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Flow regimes in a plane Couette flow with
system rotation†
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Flow states in plane Couette flow in a spanwise rotating frame of reference, have been
mapped experimentally in the parameter space spanned by the Reynolds number and
rotation rate. Depending on the direction of rotation, the flow is either stabilized or
destabilized. The experiments were made through flow visualization in a Couette flow
apparatus mounted on a rotating table, where reflected flakes are mixed with the water
to visualize the flow. Both short- and long-time exposures have been used: the short-time
exposure gives an instantaneous picture of the turbulent flow field, whereas the long-time
exposure averages the small, rapidly varying, scales and gives a clearer representation of
the large scales. A correlation technique involving the light intensity of the photographs
made it possible to obtain, in an objective manner, both the spanwise and streamwise
wavelengths of the flow structures. During these experiments 17 different flow regimes
have been identified, both laminar and turbulent with and without roll cells, as well as
states that can be described as transitional, i.e. states that contain both laminar and
turbulent regions at the same time. Many of these flow states seem to be similar to those
observed in Taylor-Couette flow.

1. Introduction

Stability and transition to turbulence in various flow systems have been studied since
the pioneering works of Rayleigh (1880) and Reynolds (1883). One category of such flow
systems can be classified as shear layers where inviscid and viscous instability mech-
anisms may give rise to instabilities. Inflection type instability, exponential growth of
Orr-Sommerfeld modes and transient, algebraic growth are examples of such mecha-
nisms and are extensively described in the monograph by Schmid & Henningson (2001).
Such instabilities are important in many applications of fluid mechanics, e.g. on airfoils
and in jet flows. Another type of instability may occur in flow fields which are affected by
body forces. Examples of such forces are buoyancy due to density differences, centrifugal
forces due to streamline curvature and Coriolis forces due to system rotation.
The ‘canonical’ case of buoyancy-induced instability is the so-called Bénard convection

where a fluid between two infinitely large horizontal plates is heated from below. This
sets up counter-rotating convection rolls and for high temperature differences various
secondary instabilities may occur. The most studied flow case where centrifugal instabil-
ity dominates is the so-called Taylor-Couette flow (hereafter, TCF), where the fluid is
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contained between two concentric, independently rotating cylinders. The basic instability
in this flow gives rise to axisymmetric vortices (often called Taylor vortices) with a cross
stream size approximately equal to the gap width. These two flows are well described in
many books as for instance Chandrasekhar (1961) and Drazin & Reid (1981).

The influence of rotation on stability due to the Coriolis force is less studied. If there is a
component of the rotation vector that is parallel to the wall and normal to the mean flow
direction the Coriolis effects may lead to an unstable ‘stratification’. As in cases where
stratification is set up by density differences the flow may develop streamwise-oriented
vortices. The Coriolis force may, however, be stabilizing or destabilizing depending on
the direction of rotation. If the mean flow vorticity is of the opposite sign as compared
to the system rotation vector, then the flow becomes unstable, whereas the flow becomes
stabilized if they have the same sign. Lezius & Johnston (1976) did both linear stability
calculations for a spanwise rotating laminar channel flow and investigated experimentally
how a turbulent channel flow was affected. Alfredsson & Persson (1989) experimentally
showed the existence of spanwise roll cells set up in a laminar channel flow and also
showed secondary instabilities and transition to turbulence. It is interesting to note that
instability may occur at Reynolds numbers almost two orders of magnitude smaller than
predicted for the Tollmien-Schlichting waves to be unstable in the non-rotating case.

In a plane Poiseuille flow, the Coriolis force acts in such a way that in the half of
the channel where the system rotation has opposite sign compared to the mean flow
vorticity the flow becomes destabilized (anticyclonic rotation) whereas in the other half
of the channel it becomes stabilized (cyclonic rotation). For plane Couette flow (PCF)
on the other hand, because the basic flow vorticity is of the same sign across the channel,
the Coriolis force will be either stabilizing or destabilizing across the full channel width.

