 +A2(x,
∂
∂x)s

m−2 + · · ·+Am(x, ∂
∂x),

be a Kashiwara operator in AnnDX [s](f
s) where Aj(x,

∂
∂x) ∈ DX is a differ-

ential operator of order at most j. Then, there exists u ∈ K[x] such that
u(O) ̸= 0 and uP ∈ K[x][s, ∂

∂t ,
∂
∂x ].

Let G be the reduced Gröbner basis of the ideal IPBW generated by {s +
f ∂
∂t} ∪ {

∂
∂xi

+ ∂f
∂xi

∂
∂t |i = 1, 2, . . . , n} w.r.t. the term order described in Algo-

rithm 3 in K[x][s, ∂
∂t ,

∂
∂x ]. Then, since P ∈ AnnDX [s](f

s), we have uP ∈ IPBW

inK[x][s, ∂
∂t ,

∂
∂x ]. Hence, there exist g1, . . . , gd ∈ G such that the leading terms

of g1, . . . , gd, in {s, ∂
∂t ,

∂
∂x}, divide s

m, and there exist a1, . . . , ad ∈ K[x] such
that

a1lc(g1) + a2lc(g2) + · · ·+ adlc(gd) = u

where lc(g1), lc(g2), . . . , lc(gd) ∈ K[x] are the leading coefficients of g1, . . . , gd,
respectively. Since u has a non-zero constant term, at least one of lc(g1), lc(g2),
. . . , lc(gd) must have a non-zero constant term as well. Without loss of gen-
erality, suppose that lc(g1) has a non-zero constant term. Since the graded
degree term order is used on {s, ∂

∂x} and lc(g1)(O) ̸= 0, we conclude that g1 is a
Kashiwara operator. Hence, G includes a Kashiwara operator that is obtained
by the Buchberger algorithm. Therefore, Algorithm 3 correctly computes a
Kashiwara operator in DX [s].

As we know Proposition 3.6, we can replace “h is a Kashiwara opera-
tor” and “gh is a Kashiwara operator” with “h is a Kashiwara operator with
degs(h) ≤ 2” and “gh is a Kashiwara operator with degs(h) ≤ 2” in Algo-
rithm 3, respectively, if the integral number of f w.r.t. the Jacobian ideal is
≤ 2 where degs(h) is the highest power of the variable s in h.

Algorithm 3 has been implemented by the third author in the computer
algebra system Risa/Asir [25].

Example 4.2. Let us consider f = x4 + y14 + xy11 in Example 1, again.
Then, Algorithm 3 outputs the following Kashiwara operator that belongs to
IPBW ∩ DX [s].

(8348032y2 − 68841472)s3 + (2458624x ∂
∂x + 1341648x ∂

∂y + 14751744y ∂
∂y +

10245312y2 − 56548352)s2 + (526848x2( ∂
∂x)

2 − 15972x2( ∂
∂x)(

∂
∂y )−
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351232xy( ∂
∂x)(

∂
∂y ) + 1443288xy2 ∂

∂x − 87120xy( ∂
∂y )

2 − 1053696y2( ∂
∂y )

2 −
6409984x ∂

∂x + 1026564x ∂
∂y + 7024640y ∂

∂y + 5617304y2 − 24235008)s+

(−99568y11 − 130438x3y2 + 790272x3)( ∂
∂x)

3 + (8232y9 − 6468xy6 −
106722x2y3 − 79860x3 − 37632x2y)( ∂

∂x)
2( ∂

∂y ) + (−84y7 − 31812xy4 −
22869x2y + 12544xy2)( ∂

∂x)(
∂
∂y )

2 + (−3042y5 − 297xy2 + 25088y3)( ∂
∂y )

3 +

(−1392468x2y2 + 7639296x2)( ∂
∂x)

2 + (−11844y6 − 594330xy3 − 381150x2 +

470400xy)( ∂
∂x)(

∂
∂y ) + (−61278y4 − 76824xy − 213248y2)( ∂

∂y )
2 +

(−2535918xy2 + 12117504x)( ∂
∂x) + (−448200y3 − 76230x+ 1467648y)( ∂

∂y ).

Note that the highest power of s in the Kashiwara operator, is 3.

4.2. s-parametric annihilators

As we describe in Proposition 3.4 and Proposition 3.6, one can construct an
algorithm for computing a basis of AnnDX [s](f

s) by utilizing Algorithm 1, 2
and 3, if the integral number of f w.r.t. the Jacobian ideal is ≤ 2 and the
order of a Kashiwara operator is ≤ 3.

Here, we summarize the fact as follows.

Algorithm 4 (Annihilators of f s)

Input: f ∈ K[x].(Sing(f) = {O} in Cn.) The integral number of f w.r.t. the
Jacobian ideal is ≤ 2.
Output: P ⊂ AnnDX [s](f

s): if the order of a Kashiwara operator is ≤ 3,

P ∪ { ∂f
∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤ i < j ≤ n} is a basis of AnnDX [s](f

s).

