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Abstract

Direct numerical simulations of turbulent viscoelastic-fluid flow in a chan-
nel with a rectangular orifice were performed to investigate the influence of
viscoelasticity on turbulence statistics and turbulent structures downstream
of the orifice. The geometry considered is periodic rectangular orifices with
1:2 expansion. The constitutive equation follows the Giesekus model, valid
for a polymer (or surfactant) solutions, which are generally capable of reduc-
ing the turbulent frictional drag in a smooth channel. The friction Reynolds
number and the Weissenberg number were set to 100 and 20–30, respectively.
A drag reduction of about 20% was achieved in the viscoelastic flows. The
onset Reynolds number for the transition from a symmetric to an asymmetric
state was found to be shifted to higher values than that for the Newtonian
flow. In the viscoelastic flow, the turbulent kinetic energy was decreased
and fewer turbulent eddies were observed, as the Kelvin-Helmholtz vortices
were quickly damped. Away from the orifice, quasi-streamwise vortices in the
viscoelastic flow were sustained for a longer period, accompanied by energy
exchange from elastic energy of the viscoelastic fluid to kinetic energy.
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1. Introduction

It is common knowledge that surfactant additives or polymers can sup-
press turbulence and significantly reduce turbulent frictional drag, when
added to a liquid flow at large Reynolds numbers. This phenomenon, the
so-called Toms effect, is of practical importance and has recently been imple-
mented in several industrial systems to save energy. In general, the solution
used as a working fluid for such a drag-reducing flow is a viscoelastic liq-
uid. However, methods to design a viscoelastic, i.e., non-Newtonian, fluid
system are far from satisfactory, and there have been many studies on drag
reduction by both experiment and simulation (e.g., Gyr and Bewersdorff,
1995; Procaccia et al., 2008; White and Mungal, 2008). For instance, direct
numerical simulations (DNSs) of polymer-induced drag reduction were per-
formed for isotropic turbulence (De Angelis et al., 2005), shear-driven turbu-
lence (Vaithianathan et al., 2007), turbulent channel flow (e.g., Sureshkumar
et al., 1997; Min et al., 2003; Ptasinski et al., 2003; Li et al., 2006), and bound-
ary layers (e.g., Dimitropoulos et al., 2005; Tamano et al., 2007). The au-
thors’ group has performed DNSs on the turbulent channel flow of viscoelas-
tic fluids using the Giesekus model for different rheological properties (Yu
and Kawaguchi, 2004, 2006; Tsukahara et al., 2011). These studies consid-
ered somewhat canonical flows without any mean-flow streamline curvature.
However, in practical applications of drag-reduction technology such as com-
plicated duct flows found in district heating and cooling systems, separation
and reattachment occur through, for example, sudden expansion pipe flow
and ribbed or roughened channel flow. Flows of a viscoelastic fluid through
an expansion geometry are also relevant in manufacturing processes such as
extrusion processes and mold filling, which involve flows through channels of
varying cross-section. Although the flow through expansion and/or contrac-
tion geometries has been studied in detail for the laminar regime, for both
Newtonian and viscoelastic fluids (e.g., Baloch et al., 1996; Oliveira, 2003),
turbulent viscoelastic flow through such geometries has received much less
attention.

Recently, Newtonian fluids in a turbulent regime were investigated numer-
ically. Makino et al. (2008) carried out DNSs of the turbulent Newtonian-
fluid flow in a channel with periodic two-dimensional ribs, i.e., rectangular
orifices. El Khoury et al. (2010) considered a similar problem but for a single
thin-plate obstruction without periodic repeating. However, there have been
few studies on the drag-reducing effect for turbulent flow in complicated flow
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geometries, and in particular, to the authors’ knowledge there has never been
any DNS of turbulent viscoelastic flow with an orifice. Some authors (e.g.,
Pak et al., 1990; Poole and Escudier, 2003, 2004; Poole et al., 2005) carried
out experiments on the flow through a sudden expansion, but focused on
the mean flow, which could cause an asymmetric flow pattern even when the
geometry itself is symmetric. It is practically required to elucidate the na-
ture of a viscoelastic turbulent flow continuously passing over obstructions.
With this background, the detailed mechanism and efficiency of turbulent
drag reduction for the roughened channel flow of viscoelastic fluids should
be investigated.

In the present study, we performed DNSs of viscoelastic fluids in a channel
with periodically repeating rectangular orifices, in order to analyze the be-
havior of the flow when accompanied by separation and reattachment. Major
differences between the present study and published works on smooth chan-
nels are related to the streamwise variation in the flow state and the main
areas where turbulence is produced. Therefore, the instantaneous vortex
structures and the relevant energy transport within the strong shear layer
just downstream of the orifice will be explored, as well as the mean-flow
properties such as drag-reduction rate and flow asymmetry. The Newtonian
flow was also simulated for comparison. All of the simulations presented here
were run at the same pumping pressure, i.e., a constant pressure drop (but
the mean flow rate was dependent on the fluid properties).

