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Abstract

The aim of this paper is to propose an alternative method for com-
putation with algebraic numbers, combining the interval arithmetic, a
kind of approximate numerical computation, and the estimation of a
certain measure of algebraic numbers called the Mahler measure, and
to show that this enables rigorous decision whether or not the result of
a successive application of ring operations (namely addition, subtrac-
tion and multiplication) to a given set of algebraic numbers α1, α2,
. . . , αn reduces to zero. For the purpose of numerical computation,
we regard Q as embedded into C, and by the value of an algebraic
number, we refer to its complex number value under this embedding.
We also assume that each of the input numbers αi is given in terms
of a polynomial fi(x) ∈ Z[x] vanishing at αi and an interval isolating
αi from the other roots of fi(x).

We sharpen inequalities on the Mahler measure after performing
ring operations among two algebraic numbers and we propose two
methods for applying interval computations and the Mahler measure
computations. One method computes both intervals and the Mahler
measures simultaneously. The other method utilizes a history of com-
putation to estimate the Mahler measures only when they are required.
We also report some experimental results of applying the methods to
construct two-dimensional convex hulls.
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1 Introduction

The aim of this paper is to propose an alternative method for computation
with algebraic numbers, combining the interval arithmetic and the estimation
of a certain measure of algebraic numbers called the Mahler measure (see
Definition 5), and to show that this enables rigorous decision whether or not
the result α of a successive application of ring operations (namely addition,
subtraction and multiplication) to a given set of algebraic numbers α1, α2,
. . . , αn reduces to zero.

In computation with algebraic numbers, exact arithmetic is possible (see
Discussion at the end of this paper) but can be costly. In such cases, it
is natural to attempt approximate numerical computation, which is usually
much more efficient, and to try to extract useful information. In this paper
we concentrate on using interval arithmetic (see 2.1.1), which is a form of
numerical computation, increasingly in wide use in situations where a more
rigorous treatment of computational errors than the ordinary single-value
floating-point arithmetic is desired. For the purpose of numerical compu-
tation, we regard Q as embedded into C, and by the value of an algebraic
number, we refer to its complex number value under this embedding. We also
assume that each of the input numbers αi is given in terms of a polynomial
fi(x) ∈ Z[x] vanishing at αi and an interval isolating αi from the other roots
of fi(x).

However, in general, the output from an algorithm based on exact arith-
metic, naively applied to an approximate input, may not be even close to
the true output; and even if we let the input approach the true value indefi-
nitely, the output may not approach the true output. This property is called
instability. For simplicity, let us concentrate on an algorithm consisting of
ring operations and branchings on equality conditions only. Although the
ring operations are continuous, the equality conditions do have incontinuity
at the very point where the two sides are equal, which causes the succeeding
computation to follow completely different paths. Thus instability arises in
the purest form if the problem itself is to decide whether or not zero is the
result of a certain sequence of computation. Such a problem is called a zero
determination.

Shirayanagi proposed a method for stabilizing Buchberger’s algorithm,
which computes the Gröbner basis of an ideal of a ring [29], [30]. The method
uses interval computation endowed with “zero rewriting.” Zero rewriting is
the rule that prescribes to replace any interval containing zero by a single
point zero whenever such an interval appears in the course of computation.
The underlying ideas of this method were generalized by Shirayanagi and
Sweedler as a theory of stabilizing algebraic algorithms [31]; an algorithm
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thus “stabilized” acquires the property that, if we let the input interval ap-
proach the true input value, then the output approaches what should be the
result of exact computation applied to the limit input value.

There is a delicate point with this method. For simplicity, suppose the
computation proceeds up to a certain point without zero rewriting. If the
interval I obtained at this point does not contain zero, then the corresponding
true value α, being contained in I, cannot be zero. On the other hand, if
I 3 0, one cannot confirm that α = 0 solely from this computation, since
this can also happen if α 6= 0 but the precision is insufficient. Since the true
value is not known, there is no way in general to know how far one needs to
raise the precision in order to separate it from zero if α 6= 0; in case α = 0,
this situation of uncertainty persists how far one raises the precision.

Our point is that, if α is the result of applying a succession of ring op-
erations on given algebraic numbers α1, α2, . . . , αn (see Definition 1 for a
precise formulation), one can find a ball B around the origin with positive
radius ε such that α can fall inside B only if it is zero. Such ε is called
a separation bound for α (see Definition 4). If one knows such a bound ε
together with an interval I assured to contain α, one can (a) decide that
α 6= 0 if 0 6∈ I; or (b) decide that α = 0 if 0 ∈ I ⊂ B; or otherwise (c) know
a precision of α required for decision, and by iterating the computation with
increased precisions (possibly more than once), one can reach (a) or (b) (see
Theorem 1).

Such ε can be found because, in principle, a polynomial f(x) ∈ Z[x]
vanishing at α can be derived from the given information on the αi. However,
computing f can be costly. In practice, a general framework for finding
such ε without computing f can be constructed by choosing a family X of
conditions (predicates) defined on Q satisfying the following requirements.
For X we propose to choose all assertions of upper estimates of the degree
and the Mahler measure, namely all conditions of the form “degα ≤ d and
M(α) ≤ A,” d ∈ N and A ≥ 1, where degα = [Q(α) : Q] and M(α) is the
Mahler measure of α. The requirements are as follows: (1) for each αi ∈ Q
given as input, a predicate ξ ∈ X satisfied by αi can be easily found; (2)
from two predicates ξ, η ∈ X, a third predicate ζ ∈ X such that “if α,
β ∈ Q satisfy ξ, η respectively, then α ∗ β satisfies ζ” can be easily found
(∗ ∈ {+,−,×}), and (3) from a predicate ξ ∈ X, a bound ε > 0 such that
“if α ∈ Q satisfies ξ, then either α = 0 or |α| ≥ ε” can be easily found (see
Theorem 2). Although there are known inequalities showing that our choice
of X fulfills the requirements (1)–(3) (see Proposition 1), we further improve
the inequalities for the recurrent step (2) in two ways (see Propositions 4
and 5; in fact, the latter also uses the approximate values of α, β to derive
ζ). Still the amount of computation for (1)–(3) is small. By pursuing these
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conditions using (1) and (2) along with the computation, and finally using
(3) just before the equality test, a separation bound is obtained. Note that,
if α is real, then its signature is also determined along with the decision that
α 6= 0.

Also, in a sense similar to the stabilization of algorithms by incorporating
the zero rewriting (see [31]), our method allows systematic conversion of an
algorithm consisting of ring operations and branchings on equality conditions
(and on signature conditions if the numbers are real), written in terms of
exact arithmetic, into one for algebraic numbers based on interval arithmetic
(see Section 3.2).

This paper is based on [26], [27], [28]. Johnson proposed a method using
interval arithmetic for real algebraic number computation [13]. However, his
method resorts to exact arithmetic when an interval contains zero. After
publication of [28], some works in the same direction as ours have been done
in the context of computational geometry; see [3], [20] and [17] for example.

The construction of the paper is as follows. In Section 2, after describing
our idea and the principle of zero determination that uses intervals and addi-
tional information on separation bounds, we review the definition and prop-
erties of the Mahler measure which we use in finding as separation bounds.
Also in this section, we refine the key inequalities on the Mahler measure to
be used in step (2). In Section 3, we discuss some methods of the principle
and show some examples. Finally, we summarize our results and describe
future directions.

2 Zero Determination of Algebraic Numbers

using Approximate Computation

2.1 Principle

2.1.1 Idea

In this section, we formulate in general terms our principle of zero determi-
nation for the result of a successive application of ring operations on given
algebraic numbers.

To clarify the concept of “the result of a successive application of ring
operations on given algebraic numbers,” the terminology of straight-line pro-
grams needs to be defined. A straight-line program here is a kind of a
division-free non-scalar straight-line program; see for instance [14], [10].
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Definition 1 (straight-line program) Let P be a polynomial belonging
to Z[x1, x2, . . . , xn]. A sequence (P1, P2, . . . , Pr) is called a straight-line pro-
gram for P if the following conditions are satisfied:

1. For each Pi (1 ≤ i ≤ r), either

Pi = xj, 1 ≤ j ≤ n,

or
Pi = Pj ∗ Pk, 1 ≤ j, k < i and ∗ ∈ {+,−,×}.