BEGIN
p← Compute a Kashiwara operator by Algorithm 3;
k ← degs(p); P ← {p};
if k ≤ 3 then

j ← k;
else

j ← 3;
end-if
for i = 1 to j − 1 do

Q← Execute Algorithm i;
P ← P ∪Q;

end-for
return P ;
END
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Theorem 4.3. Algorithm 4 terminates in a finite number of steps and cor-
rectly computes a Kashiwara operator.

Proof. The termination of the algorithm follows from Algorithm 1, 2, 3.

If the order of a Kashiwara operator p is 1 i.e. p = s + A(x, ∂
∂x), then

any s-parametric annihilator can be reduced by p to a partial differential op-
erator that does not contain the variables s. Thus, by Proposition 3.2, all
s-parametric annihilators can be generated by p and { ∂f

∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤ i <

j ≤ n}.
If the order of a Kashiwara operator p is 2, then any s-parametric annihila-

tor can be reduced by p to a partial differential operator whose highest power
of s is less that equal to 1. By Proposition 3.4 and 3.2, P∪{ ∂f

∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤

i < j ≤ n} generate AnnDX [s](f
s) where P is the output of Algorithm 4.

For the same reason, if the order of a Kashiwara operator p is 3, then
by Proposition 3.6 and 3.2 P ∪ { ∂f

∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤ i < j ≤ n} generate

AnnDX [s](f
s). Otherwise, there is no guarantee that P ∪{ ∂f

∂xj

∂
∂xi
− ∂f

∂xi

∂
∂xj
|1 ≤

i < j ≤ n} generate AnnDX [s](f
s).

Note that only Algorithm 3 requires the non-commutative multiplication
rules. Algorithm 1 and 2 work in commutative polynomial ring K[x]. This is
an advantage of the algorithm.

All algorithms introduced in this paper have been implemented in the com-
puter algebra system Risa/Asir [25]1. Here, we give results of comparisons be-
tween a Gröbner basis computation of IPBW in D[s, ∂

∂t ] (“GB for IPBW ∩D[s]”

in Table 1) and Algorithm 4 whereD = K[x, ∂
∂x ]. (An algorithm for computing

a Gröbner basis of IPBW in D[s, ∂
∂t ] has been also implemented in Risa/Asir,

like Algorithm 3. Notice that an element of IPBW ∩ D[s] is an s-parametric
annihilator.)

All tests presented in Table 1 have been performed on a machine [OS:
Windows 10 (64 bit), CPU: Intel Core i9-7900 @ 3.30 GHz, RAM 128 GB].
“#” means the number of elements and “size” means the sum of all bit lengths
of each output. The time is given in second (CPU time) and “> 5h” means that
it takes more than five hours. Note that each time of Algorithm 4 includes
the time of computing the integral number. The block term order ≻ with
∂
∂t ≫ s ≫ ∂

∂x ≻
∂
∂y ≻

∂
∂z ≫ x ≻ y ≻ z, and the graded degree lexicographic

term order in each block is used.

The following polynomials define an isolated singularity at the origin in C2

or C3, the integral numbers are ≤ 2 and the orders of Kashiwara operators
are ≤ 3.

1The implementations are available at the following URL:
https://www.rs.tus.ac.jp/~nabeshima/softwares.html.
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f1 = x4 + x2y3 + y7 + y8,
f2 = x4 + xz4 + y3 + yz2 + y2z2,
f3 = x5 + x2z4 + y5 + yz4 + y2z4,
f4 = x6 + x4z4 + y7z + z8,
f5 = x5 + xy4 + xz5 + y3z4,
f6 = x4 + yz3 + xy7 + y11 + y12,
f7 = x2z + yz2 + xy4 + y6 + z3,
f8 = x6z + yz2 + xy4 + y6 + z4,
f9 = x2y + z4 + y5 + y4z + y3z2 + y4z2,
f10 = x3 + yz2 + y10 + xy7 + xz2.

The big advantage of Algorithm 4 is to make a smaller number of essen-
tial s-parametric annihilators that decide local b-function. The keys are the
Kashiwara operators, Algorithm 1 and 2. In particular, the Kashiwara opera-
tor makes the number possible to small. Therefore, Algorithm 4 is faster than
“GB for IPBW ∩D[s]” in speed.

In f1, f7, f8, f9, the size of Algorithm 4 is bigger than the other, because
the output is not reduced by any partial differential operators. However, in
f2, f3, f4, f5, f6, the size is smaller, because of the number of partial differential
operators.

Table 1: Comparison
f GB for IPBW ∩D[s] Algorithm 4

size # time size # time

f1 1269 7 0.8125 670 3 0.125

f2 1164 11 2.031 88 1 0.04688

f3 2243 13 11.55 1962 4 0.1875

f4 415 8 14.5 387 4 0.01563

f5 4129 20 3.047 2722 9 1.125

f6 32991 10 12.69 10962 4 1.219

f7 14359 11 73.95 41526 4 1.578

f8 8096 16 118.1 8389 4 19.92

f9 21388 13 719.5 679713 7 9.578

f10 − − >5h 13809 4 161

§5. Local b-functions

Let DX [s](f, ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

) be a left ideal in DX [s] generated by f, ∂f
∂x1

, ∂f
∂x2

,

. . . , ∂f
∂xn

. Then, according to [26, 27], the reduced local b-function b̃f,O of f at
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the origin O can be defined as a monic generator of the ideal(
AnnDX [s](f

s) +DX [s]

(
f,
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

))
∩ C[s].