2. Numerical procedure

The configuration of the computational domain is shown in Fig. 1. A
periodically repeating spatial unit with a rectangular orifice was simulated
employing the periodic boundary conditions in the streamwise and spanwise
directions. The no-slip boundary condition was applied on all the wall sur-
faces. In this paper, x1 (x), x2 (y) and x3 (z) denote the streamwise, the
wall-normal, and the spanwise components, respectively. The direct-forcing
immersed boundary method (Fadlun et al., 2000) was employed on/inside the
plates on each side of the orifice. The non-dimensional governing equations
are the equation of incompressible continuity:

∂u+
i

∂x∗
i

= 0, (1)
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the Navier-Stokes equation:

∂u+
i

∂t∗
+ u+

j

∂u+
i

∂x∗
j

= −∂p+

∂x∗
i

+
β

Reτ0

∂2u+
i

∂x∗
j∂x

∗
j

+
1− β

Weτ0

∂c+ij
∂x∗

j

− F ∗
i , (2)

and the constitutive equation based on the Giesekus model (Giesekus, 1982):

∂c+ij
∂t

+
∂u+

mc
+
ij

∂x∗
m

=
∂u+

i

∂x∗
m

c+mj +
∂u+

j

∂x∗
m

c+mi −
Reτ0
Weτ0

· [c+ij + α(c+im − δim)(c
+
mj − δmj)− δij

]
, (3)

where t, ui, p and cij denote the time, the velocity vector (u1, u2, u3) =
(u, v, w), the pressure, and the conformation tensor, respectively. In Eq. (2),
β = ηs/η0 is the ratio of the solvent viscosity, ηs, to the total zero-shear-rate
solution viscosity, η0, where ηs−η0 is the additive contribution to the solution
viscosity. The additional term of Fi in Eq. (2) represents the body force vector
per unit volume for the immersed boundary method. The quantities with
superscript (+) indicate that they are normalized by η0 and/or uτ0, which is
derived from the mean pressure gradient through the computational volume,
−∂p/∂x, in the case of a smooth channel without any ribs, i.e.,

uτ0 =

√
τw0

ρ
=

√
δ

ρ
·
∣∣∣∣∂p∂x

∣∣∣∣, (4)

where τw0 is the wall shear stress for a non-obstructed plane channel flow, ρ
is the density, and δ is the channel half-width. The superscript (∗) represents
non-dimensionalization by δ: e.g., y∗ = y/δ.

The friction Reynolds number and the Weissenberg number are defined as
respectively Reτ0 = ρuτ0δ/η0 and Weτ0 = ρλu2

τ0δ/η0 based on the additive
relaxation time λ. The simulations were carried out for Reτ0 = 100, and
two values of Weτ0 were tested. As mentioned in the previous section, a
constant pressure drop (between x = 0 and x = 12.8δ) was imposed in
the current DNSs, and thus the flow rate can be changed dependently on
the fluid properties. In order to investigate the effects of viscoelasticity and
drag-reduction rate, a Newtonian-fluid flow in the same configuration was
also calculated. Note that when Weτ0 = 0 and β = 1, Eq. (2) reduces to the
common equation as for a Newtonian fluid.
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For the spatial discretization, the finite difference method was used. A
numerical scheme with the 4th-order central scheme was employed in the x
and z directions and the 2nd-order accuracy was in the y direction. When we
attempt to solve the viscoelastic flow equations numerically, a new difficulty
arises that is absent in Newtonian flows: the transport equation of Eq. (3)
for the conformation tensor is hyperbolic nonlinear and hence will typically
produce oscillatory behavior. To minimize this problem, flux limiter terms
can be introduced into the method, based on the theory of total-variation
diminishing (TVD) methods, in which a suitable amount of artificial dissipa-
tion is added locally to dampen high-frequency modes. In our simulations,
the MINMOD flux-limiter scheme was applied to the convective term in
Eq. (3) to stabilize the present simulations. This scheme is a composite nu-
merical scheme consisting of the second-order upwind, central differencing
and first-order upwind schemes, the switch between them being controlled
by a convection boundedness criterion: see Yu and Kawaguchi (2004), who
reported that the MINMOD scheme stabilized the simulation of viscoelas-
tic flow at high Weissenberg number, whereas the artificial diffusion scheme
required large artificial diffusivity to stabilize the calculation.