Here, Pj ∗ Pk is just a sequence of three symbols “Pj”, “+” (or “−” or
“×”) and “Pk”.

2. If we interpret ∗ ∈ {+,−,×} as a ring operation in Z[x1, x2, . . . , xn]
and substitute each Pi into either xj or Pj ∗Pk recursively, then P = Pr.

We say that an algebraic number α is represented in algebraic numbers α1,
α2, . . . , αn by a straight-line program when α = P (α1, α2, . . . , αn) for a
polynomial P ∈ Z[x1, x2, . . . , xn] and P is represented by a straight-line
program.

That is, by representing an algebraic number α by a straight-line program
in algebraic numbers αi’s, we specify the order of ring operations among αi’s
for obtaining α.

There are several different notions of intervals often used in interval arith-
metic, such as the usual bounded closed intervals in R and the rectangular
and the circular intervals in C. Also, the bounded closed interval arithmetic
can be constructed on different arithmetic on the endpoints, such as the exact
arithmetic on rational numbers or the floating-point arithmetic, and in the
case of floating-point arithmetic there are also different choices for the base of
numeration such as decimal or binary. There are a similar variety of choices
for the intervals in C (for a general reference see [1], for example). In order
to make the discussion independent of the specific choice of the intervals, we
set up the following definition.

Definition 2 (interval arithmetic system) Let K be either R or C.
A family I of connected compact subsets of K, given together with a

way to encode them in finite sequences in a finite alphabet, will be called an
“interval system” in K if, for every α ∈ K, there is a decreasing sequence
I1 ⊃ I2 ⊃ · · · of elements of I containing α such that, for every ε > 0,
all terms Iµ starting from a certain index µ0, depending on ε, satisfy Iµ ⊂
{x ∈ K | |x− α| < ε }. Such a sequence {Iµ} will be called an “approximate
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interval sequence” for α in I, and we also write {Iµ} → α if this holds. We
may also say that Iµ has precision µ in this context. If I is fixed, an element
of I will be simply called an “interval.”

By an “interval arithmetic system” we mean a quintuple I = (K, I,+,−,×)
in which I is an interval system in K, and each of ∗ ∈ {+,−,×} is a map
I × I → I, computable in terms of the given encoding, satisfying:

1. For any I, J ∈ I, I ∗ J contains { a ∗ b | a ∈ I, b ∈ J }.

2. If I, I ′, J , J ′ satisfy I ⊃ I ′ and J ⊃ J ′, then I ∗ J ⊃ I ′ ∗ J ′.

3. If {Iµ} → α and {Jµ} → β, where α, β ∈ K, then {Iµ ∗ Jµ} → α ∗ β.

In 1 and 3, the operation ∗ applied to the elements of K denotes the usual
operation +, − and × in K.

Note that these are minimal requirements focused on the condition 3. In
practice, as in the examples shown in Example 1 below, it is desirable to
make I ∗ J as close to { a ∗ b | a ∈ I, b ∈ J } as possible in order to attain
efficiency.

The following definition is a concept of evaluating a straight-line program
in an interval arithmetic system.

Definition 3 Let P = (P1, P2, . . . , Pr) be a straight-line program for a poly-
nomial P ∈ Z[x1, x2, . . . , xn]. Fix an interval arithmetic system (K, I,+,−,×)
and let I1, I2, . . . , In be intervals in I. We say that an interval I ∈ I is the
evaluation of the straight-line program P for intervals I1, I2, . . . , In, if I is
obtained by interval arithmetic among intervals I1, I2, . . . , In with the order
of operations as represented by the straight-line program P .

Fix an interval arithmetic system (K, I,+,−,×). Let α1, α2, . . . , αn ∈ K
be given algebraic numbers and {I1,µ}, {I2,µ}, . . . , {In,µ} be approximate
interval sequences for α1, α2, . . . , αn, respectively. Then, for a straight-line
program P for a polynomial P ∈ Z[x1, x2, . . . , xn], the interval sequence {Iµ},
where Iµ is the evaluation of the straight-line program P for intervals I1,µ,
I2,µ, . . . , In,µ, is an approximate interval sequence for α = P (α1, α2, . . . , αn).

Example 1 We show two examples for the case K = R, namely the one
based on exact rational arithmetic and the one based on floating-point arith-
metic.

By the interval arithmetic system based on exact rational arithmetic,
we mean a system (R, I,+,−,×) where I = { [a, b] | a, b ∈ Q, a ≤ b } and
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the operations +, −, × are defined by the traditional interval arithmetic
operations, namely if I1 = [a1, b1] and I2 = [a2, b2], then

I1 + I2 = [a1 + a2, b1 + b2], I1 − I2 = [a1 − b2, b1 − a2],

I1 × I2 = [minE,maxE], where E = {a1a2, a1b2, b1a2, b1b2}.
An example of approximate interval sequence {Iµ} for α can be given by

putting Iµ = [α−µ , α
+
µ ] where α

−
µ and α+

µ are the smaller and the larger of the
µth and the (µ+ 1)th truncations of the continued fraction expansion of α.

For the interval arithmetic system based on floating-point arithmetic, the
above formulation is actually an oversimplification. For instance, consider
the floating-point arithmetic with base 10, and let D be the set of all finite
decimals (including the integers). We put I = {[a, b] | a, b ∈ D, a ≤ b},
but each of the operations +, −, × should actually be regarded a family
of operations {∗µ} parameterized by the computational precision µ. Note
that D has a filtration by the subsets Dµ consisting of 0 and the decimals
having at most µ significant digits, and I by the subsets Iµ consisting of the
intervals whose endpoints are in Dµ. For each µ ∈ N and ∗ ∈ {+,−,×}, the
operation ∗µ: Iµ × Iµ → Iµ takes the pair (I1, I2) ∈ Iµ × Iµ to the smallest
interval in Iµ containing {x ∗ y | x ∈ I1, y ∈ I2 }. This is well defined since
the only accumulation point Dµ is 0, which lies in Dµ.

However, specifying the computational precision with the operation would
make the notation rather cumbersome. Instead, we stick to the previous
notation, and we abuse it by making the following convention in the case
of floating-point interval arithmetic. If we say that {Iµ} is an approximate
interval sequence for α, we always imply that Iµ ∈ Iµ for every µ. If {Iµ} → α
and {Jµ} → β, then applying an operation ∗ ∈ {+,−,×} to Iµ and Jµ will
always mean applying the operation ∗µ to Iµ and Jµ. Note that, with this
understanding, the “continuity” condition of the definition of the interval
arithmetic system is fulfilled; namely if {Iµ} → α and {Jµ} → β, then
{Iµ ∗µ Jµ} → α ∗β for ∗ ∈ {+,−,×}. Thus, if α is represented by a straight-
line program P = (P1, P2, . . . , Pr) in terms of α1, α2, . . . , αn, and if {Ii,µ}
is an approximate interval sequence for each αi, then to evaluate P for I1,µ,
I2,µ, . . . , In,µ is to iterate the following operations for j = 1, 2, . . . , r and
take the interval assigned to Pr at the final step: (1) if Pj = xk, then assign
Ik,µ to Pj, or (2) if Pj = Pk ∗ Pl, then apply ∗µ to the two intervals assigned
to Pk and Pl, and assign the result to Pj; if we denote the final interval by
Iµ, then {Iµ} is an approximate interval sequence for α.

For an algebraic number α represented by a straight-line program, we can
accurately determine that α is not equal to zero solely by numeric computa-
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tion (e.g., by using traditional interval computation with a sufficiently high
precision) if the true value of α is not zero.

When the true value of α is zero, if we carry out interval computation
at an arbitrarily high precision, then the resulting interval will contain zero.
Hence, as we saw in Section 1, we cannot determine zero in a finite number
of steps merely with traditional intervals. However, note that the width of
the resulting interval approaches 0 as the precision increases. Assuming that
we can compute a quantity ε > 0 such that “if α is not zero, then |α| ≥ ε,”
then, we can determine whether α is zero or not by comparing the resulting
interval with the above ε. This is the basis of our theory.