The plane Couette flow is, maybe conceptually, the most simple shear flow; however,
to build a working apparatus for flow experiments is a complex challenge. A functioning
Couette flow apparatus (the principle of the apparatus is described in section 3) was
constructed and built in 1990 at KTH and was used to study turbulent spots and the
transition to turbulence first reported by Tillmark & Alfredsson (1990). Later, turbulent
plane Couette flow was also studied and compared with results from direct numerical
simulations by Bech et al. (1995). The basic design principle of this apparatus has later
been used by several other groups and to our knowledge at least five other apparatuses
have been built based on the KTH design.

In a second phase of experiments at KTH, the PCF apparatus has been mounted on
a rotating table in order to investigate the effects of system rotation. We will denote
this flow rotating plane Couette flow (RPCF). Some preliminary results were given by
Alfredsson & Tillmark (2005) and later Hiwatashi et al. (2007) studied RPCF at low
Reynolds numbers to investigate some stable, three dimensional, finite amplitude solu-
tions which were obtained theoretically/numerically by Nagata (1998) and Nagata &
Kawahara (2004). In this work, we extend the previous experimental studies and make
an extensive mapping of various flow instabilities that occur in an RPCF.

As far as we know, there exist no other experimental studies on RPCF than those
carried out at KTH. However, there exist a few direct numerical simulation studies of
the rotating turbulent plane Couette flow. The paper by Komminaho et al. (1996) was
mainly devoted to the non-rotating case, however they also showed that a turbulent flow
can be stabilized and even relaminarize by rather weak negative rotation. Turbulent, i.e.
high Reynolds number, RPCF was simulated by Bech & Andersson (1996, 1997), with
destabilizing rotation, and they found that secondary flow in the form of streamwise-
oriented vortices also occurs in this case both for weak and strong rotation.
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1.1. Related work

Taylor-Couette flow is one of the most studied systems with regard to hydrodynamic
stability, transition and turbulence. Although the seminal paper by Taylor (1923) was
published more than 80 years ago, the richness of this flow system continues to keep
researchers occupied and new phenomena are still discovered. We do not attempt to
make a comprehensive review of TCF here, because there are several monographs and
workshop proceedings dealing exclusively with this flow system (see e.g. Koschmieder
1993); however, we have found that many of the flow features that have been observed
in TCF can also be found in the RPCF. The similarities between the two systems may
partly be due to the fact that for a given experiment there are two independent control
parameters in both systems, in the TCF the angular speeds of the two cylinders and in
the RPCF the wall velocity and the rotational speed. In the following we put emphasis
on some research papers on TCF that are relevant for our study.

Taylor (1923) made a thorough analysis of the linear stability properties for axi-
symmetric disturbances of the TCF and also confirmed the results with experiments.
Later, Coles (1965) made extensive and careful experiments in a relatively small gap
width TCF (radius ratio ro/ri ≈ 1.12) on both co- and counter-rotating cylinders and
found for high rotation rates a large number of flow scenarios. He also showed that de-
pending on how a specific point in parameter space was reached, that point could have
several different flow states (i.e. different spanwise and streamwise wavenumbers of the
Taylor vortices). The TCF was further studied by Andereck et al. (1986) in a similar
geometry as that of Coles and they identified 18 principal flow regimes by careful flow
visualization experiments. They also produced a map of the Rei-Reo plane, i.e. the pa-
rameter plane spanned by the Reynolds numbers based on the inner and outer cylinder
diameters and velocities, respectively. Note that if we, by definition, let Rei � 0 then Reo
can have both positive and negative values depending on if it is co-rotating (Reo > 0) or
counter-rotating (Reo < 0).