By using the same obstruction as Makino et al. (2008), the blockage ratio
of the rectangular orifice is 1:2, i.e., the distance between the channel surface
and the orifice edge is 0.5δ. The computational domain volume is 12.8δ×2δ×
6.4δ in the streamwise, wall-normal, and spanwise directions, respectively.
The grid size is 128 × 128 × 128, giving mesh spacings of Δx+ = 10.0,
Δz+ = 5.0, and Δy+ = 0.31–3.01, with a nonuniform hyperbolic tangent
stretching factor used in the wall-normal direction.

Time advancement was done by the 3rd-order Runge-Kutta method, but
the 2nd-order Crank-Nicolson method was used for the viscous terms in the
y direction. All present DNSs were run from an arbitrary initial flow field
and thereafter allowed to evolve towards a statistically steady state. Statis-
tics were gathered for 200δ/uτ0 after the flow field first had evolved into a
statistically steady state, sampling was taken every 2δ/uτ0.

3. Results and discussion

3.1. Streamwise mean velocity

Figure 2 shows the mean (time-spanwise averaged) streamwise velocity
profiles at different streamwise positions along the channel. Note again that,
in the present simulations, the orifice with the thickness of 0.1δ is located at
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x = 6.4δ in the streamwise direction (also shown in Fig. 1). In the region from
x∗ = 5.0–6.5, no considerable difference in the mean-velocity distribution is
found between the Newtonian and viscoelastic fluids, although the magnitude
of velocity in the viscoelastic flow is slightly larger than for the other. Two
local peaks observed in the profile at x∗ = 6 were attributed to the flow
contraction. From x∗ = 7.0 to 8.5, there appears a strong shear layer at
the height of the orifice edge on each side (top and bottom half) of the
channel. It can be seen that the strong shear layers for the viscoelastic flow
are extended towards each wall compared to the Newtonian case, while the
velocity in the core region (i.e., the channel center) is unchanged between
these two cases. Therefore, the mean velocity gradient within the shear layer
is less steep in the viscoelastic flow than the Newtonian flow. Away from the
orifice (x∗ ≥ 11), the mean velocity in the core region of the viscoelastic flow
is clearly larger than that of the Newtonian flow. Here, let us recall that the
same constant pressure drop throughout the channel was imposed in both
cases, where the near-wall velocity gradient would be unchanged (although,
strictly speaking, the near-wall velocity gradient for the viscoelastic flow
was slightly smaller due to existence of the viscoelastic stress). Indeed, the
velocity profiles in the near-wall region become almost identical and those
in the core region reveal clear differences in the two flows. This difference
corresponds to increases in the bulk mean velocity um and the bulk Reynolds
number, Rem = 2umδ/η0 (Table 1), as a consequence of the fluid being
viscoelastic. In other words, the turbulent frictional drag is expected to be
decreased in the viscoelastic flow field.

The drag coefficient is defined as,

Cd =
Δp

Lx

δ
1
2
ρu2

m

=
2

u+
m
2 (5)

where Δp is the time-averaged pressure drop from x = 0 to Lx. The drag
coefficient Cd contains the form drag by the orifice and the frictional drag
of all surfaces. The values obtained by the present simulations are given in
Table 1, which also shows the drag-reduction rate:

DR% =
CdNewt − Cdvisc

CdNewt

, (6)

where the suffixes ‘Newt’ and ‘visc’ stand for values referring to a Newto-
nian flow and a viscoelastic flow, respectively. In the present conditions, the
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flows exhibit a considerable drag reduction of about 20% with respect to the
Newtonian flow at the same magnitude of pressure drop. It is worth noting
that the DR% obtained for Weτ0 = 30 is 1% lower than that for Weτ0 = 20;
here, the statistical uncertainty about Cd is less than 0.2%. In general, an
increase in the Weissenberg number reduces the contribution of turbulence
to frictional drag for a smooth channel (without any obstruction), resulting
in a higher DR% (Li et al., 2006; Yu and Kawaguchi, 2006; Tsukahara et al.,
2011). As will be evident from the result that follows, the contribution of
turbulence for Weτ0 = 30 is indeed reduced throughout the channel. How-
ever, for the present flows with the bluff body, the form drag, that depends
mainly on the obstacle configuration, is more dominant in Cd when compared
with the frictional drag. As under laminar conditions, Oliveira (2003) numer-
ically studied the pressure loss of viscoelastic flow in symmetric expansion
geometries, and reported that the pressure losses were higher for viscoelastic
flows compared to relevant Newtonian cases. Therefore, the small increase
in Cd, for Weτ0 = 20 → 30, may be attributed to the influence of enhanced
viscoelastic stress.