Definition 4 (separation bound) Let α be an algebraic number repre-
sented by a straight-line program in a certain number of given algebraic
numbers. If we know a number ε ∈ R, ε > 0, for which it is somehow assured
from the representation of α that |α| < ε implies α = 0, then we call ε a
separation bound for α.

We formulate the principle in terms of the following theorem.

Theorem 1 (principle of zero determination) Fix an interval arithmetic
system I = (K, I,+,−,×). Let α1, α2, . . . , αn ∈ K be algebraic numbers
and let α be an algebraic number represented in algebraic numbers α1, α2,
. . . , αn by a straight-line program P .

Let {Ii,µ}µ be an approximate interval sequence for αi, and let Iµ be the
evaluation of the straight-line program P for the intervals I1,µ, I2,µ, . . . , In,µ.

Finally, we assume that we know a separation bound ε for α.

1. If there is an integer µ such that 0 6∈ Iµ holds then α 6= 0. Furthermore,
if α is real, we can determine either α > 0 or α < 0 from the interval
Iµ. Conversely, if α 6= 0, then there is a finite precision µ0 such that
0 6∈ Iµ holds for any precision µ ≥ µ0.

2. If there is an integer µ such that 0 ∈ Iµ and max{ |c| | c ∈ Iµ } < ε,
then α = 0. Conversely, if α = 0, then 0 ∈ Iµ holds for any precision µ.
Moreover, there is a finite precision µ0 such that max{ |c| | c ∈ Iµ } < ε
holds for any precision µ ≥ µ0.

The proof is obvious due to the definitions of separation bounds and interval
arithmetic systems.

The problem is how to compute separation bounds. Furthermore, in our
setting, that is, if α is represented by a straight-line program, it is necessary
that a separation bound for α can be computed from separation bounds for
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the initially given αi’s. For this, we can use various polynomial norms and
heights.

For a polynomial P (x) =
∑d

i=0 aix
i, there are various norms of P . For

example,

‖P‖1 =
d∑

i=0

|ai|, ‖P‖2 =

(
d∑

i=0

|ai|2
)1/2

, ‖P‖∞ = max
0≤i≤d

{|ai|}.

Let α be a root of P (x) =
∑d

i=0 aix
i ∈ Z[x], where ad 6= 0. From Cauchy’s

inequality for the bound of roots of a polynomial,

|α| < 1 +
max{|a0|, . . . , |ad−1|}

|ad|

(see [22] for an example), we obtain

|α| < 1 + ‖P‖∞.

If α 6= 0, then 1/α is a root of Q(x) =
∑d

i=0 aix
d−i and ‖P‖∞ = ‖Q‖∞ holds,

we have ∣
∣
∣
∣

1

α

∣
∣
∣
∣
< 1 + ‖P‖∞,

that is,

|α| > 1

1 + ‖P‖∞
.

We can take ‖ · ‖1 or ‖ · ‖2 instead of ‖ · ‖∞ since the following inequalities
hold.

‖P‖∞ ≤ ‖P‖2 ≤ ‖P‖1

However, we use the Mahler measure among various norms and heights. We
describe the reason in the next section.

2.1.2 The Mahler Measure

Mahler defined a measure of a polynomial [19], which we will call the Mahler
measure of a polynomial. In this section, we review the definition of the
Mahler measure and its properties. We use symbols αi, βj, . . . for conjugates
for α, β, . . . , instead of input algebraic numbers from here to the end of
Section 2.
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Definition 5 (Mahler measure) The Mahler measureM(P ) of a complex
coefficient polynomial P (x) =

∑d
i=0 aix

i = ad
∏d

i=1(x−αi) (ad 6= 0) is defined
by the formula

M(P ) = |ad|
d∏

i=1

max{1, |αi|}.

For an algebraic number α, the Mahler measure M(α) of α is defined by the
formula

M(α) = M(P ),

where P is the primitive minimal polynomial of α over Z.

From a modern point of view, the Mahler measure is a version of the height
(see [33], for instance). Let F be an algebraic number field, then the (loga-
rithmic) height of an algebraic number α ∈ F is defined by

HF (α) =
∑

v

log(max{1, |α|v}),

where the sum is over all places v of F and the v-adic valuations are normal-
ized as usual in such a way that the product of |α|v over all Archimedean v
is the absolute value of NF/Q(α), and the product of all |α|v is equal to 1.
Then, HF (α) = log(M(α)) for F = Q(α).

To describe our main theorem, we divide the Mahler measure into two
parts.

Definition 6 For a polynomial P (x) =
∑d

i=0 aix
i = ad

∏d
i=1(x− αi) ∈ C[x]

(ad 6= 0), the measures M0(P ) and M1(P ) are defined by the formulae

M0(P ) = |ad|, M1(P ) =
d∏

i=1

max{1, |αi|}.

For an algebraic number α, the measures Mi(α) (i = 0, 1) are defined by the
formula

Mi(α) = Mi(P ),

where P is the primitive minimal polynomial of α over Z.

It is easy to see from Definition 6 that M(P ) = M0(P )M1(P ) for P ∈ C[x]
and M(α) = M0(α)M1(α) for α ∈ Q.

Our main claim in this paper is that we can use Mahler measure esti-
mates to obtain separation bounds for an algebraic number represented by a
straight-line program in given algebraic numbers. This is summarized in the
following theorem.
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Theorem 2 Let K be either C or R, and put K0 = K ∩Q.

1. Let X be a set of predicates defined on K0 for which we know

(a) how to obtain a predicate ξ ∈ X satisfied by α for each α ∈ K0

given in terms of a polynomial f(x) ∈ Z[x] vanishing at α and an
interval isolating α from the other roots of f(x),

(b) how to obtain a predicate ζ ∈ X satisfied by α ∗β (∗ ∈ {+,−,×})
from two predicates ξ, η ∈ X satisfied by α, β ∈ K0 respectively,

(c) how to obtain a separation bound for α ∈ K0 from a predicate
ξ ∈ X satisfied by α.

If α ∈ K0 be represented by a straight-line program P in α1, α2, . . . ,
αn ∈ K0, then by using the above computational methods, one can
obtain a separation bound for α.

2. Let Y be all conditions of the form “degα ≤ d and M(α) ≤ A,” d ∈ N
and A ≥ 1, where degα = [Q(α) : Q]. Then Y satisfies all of the three
conditions for X in 1.

3. Let Y be all conditions of the form “degα ≤ d, M0(α) ≤ A0 and
M1(α) ≤ A1,” d ∈ N and A0, A1 ≥ 1. Then Y satisfies all of the three
conditions for X in 1.

4. Fix an interval arithmetic system (K, I,+,−,×). Let Y be all condi-
tions of the form “degα ≤ d, M0(α) ≤ A0, M1(α) ≤ A1 and α ∈ I,”
d ∈ N, A0, A1 ≥ 1 and I ∈ I. Then Y satisfies all of the three
conditions for X in 1.

Proof. First, we prove part 1. We can obtain a predicate ξi satisfied by αi due
to (a). Then, along the straight-line program P , we can obtain a predicate
ξ satisfied by α from ξ1, ξ2, . . . , ξn, due to (b). Finally, we can obtain a
separation bound for α from ξ due to (c).

Part 2 follows from Propositions 1 and 2 below.
To prove Y in 3 satisfies (b), apply the following Propositions 3 and 4.

The obtained separation bound is sharper than that in part 2 (see Remark 4).
Part 4 follows from part 3 and the definition of the interval arithmetic. If

the precision of the interval arithmetic is sufficiently high, then the obtained
separation bound is sharper than that in part 3 (see Proposition 5).

Hereafter, we describe propositions used in the proof for Theorem 2.

Proposition 1 The Mahler measure satisfies the following properties:
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1. For any algebraic number α, M(α) ≥ 1.

2. If α 6= 0, then 1/M(α) ≤ |α| ≤M(α).

3. Let α and β be two algebraic numbers whose degrees are at most d and
at most e, respectively, then,

M(α± β) ≤ 2deM(α)eM(β)d,

M(αβ) ≤ M(α)eM(β)d.

Proof. See [4] for instance.