1.2. Motivation of present work

There has been some recent interest in investigations of TCF when the radius ratio
ro/ri → 1. In that case, Faisst & Eckhardt (2000) showed that the TCF approaches
the PCF and one could expect that the instability that leads to Taylor vortices may be
overtaken by the instability that gives turbulence in the PCF. In the small gap case with
co-rotating cylinders with slightly different speed one obtains the PCF with system rota-
tion. This is however a complicated or even impossible situation to obtain experimentally
because the radius ratio needs to be around or less than 1.01 and the speeds fairly high to
get into the interesting parameter regime. Carey et al. (2007) recently made experiments
in an apparatus with ro/ri = 1.01, but in their case only the inner cylinder was rotating.
However, they found small-scale structures overlaid on the Taylor vortices which they
named “bursts”. These structures have not previously been observed for larger radius
ratios.

Recently, several researchers (see e.g. Prigent et al. 2002; Prigent & Dauchot 2005)
have observed a regular pattern of turbulent stripes interweaved with laminar regions
that are inclined to the flow direction, in both PCF and TCF. This kind of transition
scenario has been observed in different flow systems and described by a process called
“spatiotemporal intermittency”. Especially, a state well known as “spiral turbulence”
was discovered in a counter-rotating TCF by Coles (1965) and was further studied ex-
perimentally (Andereck et al. 1986; Hegseth et al. 1989). Similar patterns have been
numerically reproduced in PCF by Barkley & Tuckerman (2005, 2007) and also in a
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plane Poiseuille flow by Tsukahara et al. (2005). However, its self-organizing mechanism
is still a question attracting much attention from researchers.
In this work, we are studying the RPCF in a plane channel with system rotation. We

have previously made some preliminary studies that have shown that this flow system
contains a number of different flow states, many of them seem similar to those observed in
the TCF. However, the RPCF have some advantages over the TCF: one is that geometry
is simple and one can directly distinguish how the Coriolis force enters the flow equations.
We propose that RPCF is probably a better model system to work with in order to
investigate non-linear flow instabilities and bifurcations than the TCF system, from both
theoretical and numerical perspectives. From an experimental point of view it is of course
a more complex apparatus than usually needed for TCF experiments, however to obtain
true RPCF at high Re it is the only possibility.
The layout of the paper is as follows. Section 2 gives a brief introduction to the equa-

tions of motion and the relevant parameters and also compares with other similar systems,
especially the TCF system. The experiments are described in section 3, with respect to
both the set-up and the experimental procedure. In the experiments, a number of differ-
ent flow states have been observed, and in section 4 we classify the different states and
map them in the Re-Ω plane, where Ω is a non-dimensional rotation number as defined
in the following section. Section 5 describes, mainly through photographic evidence these
states and gives some quantitative about scales obtained from evaluating the patterns
in the photographs. Finally, section 6 gives the conclusions of the present work and also
gives some indications for future work.

2. Theoretical background

2.1. Governing equations

The momentum and continuity equations for a flow in a rotating frame of reference with
an angular velocity Ω = Ω(t), are

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u+ 2u×Ω+ Ω̇× r (2.1)

∇·u = 0, (2.2)

where ρ is the fluid density and ν is the kinematic viscosity, which both here are assumed
to be constant. The static pressure P ∗ and the centrifugal acceleration are combined to
give

P = P ∗ − ρ

2
|Ω× r|2

and r is a position-vector from the axis of rotation. In the following we assume that the
walls are countermoving with a velocity difference of 2Uw and that the distance between
the walls is 2h. For undisturbed laminar flow, the velocity profile also becomes linear in
the case with system rotation so that

U(y) = Uw
y

h
(2.3)

where we chose the coordinate system such that x is in the streamwise direction, y is
normal to the walls and z is in the spanwise direction. The rotation vector is in the
spanwise direction, i.e. Ω = Ωzez.
This flow can be fully characterized through two non-dimensional parameters: the
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Reynolds number Re = Uwh/ν and a rotation number Ω = 2Ωzh
2/ν. In some earlier

studies, a rotation number defined as Ro = 2Ωzh/Uw = Ω/Re has been used; however,
for this work we chose Ω to characterize the effect of rotation. In this way, Re and Ω
can be changed independently in the experiment by changing the wall velocity and the
system rotation speed respectively.
The flow develops along various time scales and at least three relevant scales can be

identified,

τd = h2 ν−1 − diffusion time scale (2.4)