3.2. Streamline and turbulent kinetic energy

To illustrate vortex formations, streamlines of the mean flow are depicted
in Fig. 3. In both cases of the Newtonian fluid and the viscoelastic fluid, two
recirculation zones (bubbles) of finite size are clearly observed to remain in
each corner of the sudden expansion behind the orifice, and they are known as
‘Moffatt eddies’ (Alleborn et al., 1997; Shankar, 2005, and references therein).
The bubbles in viscoelastic flows are thinner in the wall-normal direction
compared to those in the Newtonian flow. This is particularly noticeable
at high Weτ0, where the reattachment point has shifted upstream, owing
to a stronger divergence towards the channel walls. This suggests that the
swelling behavior, the so-called ‘Barus effect’ as one of the most important
elastic properties (see, for instance, Newman and Trementozzi, 1965; Bagley
and Duffey, 1970), under turbulent conditions has been demonstrated by the
present DNS. This Barus effect is well known to be related to the difference
in primary normal stress due to fluid elasticity.

Figure 3 also shows the contour of the turbulent kinetic energy, k+. For
Weτ0 = 20, the magnitude of k+ as well as the streamline pathways upstream
of the orifice seems to be unchanged in comparison to those in the Newto-
nian flow, while k+ in the strong shear-layer region and the downstream
corner vortex appear to have shrunk in the viscoelastic flow. The decrease
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in k+ for Weτ0 = 30 is more prominent throughout the channel, as shown in
Fig. 3c. Earlier studies on smooth channel flow revealed that the Reynolds
shear stress is damped more for larger Weissenberg number (Min et al., 2003;
Tsukahara et al., 2011). Similarly, the Reynolds shear stress in the present
viscoelastic flow is much smaller than that of Newtonian fluid flow but de-
creases very slowly with increasing Weissenberg number through the range
Weτ0 = 20–30 (data not shown), because the turbulent motions might be
suppressed maximally at a given Reτ0. After the flow reaches its maximum
frictional-drag reduction state, increasing Weτ0 results in a further increase
in the viscoelastic stress, but an additional decrease in the Reynolds shear
stress can no longer be expected. Thus, the value of Cd at Weτ0 = 30 is
slightly increased. For higher Reynolds numbers, a further increase in Weτ0
is expected to lead to more effective drag reduction, because the contribu-
tion of the turbulent frictional drag to the total one is more dominant in high
Reynolds-number turbulence.

It can be seen from Fig. 3a that the mean flow behind the orifice for the
Newtonian fluid is asymmetric along the centerline of the channel. Such a
phenomenon, occurring in planar expansions, can be explained by a ‘Coanda
effect’, in which any perturbation of the flow field, pushing the main flow
to one or other side of the channel, induces larger velocities and lower pres-
sures there, and hence the asymmetry will tend to be accentuated (see, e.g.,
Shapira et al., 1990; Oliveira, 2003; El Khoury et al., 2010). We can observe
in Fig. 3a that the flow bends towards the upper wall behind the orifice,
but note that the direction of bending is determined randomly with equal
probability for either direction. This mean flow pattern in the turbulent
background is supposed to be a counterpart of steady asymmetric solutions
in a laminar case. Several reports in the literature revealed that a lami-
nar flow remains symmetric up to a certain Reynolds number depending on
the expansion ratio, while asymmetries appear as a steady state at higher
Reynolds numbers (Drikakis, 1997; Mizushima and Shiotani, 2000). Accord-
ing to the DNS study by Makino et al. (2008), for Reτ0 > 20 under the
present configuration (of a symmetric channel with a 1:2 sudden expansion),
the Newtonian flow should give rise to an asymmetric pattern, with a larger
and a smaller recirculation zone behind the orifice. However, the mean flow
for a viscoelastic fluid seems to be rather symmetric about the channel center
even at Reτ0 = 100 as shown in Figs. 3b and 3c. Each figure reveals that the
flow field has two bubbles with equal lengths behind the orifice. The mean
streamlines (and also the other statistical data) were obtained by long-time
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averaging after a statistically steady state was achieved in each case. So, the
rather symmetric pattern in the viscoelastic flows as well as the asymmetric
one in the Newtonian flow are expected to be stable solutions or to sustain
for at least ΔT ∗ = 200. It is conjectured here that the Coanda effect on
the viscoelastic flow occurs at higher Reynolds numbers than that for the
Newtonian case.

An asymmetric parameter of the mean flow is defined by

R(x) =
〈ud(x, y) · ud(x, 2δ − y)〉√〈ud(x, y)2〉

√〈ud(x, 2δ − y)2〉 , (7)

ud(x, y) = u(x, y)− um, (8)

where u is the mean streamwise velocity (averaged in time and spanwise
direction) and the parentheses 〈 〉 represent averaging in the y direction from
0 to δ. When R(x) = 1, the velocity field is symmetric with respect to the
channel center; when R(x) = 0, the velocity is asymmetric. Figure 4 shows
the distribution of R(x) along the x direction. As can be seen from this
figure, the asymmetry is accentuated most strongly near the reattachment
point (around x∗ = 10). In the Newtonian flow, the asymmetry is clearly
visible, but less so in a viscoelastic fluid. The flow becomes more symmetric
as the Weissenberg number increases (Weτ0 = 30), and so we conclude that
the viscoelasticity negates the Coanda effect even under the turbulent flow
regime. A similar finding was reported in previous studies under different
conditions in the laminar flow regime (Oliveira, 2003, and reference therein).