We can determine whether an algebraic number α is zero or not by means
of property 2 by taking 1/M(α) as a separation bound for α, and we can com-
pute an upper bound for the Mahler measure after a ring operation among
two algebraic numbers by means of property 3.

We do not necessarily have to compute approximation values of roots of
P to evaluate the Mahler measure of P .

Proposition 2 (Landau’s inequality [16]) Among the norm ‖·‖2 and the
Mahler measure, Landau’s inequality,

M(P ) ≤ ‖P‖2, (1)

holds.

Remark 1 Due to the inequality M(P ) ≤ ‖P‖2 valid for any P ∈ C[x], one
can start with ‖P‖2 as an upper side estimate for the Mahler measure of
each input α, where P is a primitive polynomial in Z[x] having α as a root,
without computing all roots of P .

Also, it is easy to see from the definition that M(PQ) = M(P )M(Q) for
any P , Q ∈ C[X] and that M(P ) ≥ 1 for any P ∈ Z[x]. Thus one can even
start with ‖P‖2, where P is any polynomial in Z[x] having α as a root, as
an estimate for M(α).

Suppose that we use 1 + ‖ · ‖∞ instead of the Mahler measure. Let
α and β be algebraic numbers whose integer coefficient primitive minimal
polynomials are P1 and P2, respectively. Then, we should estimate an upper
bound for ‖Q‖∞, where Q is an integer coefficient polynomial that has α ∗ β
(∗ ∈ {+,−,×}) as a root, and represent it as an expression in ‖P1‖∞ and
‖P2‖∞, which becomes more complicated.
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2.2 Improvements of Inequalities

In this section, we improve the inequalities in the item 3 of Proposition 1 in
two ways.

2.2.1 Improvement without using the Values of α and β

First we give an improvement without using the values of α and β.
The following proposition is clear from Definition 6.

Proposition 3 The measures M0 and M1 have the following properties:

1. Mi(PQ) = Mi(P )Mi(Q) for P , Q ∈ C[x].

2. Mi(P ) ≥ 1 for P ∈ Z[x].

3. Mi(P ) ≥Mi(α) for P ∈ Z[x] vanishing at α.

Furthermore, M0 and M1 have the following properties:

Proposition 4 Let α and β be algebraic numbers of degrees at most d and
at most e, respectively. Suppose that the degree of α∗β, where ∗ ∈ {+,−,×},
is at most f . Then the following inequalities hold:

1. M0(α), M1(α) ≥ 1.

2. M0(α ∗ β) ≤M0(α)
eM0(β)

d.

3. M1(αβ) ≤M1(α)
eM1(β)

d, M1(α± β) ≤ C.

Here, C is the product of the f largest numbers among the following de
numbers:

M1(α) +M1(β),M1(α) + 1, . . . ,M1(α) + 1
︸ ︷︷ ︸

e−1

,

M1(β) + 1, . . . ,M1(β) + 1
︸ ︷︷ ︸

d−1

, 2, . . . , 2
︸ ︷︷ ︸

(d−1)(e−1)

.

Remark 2 Note that in the item 3 of Proposition 4, the following inequali-
ties hold:

M1(α) +M1(β) ≥M1(α) + 1 ≥ 2,

M1(α) +M1(β) ≥M1(β) + 1 ≥ 2.

Hence, the problem is whether M1(α) + 1 ≥M1(β) + 1 or not.

12



Proof. The inequalities Mi(α) ≥ 1 immediately follow the definition.
Let α1 = α, α2, . . . , αm (m ≤ d) and β1 = β, β2, . . . , βn (n ≤ e) be all

Q-conjugates of α and β respectively. Then the following polynomial

M0(α)
nM0(β)

m

m∏

i=1

n∏

j=1

(x− (αi ∗ βj)),

where ∗ ∈ {+,−,×}, is an integer coefficient polynomial that has α ∗ β as a
root. Therefore, (2) holds.

Since we have

M1(αβ) ≤
m∏

i=1

n∏

j=1

max{1, |αiβj|}

≤
m∏

i=1

n∏

j=1

(max{1, |αi|} ·max{1, |βj|})

=

(
m∏

i=1

max{1, |αi|}
)n( n∏

j=1

max{1, |βj|}
)m

= M1(α)
nM1(β)

m

≤ M1(α)
eM1(β)

d,

the first statement in (3) holds.
For the case of addition (the case of subtraction is quite similar), we pick

a subset S of { (i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n } such that the numbers αi+ βj,
(i, j) ∈ S, exhaust all Q-conjugates of α+β, with any redundancies removed.
Then we have

M1(α+ β) =
∏

(i,j)∈S

max{1, |αi + βj|}

≤
∏

(i,j)∈S

(max{1, |αi|}+max{1, |βj|}),

and since #S ≤ f holds, the second statement in (3) follows from the fol-
lowing lemma.

Lemma 1 Let S be a set of s pairs (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) and put
F (x1, . . . , xm, y1, . . . , yn) =

∏

(i,j)∈S(xi + yj).

13



For constants A, B ≥ 1, the maximum value of the continuous function
F on the compact set

D =







(x1, . . . , xm, y1, . . . , yn) ∈ Rm+n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m∏

i=1

xi = A, xi ≥ 1 (i = 1, . . . ,m),

n∏

j=1

yj = B, yj ≥ 1 (j = 1, . . . , n)







is not greater than the product of the s largest numbers among the following
mn numbers.

A+B,A+ 1, . . . , A+ 1
︸ ︷︷ ︸

n−1

, 1 +B, . . . , 1 +B
︸ ︷︷ ︸

m−1

, 2, . . . , 2
︸ ︷︷ ︸

(m−1)(n−1)

.

(Note that A+B ≥ A+ 1, 1 +B ≥ 2.)

Remark 3 In some case (e.g. if s = 1 or mn), the maximum is equal to
the product given in Lemma 1. In general, however, the equality does not
hold. Consider the case m, n > 1, A > B > 1 and S = {(1, 1), (2, 2)}. The
maximum is (A+1)(B+1); on the other hand, the product given in Lemma 1
is (A+B)(A+ 1).

Proof. First we prove the case where m = 1. Let (a1, b1, . . . , bn) be a point
where F takes the maximum. Assume that there are two indices p and q
satisfying the following conditions:

1 ≤ p < q ≤ n, (1, p), (1, q) ∈ S, bp, bq > 1.

Then we define b′j’s as follows.

b′j =







bpbq if j = p;
1 if j = q;
bj otherwise.

Then (a1, b
′
1, . . . , b

′
n) ∈ D and

F (a1, b
′
1, . . . , b

′
n)− F (a1, b1, . . . , bn)

= ((a1 + bpbq)(a1 + 1)− (a1 + bp)(a1 + bq))
∏

(1,j)∈S
j 6=p,q

(a1 + bj)

= a1(bp − 1)(bq − 1)
∏

(1,j)∈S
j 6=p,q

(a1 + bj)

> 0,
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which contradicts the assumption that F is the maximum. Hence #{ j |
bj > 1 } ≤ 1; accordingly bj = B for some j and bj′ = 1 for all j ′ 6= j.

Next, we consider the general case. We write N(k) = #{(i, j) ∈ S | i =
k}. If necessary, by changing the order of the variables xi, we may assume
that {i | N(i) > 0} = {1, 2, . . . , p} and N(1) ≥ N(2) ≥ · · · ≥ N(p).

From the above result in the case m = 1, we have, for each k (1 ≤ k ≤ p),

∏

(i,j)∈S
i=k

(xi + yj) ≤ (xk +B)(xk + 1)N(k)−1

on D. Therefore,

F (x1, . . . , xm, y1, . . . , yn) ≤
p
∏

i=1

(xi +B)(xi + 1)N(i)−1

=

p
∏

i=1

(xi +B) ·
p
∏

i=1

(xi + 1)N(i)−1.

Again by the result for m = 1, we obtain

p
∏

i=1

(xi +B) ≤ (A+B)(1 +B)p−1,

p
∏

i=1

(xi + 1)N(i)−1 ≤ (A+ 1)N(1)−1 · 2c, c =

p
∑

i=2

(N(i)− 1).

That is,

F (x1, . . . , xm, y1, . . . , yn) ≤ (A+B)(A+ 1)N(1)−1(1 +B)p−1 · 2c.