M. Kashiwara [12] proved in general that the roots of b-function are neg-
ative rational numbers. For a rational number α, we consider a left ideal Iα
defined as

Iα = AnnDX [s](f
s) +DX [s]

(
f, ∂f

∂x1
, . . . , ∂f

∂xn

)
+DX [s](s− α),

and the DX -moduleMα = DX [s]/Iα.
Then, it is well-known that α is a root of the reduced b-function b̃f,O if and

only ifMα ̸= {0}, or equivalently,

AnnDX [s](f
s) +DX [s]

(
f,
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
+DX [s](s− α) ̸= DX .

Let Hn
{O}(OX) be the sheaf of the highest local cohomology supported at

the origin O. We have the following.

Proposition 5.1 ([11, 33]). Let α is a rational number. Then α is a root of
the reduced b-function b̃f,O if and only if

HomDX
(Mα,Hn

{O}(OX)) ̸= {0}.

Let

HTf
=

{
ψ ∈ Hn

{O}(OX)

∣∣∣∣ fψ =
∂f

∂x1
ψ = · · · = ∂f

∂xn
= 0

}
.

Since f has an isolated singularity at the origin O, HTf
is a finite dimensional

vector space. The dimension is equal to the Tjurina number τ defined to be
τ = dimC(OX,O/(f,

∂f
∂x1

, . . . , ∂f
∂xn

)). Since the ideal Iα contains f, ∂f
∂x1

, . . . , ∂f
∂xn

as generators, any solution in HomDX
(Mα,Hn

{O}(OX)) belongs to the finite
dimensional vector space HTf

.

Proposition 5.2. Let P1(s), P2(s), . . . , Pq(s) ∈ DX [s] be a set of generators
of the s-parametric annihilator AnnDX [s](f

s) of f . Then, the following holds.

HomDX
(Mα,Hn

{O}(OX)) =
{
ψ ∈ HTf

∣∣P1(α)ψ = · · · = Pq(α)ψ = 0
}
.

Notably, in this approach, a Gröbner basis of the s-parametric annihila-
tor is not required. Generally, the computational complexity of computing a
Gröbner basis of AnnDX [s] (f

s) + (f, ∂f
∂x1

, . . . , ∂f
∂xn

) is quite high. In order to
overcome the difficulty, we adopt the idea introduced by Levandovskyy and
Mart́ın-Morales [16], that is “to check roots of the b-function”.
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In several singularities, possible candidates of roots of local b-functions can
be obtained from the properties of the singularities, for instance, semi-weighted
homogeneous and Newton non-degenerate singularities. Here, we present the
outline of the computation method for semi-weighted homogeneous (isolated)
hypersurface singularity. The details are in [24].

Method (Semi-weighted homogeneous case)

Step 1: Compute a set P of s-parametric annihilators by Algorithm 4;

Step 2: Compute a set E of possible candidates of roots of the local b-functions;

Step 3: For each γ ∈ E, set

Iγ = P +DX [s]

(
f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
+DX [s](s− γ)

andMγ = DX [s]/Iγ . Compute

κγ = dimC(HomDX
(Mγ ,Hn

{O}(OX))).

If κγ ̸= 0, then γ is a root of the local b-function.

Step 4: If the sum of all κγ is the Milnor number of the singularity, then we
get all roots of b̃f,O.

An algorithm for computing κγ is introduced in [19], and the details of the
method for semi-weighted singularities are described in [24]. Notice that, in
Step 2,3 and 4, we do not need any non-commutative Gröbner basis.

Example 5.3. Let us consider a semi-weighted homogeneous polynomial f =
x4y + y6 + xy5 + x2y5 that defines an isolated singularity at the origin, the
Milnor number at the singularity is 19 and the integral number w.r.t. the
Jacobian ideal is 2. It takes 2.297 seconds for Algorithm 4 to return a set P of
s-parametric annihilators. From the weighted vector (5, 4) and the Poincaré
polynomial, we obtain, as possible candidates of roots of the local b-functions,
the following

E ∪ {γ + 1|γ ∈ E} ∪ {γ + 2|γ ∈ E}

where E = {− i
24 |i ∈ {9, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 34,

35, 39}}. (See [12, 24].) By computing each dimension of the vector space
Mγ , we obtain the following local b-function

b̃f,O =
∏
i∈E′

(s− i)
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where E′ = {− i
24 |i ∈ {9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27,

29, 30, 31}}. It takes 4.334 second for our implementation to get b̃f,O. If
we use the Risa/Asir function “bfct” that computes a b-function, then it takes
52.03 seconds because the function “bfct” computes a costly non-commutative
Gröbner basis.
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