The statistical results concerning the viscoelastic flow simulations are
given in the following subsections which deal with the flow field only for
Weτ0 = 20, since this paper focuses mainly on a comparative discussion
between Newtonian and viscoelastic fluids. The conclusions drawn from this
comparison are consistent, at least qualitatively, with Weτ0 = 30.

3.3. Instantaneous vortex structures behind the orifice

Figure 5 shows vortex structures in the flow fields, where a vortex is iden-
tified by the iso-surface of the second invariant, Q, of the velocity-gradient
tensor, defined as

Q+ = −∂u′
i
+

∂x+
j

∂u′
j
+

∂x+
i

. (9)

In the viscoelastic-fluid flow, the number of vortices significantly decreases.
Focusing on the strong shear-layer region just downstream of the orifice, the
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spanwise primary Kelvin-Helmholtz (K-H) vortices are visible in Fig. 5a, but
almost absent in Fig. 5b so that small-scale eddies do not appear as such. As
reported by Makino et al. (2008), at this Reynolds number with the Newto-
nian fluid, the K-H vortices are distorted and break up into complex three-
dimensional vortex structures with a lattice pattern. In the viscoelastic flow,
the K-H spanwise vortices seem to decay quickly at δ downstream from the
orifice, so that eddy motions, which give rise to the momentum transport, are
sparse in the region from x∗ = 7.5 to 10. This result agrees with the discus-
sion on turbulent kinetic energy in Fig. 3. At positions away from the orifice,
elongated quasi-streamwise vortices are clearly found to be maintained (at
least up to x∗ = 12) in the viscoelastic flow. In the Newtonian flow the large-
scale vortices generated at each orifice edge should progressively break into
small-scale eddies further downstream, whereas the quasi-streamwise vortices
in the viscoelastic case are sustained for a longer period.

3.4. Anisotropy characteristic

Lumley and Newman (1977) proposed the anisotropy invariant map (AIM)
to objectively quantify the level of anisotropy of turbulence, by introducing
the anisotropy tensor,

bij =
u′
iu

′
j

2k
− 1

3
δij. (10)

A plot of its second and third invariants

II = −bijbji
2

, III =
bijbjkbki

3
(11)

is called the AIM, where three curves bound all physically realizable turbu-
lence, and (III, II) should always be inside the Lumley triangle, as shown
in Fig. 6. In this figure, the upper straight line shows two-component (2C)
turbulence and the right and left curves show axisymmetric turbulence: the
right-hand curve corresponds to turbulence strained by axisymmetric expan-
sion like a diffuser, and the left-hand curve by axisymmetric contraction like
a nozzle. The intersections at (III, II) = (0, 0), (−1/108, 1/12), and (2/27,
1/3) show isotropic turbulence, isotropic 2C turbulence, and one-component
(1C) turbulence states, respectively.

According to published studies (Jovanović et al., 2006; Frohnapfel et al.,
2007) using DNS and experimental data for various drag-reduced turbulent
flows, the drag-reduced flow tends to increase anisotropy in the near-wall
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region. Figures 7 and 8 show the AIM at the streamwise positions of x∗ = 7.0
and 8.0, where the K-H vortex decayed in the viscoelastic fluid. Regarding
the turbulence intensities, we plot them in Figs. 9 and 10 for the Newtonian
and viscoelastic flows, respectively. From these results, three different types
of behavior can be identified: (i) within the viscous sublayer, the bubble
(recirculation zone) favors two-component isotropy, reducing the wall-normal
turbulence intensity (v′rms) and increasing the two components (u′

rms and
w′

rms). This 2C isotropic limit state just downstream of the orifice is in good
consistency with the experimental result of Fischer and co-workers reported
by Jovanović and Pashtrapanska (2004) for disturbances induced by a two-
dimensional roughness element attached to the wall in a laminar boundary
layer. Such trajectory in the AIM that approaches the line signifying a
nozzle-like flow state is a typical one of tripped near-wall turbulence and
thus can not directly be compared with drag-reduced turbulence in a smooth
channel. (ii) In the center of the channel all turbulence intensities tend to be
comparable, resulting in a three-component (3C) isotropic turbulence, since
the rate of deformation is zero. (iii) In the most important intermediate
(strong shear layer) region, which includes the peak turbulence and the main
turbulence producing zones, there clearly occurs an increase in anisotropy
towards a one-component turbulence state, i.e., u′

rms > w′
rms ≈ v′rms.