By the following equality

1 + (N(1)− 1) + (p− 1) + c = s,

and the following inequalities

N(1)− 1 ≤ n− 1, p− 1 ≤ m− 1, c ≤ (m− 1)(n− 1),

the statement holds.
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Example 2 Generically f = de. However, in some cases, we know f < de
from the expressions of α and β. For example, let Pi = (xi, yi) for i = 1, 2, 3
be three points in R2. Determining whether P3 is to the left of, to the right
of, or on the directed line P1 to P2 is to decide the signature of the following
determinant: ∣

∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣
∣
∣
∣
,

namely, the determinant is positive, negative or zero, depending on whether
P3 is to the left of, to the right of or on the directed line P1 to P2.

Let di and ei be the degrees of xi and yi, respectively. We write

α = (x2 − x1)(y3 − y1), β = (x3 − x1)(y2 − y1).

Then, the degrees of α and β are at most d1d2e1e3 and at most d1d3e1e2,
respectively. The degree of α−β is at most d1d2d3e1e2e3; however, if we only
know that α and β are two algebraic numbers with degrees at most d1d2e1e3

and at most d1d3e1e2, respectively, then we can only say that the degree of
α− β is at most d2

1d2d3e
2
1e2e3.

For an algebraic integer α, we have M(α) = M1(α). Thus we can obtain
the next corollary.

Corollary 1 Let α and β be algebraic integers of degrees at most d and at
most e, respectively. Then the following inequality holds:

M(α± β) ≤ 2(d−1)(e−1)(M(α) +M(β))(M(α) + 1)e−1(M(β) + 1)d−1

Remark 4 The above inequality is a refinement of the standard inequality
asserted in Proposition 1. Since 1 ≤M(α),M(β), we obtain

(
1

M(α)
+

1

M(β)

)(

1 +
1

M(α)

)e−1(

1 +
1

M(β)

)d−1

≤ 2d+e−1.

By multiplying the both sides of the inequality by 2(d−1)(e−1)M(α)eM(β)d,
we obtain

2(d−1)(e−1)(M(α) +M(β))(M(α) + 1)e−1(M(β) + 1)d−1 ≤ 2deM(α)eM(β)d.

The equality holds if and only if M(α) = M(β) = 1. Note that for a nonzero
algebraic integer γ, Kronecker proved that M(γ) = 1 holds if and only if γ
is a root of unity [15].
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2.2.2 Improvement using the Values of α and β

If the values of some conjugates of α and β are known, we can sharpen the
inequalities in Propositions 4. To simplify the arguments, we only treat the
case where we only know the values of α and β.

Proposition 5 Let α and β be algebraic numbers of degrees at most d and
at most e, respectively. To simplify the expressions, we suppose that d ≤ e
by interchanging α and β if necessary, and we thus write

a = min{1, |α|}, b = min{1, |β|},

A =
M1(α)

max{1, |α|} , B =
M1(β)

max{1, |β|} .

Then the following inequalities hold. In 2, we assume that we know the degree
of α ∗ β (where ∗ is either + or −) is at most f .

1. M1(αβ) ≤ max{1, aM1(β)} ·max{1, bM1(α)} ·M1(α)
e−1M1(β)

d−1.

2. M1(α± β) ≤ C ·max{1, |α± β|}, where C is as follows:

• If d = e = 1, then C = 1.

• If d = 1 and e > 1, then C is the product of the f − 1 largest
numbers among the following e− 1 numbers.

|α|+B, |α|+ 1, . . . , |α|+ 1
︸ ︷︷ ︸

e−2

.

• If d > 1 and e > 1, then C is the product of the f − 1 largest
numbers among the following de− 1 numbers.

A+B,A+ |β|, B + |α|, A+ 1, . . . , A+ 1
︸ ︷︷ ︸

e−2

, B + 1, . . . , B + 1
︸ ︷︷ ︸

d−2

,

|α|+ 1, . . . , |α|+ 1
︸ ︷︷ ︸

e−2

, |β|+ 1, . . . , |β|+ 1
︸ ︷︷ ︸

d−2

, 2, . . . , 2
︸ ︷︷ ︸

(d−2)(e−2)

.

Proof. Let α1 = α, α2, . . . , αm (m ≤ d) and β1 = β, β2, . . . , βn (n ≤ e) be
all Q-conjugates of α and β respectively.

First, we will prove the inequality in 1. We distinguish several cases
according to the values of |α| and |β|. If |α|, |β| ≥ 1, so that a = b = 1,
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this is clear. To prove the other cases, first we will show that the following
inequality holds for |α| < 1:

n∏

i=1

max{1, |αβi|} ≤ max{1, |α|M1(β)}.

If |αβi| ≤ 1 holds for all i then the statement is clear. Otherwise, there is an
index j such that |βj| > |αβj| > 1. Therefore,

n∏

i=1

max{1, |αβi|} = |αβj|
∏

1≤i≤n
i6=j

max{1, |αβi|}

≤ |α||βj|
∏

1≤i≤n
i6=j

max{1, |βi|}

= |α|
n∏

i=1

max{1, |βi|}

= |α|M1(β).

Now, we suppose that |α| < 1 and |β| ≥ 1 (the case where |α| ≥ 1 and
|β| < 1 is similar). Then we have

M1(αβ) ≤
m∏

i=1

n∏

j=1

max{1, |αiβj|}

=
n∏

j=1

max{1, |αβj|} ·
m∏

i=2

n∏

j=1

max{1, |αiβj|}

≤ max{1, aM1(β)} ·
m∏

i=2

n∏

j=1

max{1, |αiβj|}.

We estimate the last part:

m∏

i=2

n∏

j=1

max{1, |αiβj|} ≤
m∏

i=2

n∏

j=1

(max{1, |αi|} ·max{1, |βj|})

=
m∏

i=2

max{1, |αi|}n ·
n∏

j=1

max{1, |βj|}m−1

= M1(α)
nM1(β)

m−1

≤ M1(α)
eM1(β)

d−1

= bM1(α) ·M1(α)
e−1M1(β)

d−1.
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If |α| < 1 and |β| < 1, by an argument similar to the case above, we have

M1(αβ) ≤
m∏

i=1

n∏

j=1

max{1, |αiβj|}

=
n∏

j=1

max{1, |αβj|} ·
m∏

i=1

max{1, |αiβ|} ·
m∏

i=2

n∏

j=2

max{1, |αiβj|}

≤ max{1, aM1(β)} ·max{1, bM1(α)} ·M1(α)
e−1M1(β)

d−1.

Next, we will prove 2 in the case of addition (the case of subtraction is
similar). If d = e = 1, the statement is clear. If d = 1 and e > 1, the
statement follows from Lemma 1.

For the case d, e ≥ 2, first we define a set S as described in the proof of
Proposition 4. Then we have

M1(α + β)

= max{1, |α + β|} ·
∏

(i,j)∈S
(i,j)6=(1,1)

max{1, |αi + βj|}

≤ max{1, |α + β|} ·
∏

(i,j)∈S
(i,j)6=(1,1)

max{1, |αi|+ |βj|}

≤ max{1, |α + β|} ·
∏

(1,j)∈S
j 6=1

(|α|+max{1, |βj|}

×
∏

(i,1)∈S
i6=1

(max{1, |αi|}+ |β|) ·
∏

(i,j)∈S
i≥2
j≥2

(max{1, |αi|}+max{1, |βj|}).

We write

N1 = #{ j | (1, j) ∈ S }, N2 = #{ i | (i, 1) ∈ S },

N = #{ (i, j) ∈ S | i ≥ 2, j ≥ 2 }.
Then, by an argument similar to the proof of Lemma 1, we can derive

∏

(1,j)∈S
j 6=1

(|α|+max{1, |βj|})

≤ (|α|+B)(|α|+ 1)N1−2 (if N1 = 1 this factor vanishes),
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∏

(i,1)∈S
i6=1

(max{1, |αi|}+ |β|)

≤ (A+ |β|)(1 + |β|)N2−2 (if N2 = 1 this factor vanishes),

∏

(i,j)∈S
i≥2
j≥2

(max{1, |αi|}+max{1, |βj|}) ≤ C ′,

where C ′ is the product of the N largest numbers among the following (d−
1)(e− 1) numbers.