τo = hU−1
w − outer time scale (2.5)

τΩ = 2πΩ−1
z − rotation time scale (2.6)

These timescales are related as

τd = Re τo =
1

4π
Re Ro τΩ. (2.7)

2.2. Linear stability of plane rotating Couette flow

It is well known that linear stability theory predicts a stability boundary for streamwise
oriented roll cells for RPCF as

Re = Ω+
107

Ω
, (2.8)

which gives a minimum Reynolds number for instability of 20.7 at Ω = 10.3 (see e.g.,
Lezius & Johnston 1976; Hiwatashi et al. 2007). It is also well known that linear theory
utterly fails when predicting instability in PCF, since according to linear theory there
is no instability even for infinite Reynolds numbers, whereas experiments have already
shown that turbulent spots can become self sustained even at Reynolds numbers as low
as Re = 360 (Tillmark & Alfredsson 1990; Daviaud et al. 1992; Prigent et al. 2002).

2.3. Rotation effects on turbulence

System rotation also affects turbulent flows through the influence of the Coriolis term.
The equations for the Reynolds stresses are obtained by taking the ith component of eq.
(2.1) and multiplying by uj and thereafter taking the ensemble average to get

(
∂

∂t
+ Uk

∂

∂xk

)
Rij = Pij +Πij − εij +Dij +Gij (2.9)

where u · ek = Uk + uk, and Uk and uk are the ensemble average and fluctuating part of
the k-th component, respectively. Here, Rij = uiuj , where the overbar denotes ensemble
average. The first four terms on the right hand side represent turbulent production (Pij),
pressure strain redistribution (Πij), viscous dissipation (εij), turbulent and viscous dif-
fusion (Dij) and are the same as for the non-rotating case. The last term Gij is a term
stemming from the system rotation, which can be written as

Gij = −2Ωk(Rjmεikm +Rimεjkm) (2.10)

where εijk is the permutation tensor. As is well known, the Coriolis term does not work, so
the physical interpretation of this term is a redistribution of energy between the velocity
components. It is noteworthy that the term Ω̇× r in eq. (2.1) does not contribute to eq.
(2.9).
For unidirectional flows (as e.g. channel flows) there is no variation of mean quantities
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in the x1 = x and x3 = z directions and the mean velocity components U2 = U3 = 0.
This simplifies eq. (2.9) significantly (see e.g. Johnston et al. 1972) and we can write

∂

∂t
(u2) = −2uv

(
dU

dy
− 2Ω

)
+Π11 − ε11 +D11 (2.11)

∂

∂t
(v2) = −4uvΩ+Π22 − ε22 +D22 (2.12)

∂

∂t
(w2) = Π33 − ε33 +D33 (2.13)

∂

∂t
(−uv) = v2

dU

dy
+ 2(u2 − v2)Ω + Π12 − ε12 +D12 (2.14)

For a steady flow, i.e. U and Ω are both independent of t, eqs. (2.11)–(2.14) can be
further simplified because then the left-hand side is equal to zero.
In the case when Ω and ∂U/∂y have the same sign, turbulent energy will be transferred

from the streamwise to the wall normal component. It is not obvious what the overall
result will be on the turbulence, except that it will lead towards an equalization of the
two components. On the other hand negative rotation will give a transfer of energy to
u2 and a decrease in v2. The normal velocity is important for turbulence production
because it directly influences uv (see eq. (2.14)) and it can be intuitively understood that
negative rotation will lead to a decrease in uv and hence in a decrease in the production
of turbulent energy.