At x∗ = 7.0 (where K-H vortices are generated), the typical behaviors
described above can be clearly distinguished from trajectories in the AIM
regardless of the fluid (Figs. 7a and 8a). On the other hand, at x∗ = 8.0 the
1C anisotropy is relaxed in the case of the Newtonian flow, but still remains
in the viscoelastic case (Figs. 7b and 8b). In the latter case, the anisotropy
at x∗ = 8.0 is almost the same as that at x∗ = 7.0; moreover, at the higher
Weissenberg number of 30, the anisotropy at x∗ = 8.0 is stronger than that
at x∗ = 7.0 (figure not shown). Such a flow state, approaching the 1C limit,
is similar to the near-wall state of drag-reduced turbulent flow, in which the
turbulent dissipation is significantly reduced in the near-wall region. Even
if we focus on downstream of the reattachment point, the trajectory for the
viscoelastic flow at x∗ = 11 is apparently closer to the 1C limit than at the
same steamwise position for the Newtonian flow, as shown in Fig. 11. To
compare with a smooth channel flow, also shown in the figure is the DNS
result (Tsukahara et al., 2011) of turbulence with/without drag reduction,
although their simulations were done at different Reτ0. In the viscoelastic
flow in a smooth channel, the points that correspond to the positions at the
wall and the most-highly disturbed region move upwards in the direction of
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the 1C limit. Also in the core region, the trajectory remains far from the 3C
isotropic limit, compared to the Newtonian case. In the present viscoelastic
case with the orifice, similar trends can be observed, although the point in the
immediate wall vicinity remains on the 2C isotropic limit. It is interesting to
note that the wall-normal height, at which the trajectory approaches the 1C
limit, is found to be around the orifice edge, i.e., y∗ = 0.5, where the turbulent
kinetic energy is most enhanced due to the strong shear layer downstream
of the orifice: cf. Fig. 3. This seems not to agree with the consideration in
respect to the smooth channel (Frohnapfel et al., 2007) that the approach to
the 1C limit occurs in the wall vicinity and leads to drag reduction. However,
it is reasonable that, if the relaxation time of viscoelastic fluid is appropriately
comparable to the local turbulent time scale, the turbulence would undergo
considerable modification there by the viscoelasticity and reach locally a
state of 1C anisotropy. For the viscoelastic flow, this suggests that the loss
(or redistribution to other components) of energy in the u′ component is
decreased in the region of high turbulent intensity, and that the turbulent
frictional drag on the surface downstream of the reattachment point should
be reduced as a consequence of anisotropy in the near-wall region.

3.5. Budget of Reynolds stress

Figures 12 to 14 show the wall-normal variations of the budget terms
for Reynolds stresses of u′u′, v′v′ and w′w′ at x∗ = 7.5, where K-H vortices
break into small-scale eddies or decayed quickly. The transport equation of
the Reynolds stress, u′

iu
′
j, is expressed as

∂u′
i
+u′

j
+

∂t+
= Pij − εij +Π∗

ij + Tij + Vij + Eij + Aij, (12)

where

Pij = −u′
j
+u′

k
+∂u

+
i

∂x+
k

− u′
i
+u′

k
+∂u

+
j

∂x+
k

, (13)

εij = 2β
∂u′

i
+

∂x+
k

∂u′
j
+

∂x+
k

, (14)

Π∗
ij = −

(
u′
i
+ ∂p+

∂x+
j

+ u′
j
+ ∂p+

∂x+
i

)
, (15)

Tij = − ∂

∂x+
k

u′
i
+u′

j
+u′

k
+, (16)
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Dij = β
∂2

∂x+
k ∂x

+
k

u′
i
+u′

j
+, (17)

Eij =
1− β

Weτ0

(
u′
i
+
∂c′+jk
∂x+

k

+ u′
j
+∂c

′+
ik

∂x+
k

)
, (18)

Aij = −u+
k

∂u′
i
+u′

j
+

∂x+
k

. (19)

Here, the terms in the right-hand side of Eq. (12) are (in order from left to
right) the production, the dissipation, the velocity pressure-gradient correla-
tion, the turbulent transport, the viscous diffusion, the viscoelastic contribu-
tion, and the advection terms. The term of Π∗

ij can be split into the pressure
strain term φij and the pressure diffusion term Πij:

φij = p′+
(
∂u′

i
+

∂x+
j

+
∂u′

j
+

∂x+
i

)
. (20)

Πij =
∂p′+u′

i
+

∂x+
j

+
∂p′+u′

j
+

∂x+
i

. (21)

It is well-known that the former plays a dominant role in the redistribution
of energy.