A+B,A+ 1, . . . , A+ 1
︸ ︷︷ ︸

e−2

, 1 +B, . . . , 1 +B
︸ ︷︷ ︸

d−2

, 2, . . . , 2
︸ ︷︷ ︸

(d−2)(e−2)

.

The numbers of the factors of the right sides of the above inequalities are
N1 − 1, N2 − 1 and N respectively. Since

(N1 − 1) + (N2 − 1) +N = #S − 1 ≤ f − 1,

the statement holds.

3 Application to Algorithms in Computer Al-

gebra

In this section, we discuss the practical usages of the principle in an algorithm
consisting of ring operations and branchings on equality conditions (and on
signature conditions if the numbers are real).

For such an algorithm, we can apply the theory of stabilizing algebraic
algorithms [31]. That is, using interval computation with “zero rewriting,”
the rule of replacing any interval containing zero by a single point zero when-
ever such an interval appears in the course of computation, we can obtain the
output converging to the true output as the precision increases. Moreover,
at a finite precision value, a reasonable output is arrived at (for example, the
degree of the output polynomial is equal to the true degree when computing
the greatest common divisor of polynomials).

This approach relates to a qualitative result, namely the convergence of
the final output. This means that at any step in which zero rewriting is
performed, irrespective of whether the rewritten interval is truly zero, the
method passes it through toward the output. Along this line, stopping at
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some step and asking whether a rewritten interval is truly zero has been the
motivation of the research on zero determination.

Consider an algorithm consisting of ring operations and branchings on
equality conditions (and on signature conditions if the numbers are real).
For each input algebraic number α, we assume that we know an integer
coefficient polynomial that has α as a root. It is not necessary to use the
minimal polynomial since for an integer coefficient polynomial P vanishing
at α, the inequality M(α) ≤ M(P ) holds as described in Remark 1. It is
desirable, however, to use the minimal polynomial since small upper bounds
of the Mahler measures can be established.

Furthermore, we assume that an approximate value of each input al-
gebraic number is given as an interval that has only a single root of the
polynomial.

In the following, we will explain:

• How to compute the Mahler measure for each input algebraic number.

• How to store (an upper bound of) the Mahler measure.

• How to apply numeric computations with the Mahler measure compu-
tations.

To store an upper bound of the Mahler measure, we can use either ratio-
nals (or integers) or floating-point numbers. In practice, it may be useful to
use floating-point numbers.

From here, we use symbols αi’s for input algebraic numbers instead of
conjugates of α.

3.1 Computing the Mahler Measures of Input Num-
bers

Here, we discuss methods of computing and storing the Mahler measure.
For special types of algebraic numbers, we know the exact values of the

Mahler measures. For example, let a = m/n be a rational number repre-
sented by an irreducible fraction. Then, we have

M(a) = max{|m|, |n|}, M0(a) = |n|, M1(a) = max
{

1,
∣
∣
∣
m

n

∣
∣
∣

}

.

Furthermore, suppose that α is a square root of a and it is not rational.
Then, we have

M(α) = max{|m|, |n|}, M0(α) = |n|, M1(α) = max
{

1,
∣
∣
∣
m

n

∣
∣
∣

}

.
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In general, to compute upper bounds of the Mahler measure, we may use
Landau’s inequality (Section 2.1.2 (1)) or its refinements if we do not want
to compute the roots of a polynomial directly. For example, let P (x) =
∑d

i=0 aix
i be a complex coefficient polynomial. Then, the following inequal-

ities hold [21], [4]:

M(P ) ≤



‖P‖2
2 −

∣
∣
∣
∣
∣

d−1∑

i=0

aiāi+1

∣
∣
∣
∣
∣

2

‖P‖−2
2





1/2

,

M(P )2 + |a0ad|2M(P )−2 ≤ ‖P‖2.

See [4], [23] for other methods to estimate the Mahler measure.

3.2 Conjunction of Interval Arithmetic and Mahler Mea-
sure Estimation

When we find an interval containing zero, we need to estimate the Mahler
measure corresponding to it. If the straight-line program representation is
given explicitly, then there is no difficulty. However, in general, straight-line
program representations are not given explicitly in real programs. Moreover,
computation histories that are necessary to construct straight-line program
representations are not stored. Therefore, we have proposed two methods to
estimate upper bounds for the Mahler measures in real programs.

3.2.1 Introducing an Object Class Interval-with-Mahler-Measures

The first method is an extension of traditional interval arithmetic; we com-
pute intervals and (upper bounds of) the Mahler measures of algebraic num-
bers simultaneously so that we do not have to be concerned with straight-line
program representations. We have previously proposed this method in [26]
and [27].

Definition 7 Let K be either C or R, fix an interval arithmetic system
(K, I,+,−,×).

1. Let α ∈ K be an algebraic number of degree d at most. Let I be
an interval containing α (possibly containing some conjugates of α),
and let A be a real number such that M(α) ≤ A. We call the triplet
(I, d, A) the interval with the Mahler measure for α, call I its numeric
component and call the pair of d and A its algebraic component.
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2. The arithmetic between intervals with the Mahler measure is

(I, d, A) ∗ (J, e, B) = (I ∗ J, f, C)

Here, I ∗ J (∗ ∈ {+,−,×}) follows the interval arithmetic, f is an
upper bound of the degree of α ∗ β (f = de in general) and C is an
upper bound of the Mahler measure of α ∗ β.

Let α1, α2, . . . , αn be given algebraic numbers and suppose an algebraic
number α is represented in αi’s by a straight-line program. Furthermore,
suppose that the degree of αi is at most di and that the Mahler measure
of αi is at most Ai. We take an approximate interval sequences {Ii,µ}µ for
each αi and consider an interval with the Mahler measure (Ii,µ, di, Ai). Then,
we perform the arithmetic among these intervals with the Mahler measure
defined as above with the order following the straight-line program and obtain
the result (Iµ, d, A); d and A are upper bounds of the degree and the Mahler
measure of α, and {Iµ}µ is an approximate interval sequence for α.

If we are to use the improved inequalities described in Section 2.2, we
replace (d,A) by (d,A0, A1), where Ai bounds the measure Mi. We compute
A = A0A1 that bounds the Mahler measure only when it is needed. Further-
more, when d = 1, we use (m,n) instead of (A0, A1), where m and n are the
numerator and the denominator of α, respectively.

The usage of intervals with the Mahler measure for a real program is
described as follows: Assume that we have a package of interval arithmetic
with the Mahler measure, which contains a routine to compute approximate
interval sequences for input algebraic numbers, and that we have a program,
e.g., a program for constructing convex hulls, using exact rational arithmetic.
Then, we can construct a new program with the above program as its main
routine as follows:

1. We write a module that controls the precision of the interval computa-
tions.

2. We rewrite each operation, which is a ring operation or a branching on
equality condition (or a branching on signature condition if the numbers
are real), among rational numbers into the corresponding operation
among intervals with the Mahler measure. Note that for a branching
on equality condition, first we rewrite it into the branching on zero
determination, then rewrite it into the corresponding operation among
intervals with the Mahler measure.

3. We prepare an additional return value UNDECIDED other than usual
TRUE and FALSE for the predicates. We rewrite each predicate of zero
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determination as follows. If an algebraic number cannot be determined
whether it is zero, then UNDECIDED is returned.

If a predicate returns UNDECIDED then the control module raises the preci-
sion and initiates the main routine to compute again for the same input. The
new program will stop in a finite number of steps as described in Theorem 1
(see Discussion).

For computing upper bounds of the Mahler measures using floating-
points, it is possible to use a given fixed precision even if the precision for
the numeric component is raised, or the same precision as for the numeric
component. In practice, only the first method is efficient.

We can easily make a package of intervals with the Mahler measure.
Moreover, it is easy to apply the package to real programs because we can
use it without changing the main structure of original programs.

3.2.2 Lazy Method

The method explained in Section 3.2.1 is simple, however, there are some
disadvantages:

• For an algebraic number that can be determined as being nonzero sim-
ply from its numeric component, its algebraic component need not be
computed.

• For an algebraic number that needs the Mahler measure to determine
whether it is zero or not, the computations for the Mahler measure
only need to be performed once.