2.4. Relation to other flows

The linear stability of the rotating Couette flow has its analogue in two other well-known
flows, namely Bénard convection and Taylor-Couette flow in the small gap limit. In fact,
the governing equations and boundary conditions for obtaining the stability boundary
are the same except that the stability parameter(s) are different in the three cases. In
the case of Bénard convection, there is only one parameter, namely the Rayleigh number
which for a given set-up can be varied by changing the temperature gradient between
the plates. For TCF with only the inner cylinder rotating, the equation can be written
with only one parameter, namely the Taylor number; however, in an experiment two
independent parameters can influence the flow, i.e. the individual angular speed of the
two cylinders. Also, in the present case, we have two independent parameters: Re and Ω.
It may therefore not be surprising that the RPCF and the TCF have many similarities
when comparing various flow structures above the critical parameter values that denote
instability. In both cases the origin of the instability is a body force, in the TCF it is
of centrifugal origin and therefore proportional u2 and in the RPCF it is caused by the
Coriolis force and hence in linear proportion to u.

3. Experimental description

3.1. Experimental flow apparatus

The experiments have been carried out in a water channel mounted on a rotating table
previously described by Alfredsson & Tillmark (2005) and Hiwatashi et al. (2007). A
schematic of the set up is depicted in figure 1. The Couette apparatus with counter-
moving walls is basically the same as in the experiment by Tillmark & Alfredsson (1990,
1992). Such a system of two counter-moving walls gives a zero net transport of fluid
through the channel and, hence, non-intrusive measurement, e.g. visualization, is desired
to prevent disturbance generation.
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Figure 1. Schematic of the rotating plane Couette flow apparatus.

The Couette channel itself consists of two open tanks connected by a long open plane
channel formed with two vertical parallel glass plates. The gap between the two sides of
the channel can be changed by adjusting one of these glass plates, which is positioned
inside the tank. In the present experiments, the rectangular cross section of the channel
is 10× 400 mm2, and the test section length is about 1.5 m. To form the plane Couette
flow, two vertical cylinders in each tank drive an endless transparent polyester plastic
belt of 360 mm width and 0.1 mm thickness. The belt, which is made of 5 m long film
with the edges glued together in a thin joint, runs along the facing inner glass surfaces
of the channel. A thin lubricating water film is established and reduces friction between
the band film and the glass walls. The actual distance between the plastic film surfaces,
which determines the channel height (2h), has been measured with a microscope. The
measurements need to be carried out when the belt is moving. First, the microscope,
which has a very small depth of view, is focused on the inner surface, and then it is
moved and focused on the outer surface. The displacement of the microscope is measured
with a micrometer, and by taking the refractive index of water into account, the distance
between the bands can be determined. The repeatability of the measurements has been
found to be within ±0.2 mm for a trained experimentalist.
The variation in the long time stability of the belt speed was less than 2 %. In the

remainder of this paper, x is in the streamwise direction, y is in the wall-normal direction,
and z is in the spanwise direction as shown in figure 1.
A turntable, on which the heavy apparatus as mentioned above is placed, is driven

by a DC motor and rotates around the vertical z axis. The maximum angular velocity
for the system is Ωz = 0.58 rad/s and this corresponds to a non-dimensional maximum
rotation rate of Ω = ±30. The angular velocity has been found to be constant within
± 1 %.

3.2. Flow visualization and image processing

This study is based on observations made through flow visualization. Visualization of the
flow states has been accomplished by seeding the water used as the working fluid, with
light-reflecting flakes and illuminating its whole width at an oblique angle from below
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(with a fluorescent light tube). Titanium-dioxide-coated mica platelets (Merck, Iriodin
120, 5–25 μm in diameter) have been chosen for the flow visualization.