The budget terms for u′u′ are shown in Fig. 12 for both the Newtonian
and the viscoelastic flows. Note that their vertical scales, also in Figs. 13
and 14, are different. The production, the turbulent transport, the pressure
strain, and the advection terms are dominant, especially, in the region from
y∗ = 0.5 to 0.8, because the velocity gradient in this region becomes large
due to the velocity difference between the main flow and the recirculation
zones, as shown in Fig. 3. As can be seen from Eq. (13), such a large velocity
gradient gives rise to a large value of P11. In the viscoelastic flow, the peak
in P11 is smaller than that in the Newtonian flow and locally decreases at
y∗ = 0.55. At the same height, the turbulent transport, T11, is also damped
and is slightly positive, so the kinetic energy is transferred from other heights
of local peaks in P11. These phenomena occur due to the viscoelastic contri-
bution of the fluid. The DNS study on a smooth channel flow by Min et al.
(2003) revealed that the turbulent kinetic energy near the wall, i.e., at the
high-P11 height, was absorbed by the polymer and transformed into elastic
energy, when drag reduction occurs. Then, this elastic energy near the wall

13



was released as turbulent kinetic energy or was dissipated in the buffer and
log layers. Thus, the polymer actively intervenes in the energy transfer. A
similar process can be found in the strong shear layer with the viscoelastic
fluid. The viscoelastic contribution, E11, is negative at y

∗ = 0.6 and becomes
positive at y∗ = 0.45 and 0.7. The distributions of the turbulent and molec-
ular diffusions (T11 and D11) show opposite manners, revealing that these
terms always serve to transport energy from the peak production zone to
other areas. It is interesting to note that the distribution of E11 is similar to
those of T11 and D11 in the Newtonian flow.

The budgets for v′v′ and w′w′ are shown in Figs. 13 and 14, respectively.
Note again that the vertical scale for the viscoelastic flow [in (a)] is half of
that for the Newtonian flow [in (b)]. For both components, the dominant
terms are the pressure strain, the dissipation, and the advection terms. As
for v′v′, the pressure strain term of φ22 has a peak at y∗ = 0.63 (Fig. 13a),
while in Fig. 13b it has two peaks at y∗ = 0.46 and 0.65. The positions
of these peaks are in agreement with the peaks of the production for u′u′ in
each flow. On the other hand, there exists a single peak in φ33 for both flows,
although the positions are different between them.

As shown in Figs. 13b and 14b, the viscoelastic contribution terms of
E22 and E33 are found to cause a loss of turbulent kinetic energy, which
is changed into elastic energy and released downstream. Consequently, the
decreases in A22 and A33 are more significant than those in the pressure
strain terms. In other words, a large amount of energy, which should be con-
vected by the advection term in the case of the Newtonian flow, is transferred
downstream by the viscoelastic contribution through energy exchanges. This
process is consistent with other evidence that quasi-streamwise vortices can
persist downstream (see Fig. 5b), since the elastic energy stored near the
orifice is released into turbulent kinetic energy away from the orifice. This
means that the decrease in the production of turbulent kinetic energy is
compensated by the increase in energy transfer from polymer elastic energy
to turbulent kinetic energy, in accordance with existing DNS studies on a
smooth channel flow (Min et al., 2003; Tsukahara et al., 2011).

As mentioned above, the K-H vortex in the viscoelastic flow decays im-
mediately at x∗ = 7.5 and this suppression results in low turbulent kinetic
energy there and downstream (see Figs. 3 and 5). The production of turbu-
lent kinetic energy, Pk, is also expected to be significantly decreased there.
Figure 16 shows the streamwise distribution of Pk, downstream of the orifice,
at the height of y∗ = 0.5 (the same as the orifice edge). The magnitude of
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Pk in the viscoelastic flow remarkably decreases in the region from x∗ = 7.5
to 10.5, while it becomes slightly larger than that for the Newtonian flow in
the other regions. Assuming that w = 0 and ∂/∂z = 0, the expression for Pk

is written as,

Pk = −u′+u′+∂u
+

∂x+
− v′+u′+ ∂v+

∂x+

−u′+v′+
∂u+

∂y+
− v′+v′+

∂v+

∂y+
. (22)

As expected, the velocity gradient of ∂u/∂y is much larger than the other
velocity gradients (see Fig. 15). Thus, the third term in Eq. (22) is the
dominant term in the production. Figure 16 also shows the distribution of
the Reynolds shear stress −u′v′, which appears in the third term of Eq. (22).
It can be seen that −u′v′ in the viscoelastic flow is clearly damped, as is
the production term, and shifted downstream. It is for this reason that the
production of turbulent kinetic energy is suppressed in the viscoelastic flow.