• For an algebraic number that has already been determined whether it
is zero or not, computations for zero determination for the number are
not needed.

Therefore, a method that suspends computations until they are really needed
is desirable. Such a method would resemble the so-called lazy rational arith-
metic library (see [2], for instance).

To put this method in practice, we have to store the computation history.
When an algebraic number cannot be determined to be zero or not, only those
computations concerned with that number have to be reiterated.

To store the history, we can either use a tree or a directed acyclic graph.
For their implementation, we can use the following schemes:

• Assigning a symbol to each input algebraic number and construct a
straight-line program explicitly.
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• Enhancing the data structure for the intervals. Each enhanced interval
consists of a traditional interval and a symbolic definition. A symbolic
definition is either an input algebraic number or an unevaluated ex-
pression that represents the sum, the difference, or the product of two
other symbolic definitions.

We can also create a package of the lazy method and apply it to real programs
without changing the main structure of the original programs. However,
it should be noted that in general, the memory required to store such a
computation history is extremely large. We can reduce the requirements
of some programs (e.g., programs for constructing two-dimensional convex
hulls) by removing any part of computation history that becomes obsolete.
However, in such a case, the method is strongly dependent on each program
and as a result either the structure of the original program or the package
needs to be modified accordingly.

3.3 Examples

We implemented the methods in Section 3.2 in the Risa/Asir system (an
experimental computer algebra system originally developed by Fujitsu Labo-
ratories Limited [24]. The system is being developed at Kobe University from
September 2000) on an HP9000/735 computer. Risa/Asir has big integers.
We implemented the numbers and routines in the following order.

1. Big floating-point numbers with base 10 and rounding toward +∞ and
−∞.

2. An arbitrary-precision interval arithmetic package based on floating-
point arithmetic in 1.

3. Two Mahler measure computation routines that compute an upper
bound of the Mahler measure for an algebraic number after performing
ring operations among two algebraic numbers. One uses the original in-
equalities (Proposition 1), and the other uses the improved inequalities
(Proposition 5).

4. The object class Interval-with-Mahler-measure.

3.3.1 Simple Examples

Here, we present two simple examples illustrating how the principle is used
for zero determination.
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Example 3 Let α1 =
√
2, α2 =

√
3 and α3 =

√
6. Let β = α1α2 and

γ = β − α3. Determine whether γ is equal to zero.

Let P ∈ Z[x1, x2, x3] be x1x2 − x3. Then γ = P (α1, α2, α3) is represented by
a straight-line program (P1, P2, P3, P4, P5), where

P1 = x1, P2 = x2, P3 = x3, P4 = P1 × P2, P5 = P4 − P3.

We use the triplet structure for intervals with the Mahler measure, using
the original inequalities. For the numeric component, we use floating-point
arithmetic with base 10 and we take approximate interval sequences for αi’s
as described in Example 1.

First, we set the precision to 10. The triplet corresponding to α1, α2 and
α3 are as follows:

([1.414213562, 1.414213563], 2, 2),
([1.732050807, 1.732050808], 2, 3),
([2.449489742, 2.449489743], 2, 6).

The triplet for β = α1 · α2 is

([2.449489741, 2.449489745], 4, 36),

and the triplet for γ = β − α3 is

([−0.2× 10−8, 0.3× 10−8], 8, 429981696).

Since the numeric component [−0.2×10−8, 0.3×10−8] of the resulting triplet
contains 0, we apply Theorem 1. At a precision of 10, however, we cannot
determine γ to be zero because

0.3× 10−8 >
1

429981696
= 0.2325 . . .× 10−8.

Next, we set the precision to 11. The triplet corresponding to α1, α2 and
α3 are as follows:

([1.4142135623, 1.4142135624], 2, 2),
([1.7320508075, 1.7320508076], 2, 3),
([2.4494897427, 2.4494897428], 2, 6).

The triplet for β = α1 · α2 is

([2.4494897425, 2.4494897429], 4, 36),
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and the triplet for γ = β − α3 is

([−0.3× 10−9, 0.2× 10−9], 8, 429981696).

Since the numeric component [−0.3×10−9, 0.2×10−9] of the resulting triplet
contains 0, we apply Theorem 1. At a precision of 11, we can determine γ
to be truly equal to zero because

0.3× 10−9 <
1

429981696
= 0.2325 . . .× 10−8.

In this example, to estimate the Mahler measure M(γ) is to estimate the
Mahler measure of a polynomial x4(x2 − 24)2, which is 576. We will show
how the improvements in the inequalities result in better estimates for M(γ).
As described above, the original inequalities show that M(γ) ≤ 429981696.

If we use the improved inequalities in Proposition 4, we obtain

M(γ) ≤ 23(36 + 6)(36 + 1)(1 + 6)3 = 4264176.

If we use the values of the algebraic numbers (Proposition 5), we obtain
M(γ) < 203925.8989. Here, to compute upper bounds of the Mahler mea-
sures, we use floating-point computations with base 10, a precision of 10 and
rounding toward +∞, as described below:

A =
M(α3)

max{1, |α3|}
<

6

2.449489742
< 2.449489744,

B =
M(β)

max{1, |β|} <
36

2.449489741
< 14.69693847,

max{1, |γ|} = 1,

M(γ) ≤ max{1, |γ|}(B + A)(B + |α3|)(|β|+ A)(1 + A)2(1 + |α3|)2
< 1 · (14.69693847 + 2.449489744)

×(14.69693847 + 2.449489743) · (2.449489745 + 2.449489744)

×(1 + 2.449489744)2 · (1 + 2.449489743)2

< 203925.8989.

Example 4 Consider the following three polynomials:

f(x) = x5 − x+ 1,

g(x) = x5 − 10x4 + 40x3 − 80x2 + 79x− 29,

h(x) = x5 − 5x4 + 8x3 − 10x2 + 36x− 1.

Each of the equations f(x) = 0, g(x) = 0 and h(x) = 0 has only one real
root. We denote them α, β and γ, respectively. Determine whether αβ − γ
is equal to −1.
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Approximate values of α, β and γ are as follows:

α = −1.1673039 . . . , β = 0.8326960 . . . , γ = 0.0279906 . . . .

Therefore, αβ = −0.97200 . . . and αβ − γ is almost equal to −1. Indeed,
interval computation for δ = αβ − γ + 1 in decimals with precision 200 is
[−1× 10−199, 8× 10−200]. We will confirm that δ is exactly equal to 0 using
the principle.

At first, we make a few remarks. The polynomial f is irreducible in
Z[x] and its roots cannot be obtained by applying arithmetic operations and
radicals to the coefficients since the Galois group of f is S5, the symmetric
group of degree 5.

Outline of the proof. The polynomial f is irreducible over Z/3Z and is de-
composed over Z/2Z in two irreducible factors whose degrees are two and
three, respectively.

f(x) ≡ (x2 + x+ 1)(x3 + x2 + 1) (mod 2)

Therefore, f is irreducible in Z[x], and the Galois group G of f contains
a cycle of length 5 and a permutation of the type (i j)(k l m). These facts
imply that G is isomorphic to S5 (see [32], for example).

First, we estimate the Mahler measure of α, β and γ. Using Landau’s
inequality, we estimate the Mahler measures as follows:

M(α) ≤
√
3 < 2,

M(β) ≤
√
15183 < 124,

M(γ) ≤
√
1487 < 39.

For simplicity, we use integer values as the estimation.

• Estimation by the original method:

M(δ) < 7.859 . . .× 10174

• Estimation by the first improvement (Proposition 4):

M(δ) < 3.446 . . .× 10164

• Estimation by the second improvement (Proposition 5):

M(δ) < 7.344 . . .× 10112
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In any case, we can decide that δ = 0 by the above estimation of the Mahler
measure for δ and by the following inequalities:

−1× 10−199 < δ < 8× 10−200.

Remark 5 The polynomials f , g and h have the following relations:

g(x) = f(x− 2), h(x2) = −f(x− 1)f(−x− 1).

That is, β = α + 2, γ = (α + 1)2, therefore,

δ = αβ − γ + 1 = α(α + 2)− (α + 1)2 + 1 = 0.