Interpretation of photographs of flow visualized with these flakes is based on the fact
that a disc-shaped particle aligns itself along the direction of principal axes of the local
rate-of-strain tensor: for a detailed discussion, see Savaş (1985) and Barth & Burns
(2007). Thus the reflected light from the particles clearly revealed areas of turbulent and
perturbed laminar flow, while the reflective light in a simple laminar flow is steady and
homogeneous. This method of flow visualization has previously been used to visualize
vortex structures and turbulent spots (e.g. Andereck et al. 1986; Tillmark & Alfredsson
1992; Prigent et al. 2002).

Photographs of the visualized flow pattern have been taken by a digital camera (Nikon
D50) mounted on the rotating table and subsequently digitized and analyzed by im-
age processing. The camera has a maximum resolution of 3008 × 2000 pixels; however,
all photographs have been taken with a smaller resolution of 1504 × 1000 pixels. Most
photographs have been taken with a short exposure time giving a snapshot of the in-
stantaneous flow field. However, in some cases a longer exposure time has been used
which averages out small scale structures and therefore clearly shows persistent large
scale structures in the flow.
Several methods of illuminating the flow have been tried, and the best contrast was

found by having the light source placed on the lower side of the channel. This gives
rise to an inhomogeneous light intensity in the spanwise direction (vertical axis in the
photographs), but we have applied digital image processing in order to separate such
inhomogeneous background light intensity from the photographs. In the flow-visualization
figures in this paper the background, which can be obtained by averaging a number of
realizations (at least 30 photographs which are separated in time so that even if there is a
steady pattern it has moved sufficiently not to give a structure in the averaged picture),
has been subtracted from each photograph.
The photographs in this paper all show a region with 1504 × 565 pixels. The centre

to centre pixel spacing corresponding to the effective size in the fluid is about 0.5 mm,
i.e. h/10. After digitalization and the above-mentioned background subtraction, the light
intensity of each pixel, I(x) = I(x, z), is normalized with the maximum and minimum
values in the relevant photograph:

I ′(x) =
I(x)− Imin

Imax − Imin
. (3.1)

Thus, I ′(x) ranges from 0 to 1.
To perform the statistical analysis of the scales of structures in the RPCF, we have

computed the correlation function for the processed photographs. A correlation of the
light intensity between spatially separated points of x and x+Δx is defined as

R(Δx) =
I ′′(x)I ′′(x+Δx)√

(I ′′(x))2
√

(I ′′(x+Δx))2
, (3.2)

where I ′′(x) is the deviation from the averaged value as given by,

I ′′(x) = I ′(x)− I ′(x). (3.3)

3.3. Experimental procedures

The experiments on a circular Couette flow by Coles (1965) demonstrated significant
hysteresis, in which several flow states (defined by the number of cells along the axis
of rotation and the number of azimuthal waves) could be obtained at the same point
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Figure 2. Flow regimes diagram as a function of Reynolds number Re and rotation number Ω
in a plane Couette flow subject to system rotation. Solid lines indicate the transition boundaries
that separate flow states, such as ‘laminar flow’, ‘turbulent flow’, ‘quasi turbulence’, ‘intermittent
turbulence’, and ‘contained turbulence in roll cells’. Dashed lines indicate demarcation between
‘2D’ and ‘3D roll cells’: 2Dm, meandering 2D roll cell; 2Dh, straight 2D roll cell observed for
high rotation rates; 3Ds, spatio-temporally intermittent 3D roll cell. More details are shown
in figure 3 for low Reynods number, and shown in figures 4 and 5 for positive-rotating and
negative-rotating systems for high Reynods numbers, respectively.