4. Conclusions

In the present study, turbulent flows of a viscoelastic fluid in a channel
flow with periodic rectangular orifices were analyzed using DNS at the friction
Reynolds number Reτ0 = 100 for the Weissenberg numbers Weτ0 = 20 and
30, in order to investigate the effects of viscoelasticity on vortex structures,
streamlines, and turbulence statistics including the drag-reduction rate.

We obtained a significant drag reduction of 18.7–19.7% in the viscoelastic
flows with respect to the Newtonian flow at the same magnitude of pressure
drop. The lower (or almost the same) drag reduction rate was achieved
in the case of Weτ0 = 30, although the turbulent kinetic energy was more
decreased throughout the channel than that for Weτ0 = 20. The onset
Reynolds number for the transition from a symmetric to an asymmetric state
is shifted to higher values (but still unknown). Although the Coanda effect
should occur for Reτ0 > 20 according to Makino et al. (2008), the present
viscoelastic flows were rather symmetric about the channel center even at
Reτ0 = 100. The viscoelasticity is therefore a stabilizing factor in suppressing
the Coanda effect.

The vortex region of the mean-flow streamline behind the orifice was ob-
served to be smaller in the viscoelastic flow, compared to the Newtonian case.
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Thus the Barus effect under turbulent conditions was successfully demon-
strated. The turbulent kinetic energy and the number of vortices decreased
in the viscoelastic case, because the spanwise Kelvin-Helmholtz vortices trig-
gered by the orifice edge were quickly damped. Moreover, a large amount of
turbulent kinetic energy, which should be convected by the mean-flow advec-
tion in the case of the Newtonian flow, was transferred into elastic energy of
the viscoelastic fluid and was released downstream through energy-exchange
processes. Away from the orifice, quasi-streamwise vortices in the viscoelas-
tic case were sustained and propagated for a longer period. The decrease
in the production of turbulence in the viscoelastic flow was attributed to
the decrease in the generation of spanwise Kelvin-Helmholtz vortices, which
contributed to the Reynolds shear stress. The redistribution to other com-
ponents of energy in the streamwise velocity fluctuation for the viscoelastic
flow was decreased in the region of high turbulent intensity, i.e., the strong
shear layer just downstream of the orifice, and thus lead to an increase in the
anisotropy of the Reynolds stress.

Although the present Reynolds number was considerably lower than that
corresponding to conditions under which drag reduction in practical flow
systems is observed with dilute additive solutions, we have demonstrated
using DNS that a reduction in the drag (total pressure loss) can be achieved
even in a complicated flow geometry. The above conclusions have been drawn
from limited cases, however similar experimental studies will be conducted
in the near future. It will also be necessary to calculate viscoelastic flows at
higher Reynolds numbers with a wide range of Weissenberg numbers.
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Table 1: Mean-flow statistics obtained for different simulations of Newtonian and vis-
coelastic fluid flows.

Fluid Weτ0 β Rem Cd DR%
Newtonian — 1.0 579 0.0597 —
Viscoelastic 20 0.8 646 0.0479 19.7
Viscoelastic 30 0.8 642 0.0485 18.7
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Figure 1: Configuration of the computational domain. A rectangular orifice is installed
half way along the streamwise domain length.
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Figure 2: Mean streamwise velocity profiles at different streamwise positions.
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Figure 3: Averaged streamlines and contours of turbulent kinetic energy in the x-y plane.
(a) Newtonian-fluid flow, (b) viscoelastic-fluid flow for Weτ0 = 20, (c) Weτ0 = 30.
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Figure 4: Mean-flow asymmetric parameter about the channel center, defined by Eq. (7),
as a function of streamwise distance. The rectangular orifice is installed at x∗ = 6.4–6.5.
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Figure 5: Temporal evolution of the flow field behind the orifice: iso-surfaces of the second
invariant of the velocity gradient tensor, Q+ = −0.015. For easier visualization, only the
lower half of the domain is displayed. Mean flow direction is from bottom-left to top-
right. Each red circle represents a Kelvin-Helmholtz vortex. (a) Newtonian-fluid flow, (b)
Viscoelastic-fluid flow (Weτ0 = 20).
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Figure 7: Reynolds-stress anisotropy invariant map for Newtonian fluid. (a) x∗ = 7.0, (b)
x∗ = 8.0.
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Figure 12: Budget of Reynolds stress u′+u′+ at x∗ = 7.5. (a) Newtonian-fluid flow, (b)
Viscoelastic-fluid flow (Weτ0 = 20).
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Figure 13: Same as Fig. 12, but for v′+v′+.
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Figure 14: Same as Fig. 12, but for w′+w′+.
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