3.3.2 Application to Graham’s Algorithm

We applied the principle to construct two-dimensional convex hulls. The
convex hull of a set S of points is the smallest convex set containing S.
Hereafter, we assume that S is a finite set in R2 so that the convex hull of
S is a convex polygon. Therefore, for a given finite set S of points, “to find
the convex hull of S” means “to give an ordered list of vertices of the convex
hull of S.”

There are several well-known algorithms for constructing two-dimensional
convex hulls such as Graham’s algorithm, Jarvis’ algorithm and Bentley-
Shamos’ algorithm (see [25] for instance). A basic routine in each algorithm is
to determine whether P3 is to the left of, to the right of, or on the directed line
from P1 to P2, for three given points P1, P2 and P3. That is, to determine the
signature of the determinant described in Example 2. Graham’s algorithm
is as follows.

Graham’s algorithm.
Input: A finite set S = {P1, P2, . . . , Pm} ⊂ R2.
Output: A list of vertices for the convex hull of S.

1. [Base point] Pick a point in S that will be a vertex of the convex hull
(e.g., the point with the largest y-coordinate among the points with
the smallest x-coordinate) and call it O.

2. [Sort] Sort the points in S, other than O, in the increasing order of the
arguments of the line segments from O to Pi. If more than one points
have the same argument, select the one farthest from O and discard the
others among them. Let Q1, Q2, . . . , Qn be the result of this operation,
and put Q0 = O.
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3. [Sweep] Create the convex hull by determining whether Qi is to the left
of the directed line Qi−2 to Qi−1 or not. More precisely, the procedure
can be described as follows:

j := 0
for i from 0 to n do

j := j + 1
Rj := Qi

while j ≥ 4 and Rj is to the right of or on
−−−−−−→
Rj−2Rj−1 do

Rj−1 := Rj

j := j − 1
return [R1, R2, . . . , Rj]

We applied Graham’s algorithm to the next example through the implemen-
tation of our methods.

Example 5 S is a set of 1000 points. Each point has a coordinate of the
form (

√
X,
√
Y ), where X and Y are randomly generated integers satisfying

the following conditions:

0 ≤ X ≤ 100, 0 ≤ Y ≤ 100, X + Y ≤ 100, Y ≤ 3X.

That is, the points are bounded by a sector whose center is at the origin, has
radius of 10, and the angle subtended by the arc at the center is π/3. The
input points and the resulting convex hull (a polygon with 21 vertices) are
described in Figure 1. We chose these conditions so that a lot of numbers
would be decided as zero and the convex hull would have many vertices.

To compute a determinant

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1), (2)

we used the order of operations as described on the right-hand side, or more
precisely, the straight-line program representation (D1, D2, . . . , D13) as fol-
lows:

Di = xi, Di+3 = yi (i = 1, 2, 3),

D7 = D2 −D1, D8 = D5 −D4, D9 = D3 −D1, D10 = D6 −D4,

D11 = D7 ×D10, D12 = D8 ×D9, D13 = D11 −D12.

We conducted experiments on the following three methods:
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Figure 1: Input points and the convex hull for Example 5.

Method 1: Interval arithmetic along with Mahler measure estimation using
the original inequalities in Proposition 1.

Method 2: Interval arithmetic along with Mahler measure estimation using
the improved inequalities in Proposition 5.

Method 3: Lazy method.

In all of the three methods, for computing the values of algebraic numbers,
initially we set the precision to 10. In Methods 1 and 2, we iteratively doubled
the precision until the convex hull was obtained. In Method 3, we iteratively
doubled the precision until the signature of each number was determined and
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Table 1: Computation times and maximal precisions.

Method 1 Method 2 Method 3

maximal precision 2560 1280 1280
CPU time (sec.) 3.17× 104 2.71× 104 304
GC time (sec.) 6.37× 103 6.90× 103 157

after the signature was determined, we reset the precision to 10. To estimate
the Mahler measure, we used big integers in Method 1 and floating-point
numbers with precision of 10 digits in Methods 2 and 3.

In Methods 1 and 2, we did not take into consideration the decrease
in the degrees of algebraic numbers occurring in the computation of the
determinant 2. However, in Method 3, we took it into consideration.

In Method 3, we assigned indices to input algebraic numbers and changed
the arguments from numbers to these indices in each subroutine containing
a signature determination so that we could have straight-line program rep-
resentations.

The maximal precisions in the computations, CPU times, and garbage
collection (GC) times are described in Table 1. Comparing Method 1 with
Method 2, the maximal precision and computation time decreased when us-
ing Method 2 due to the improvements achieved in inequalities. By omitting
obsolete computations, the computation time was decreased drastically when
using Method 3. The lazy method is efficient if that part of the computation
history which has become obsolete can be removed efficiently. In this exam-
ple, by storing only the required computation history, as described above,
we achieved efficiency. If we used a package of the lazy method, the memory
requirements would become extremely large.

It was confirmed that there were cases where the principle actually con-
tributed to zero determination: in the experiment with Method 3, there were
389 such cases; this number is the same as the number of cases where the
maximal precision was required in Methods 1 and 2 (2560 in Method 1 and
1280 in Method 2).

Details of precision used in Method 3 for zero determination are described
in Table 2.
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Table 2: The number of cases in which algebraic numbers were determined
as zero (Method 3).

precision Base point Sort Sweep total

10 1 129 8 138
20 0 43 0 43
40 0 171 0 171
80 0 14 0 14

160 0 0 0 0
320 0 0 0 0
640 0 0 10 10

1280 0 0 13 13
total 1 357 31 389

CPU time (sec.) 0.2 22.4 277.1 299.7∗

GC time (sec.) 0.1 12.1 142.1 154.7∗

∗: omitting preprocess time.

4 Discussion

4.1 Exact Computation for Algebraic Numbers

We have proposed a computation method with algebraic numbers, using
approximation.

There are several ways to perform arithmetic operations and zero deter-
mination on algebraic numbers exactly. It is possible to divide them into two
distinct groups. The first group represents α as f(θ), where f is a rational
coefficient polynomial and θ is a fixed algebraic number. The second group
represents α as a root of an integer coefficient square-free polynomial. In
the second group, to distinguish α from the other roots of the polynomial,
additional information is needed. There are at least two kinds of such in-
formation. Therefore, there are at least three methods of representing an
algebraic number α.

1. In terms of a rational coefficient polynomial f and a fixed algebraic
number θ and representing α as f(θ) [5], [18].

2. Using an integer coefficient square-free polynomial P having α as a
root and an interval containing α but not containing the other roots of
P [5].
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3. (For a real algebraic number) Thom’s code: using an integer coefficient
square-free polynomial P having α as a root and the signatures of the
derivatives P (i) of P at α, for i = 1, . . . , deg(P )− 1 as proposed in [9].

The associated methods to determine whether α is zero or not can be con-
sidered as follows:

1. Refining (if necessary) the interval containing θ [18].

2. Refining (if necessary) the interval containing α.

3. Using a generalized Sturm algorithm for several inequalities [9].

For polynomial root isolation, see [6] (for real root isolation, see [8], [7]).
If we use either the second or the third representation method, then we
have to compute a square-free polynomial that has the resulting algebraic
number as a root after every arithmetic operation of two algebraic numbers.
The computational cost of such a polynomial is very expensive if algebraic
numbers have high degrees. Therefore, the first method is preferable since
we can perform arithmetic operations simply. In general, however, it is also
very expensive to find such a primitive element as θ in advance. See [5], [18],
for example, on exact computation among algebraic numbers.

4.2 Future Directions

In the course of computation using the principle for zero determination, in-
tervals always contain the true values even after some intervals rewritten into
zero. Therefore, it can be proved that if an algorithm consisting of ring op-
erations and branchings on equality conditions (and on signature conditions
if the numbers are real), with exact computation, stops in a finite number of
steps for an input, then so does the rewritten algorithm. To prove the state-
ment, use induction on the number of zero determination (and signature
condition) in the course of exact computation.

Theoretically, one future direction of research is to estimate the pre-
cision needed to determine zero correctly before computation. Hiyoshi’s
work [11], [12] is the first attempt in this direction. Practically, future di-
rections are for the implementation of a package of the lazy method and to
carry out experiments using it.
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