in parameter space. This non-uniqueness is caused by the non-linearity of the system
and the state obtained for a certain parameter combination may depend on the path
followed in parameter space. Therefore, a well-prescribed path in parameter space has
been specified in this study where two different procedures were followed. In one denoted
Case-Re, the Reynolds number is fixed while the rotation number is increased; whereas
in Case-Ω the rotation number is fixed while the Reynolds number is decreased.
The protocol of Case-Re is that, first the film belt of the Couette apparatus is slowly

accelerated from rest to its final Reynolds number with the turntable at rest, and then
the turntable is slowly accelerated from rest to an aimed rotation rate (Re = const.,
Ω = 0 → ±30). During the start up, the rotation rate usually reached steady state before
changes in the laminar or turbulent flow were observed.
In Case-Ω, an initial flow state is established to be fully turbulent at approximately

Re = 1000 before accelerating the rotation to a constant rotation rate. Then the belt
speed is slowly decreased to an aimed Reynolds number with the constant rotation num-
ber (Re = 1000 → 0, Ω = const.).
It is necessary to wait a long time before observation of a state of equilibrium. In

our experiments, τΩ (see section 2.1) is often one of the longest time-scale: for instance,
τΩ ≈ 280 s for Ω = 1. All pictures presented in this paper have been taken after at least
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COU = Laminar Couette flow
QTR = Quasi turbulence
CNT = Contained turbulence in roll cell
INT = Intermittent turbulence
SPT = Turbulent spots
TRS = Turbulence stripe
TUR = Turbulent flow

Table 1. Classification based on flow state.

N = No roll cells
2D = Two-dimensional roll cell

2Dh = Two-dimensional roll cell for high Ω
2Dm = Two-dimensional meandering roll cell
3D = Three-dimensional roll cell
3Ds = Three-dimensional spatio-temporally roll cell

Table 2. Classification based on flow structures.

N Two-dimensional Three-dimensional 3Ds 2Dm 2Dh
COU COU COU2D COU3D COU3Ds COU2Dm COU2Dh
QTR − − QTR3D QTR3Ds − −
TUR TUR TUR2D TUR3D TUR3Ds − −
CNT − − CNT3D − CNT2Dm −
INT INT − − − − −
SPT SPT − − − − −
TRS TRS − − − − −

Table 3. The principal regimes observed in a plane Couette flow with system rotation.

5 min after setting the control parameters. As in cases where underlying structures are
seen to be unstable or intermittent, we watched further and ensured that it showed the
intrinsic feature for the relevant condition.

4. Classification of flow states and structures

The principal result of this study is the complex transition diagram shown in figure 2.
The abscissa of the diagram gives the rotation speed, negative values are cyclonic (i.e.
stabilizing) whereas positive values are anti-cyclonic (i.e. destabilizing), and the ordinate
is the Reynolds number. As can be seen there are a number of demarcation lines in the
diagram that distinguishes various flow structures identified in the experiments. More
than 400 different observations have been made to obtain this diagram following the two
different protocols described in section 3.3.
The structure of the flow can be classified in different ways, we chose to describe the

flow by two different categories. The first category describes the flow field in general,
i.e. laminar or turbulent—with ‘turbulent’, we mean any type of flow state that shows
structures with a range of length scales, which appear disordered or chaotic. Such flows
can range from being transitional to fully turbulent—, unsteady or steady, and we find
it relevant to define seven different flow states which are given in table 1. The second
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Figure 3. Flow regimes diagram for low Reynolds numbers in the case of positive rotating. A
triangle, cf. �, indicates Case-Ω, a circle indicates Case-Re, and an inverted triangle indicates
the experimental result obtained by Hiwatashi et al. (2007). Color of the symbol displays an
individual flow state and structure. The symbols (×) and (+) indicate demarcation between
laminar and turbulent flow by previous experiments (Tillmark & Alfredsson 1996; Alfredsson &
Tillmark 2005).

category defines the dominating roll-cell structure of the flow field and six different flow
structures (including no roll cells) are found to be appropriate; see table 2. After we have
done this classification, it is possible to construct a map of various flow regimes which is
given in table 3. As can be seen, 17 different flow regimes have been classified during the
search of the parameter space of the present experiments.
Figures 2–5 show where, in the parameter space spanned by Re and Ω, the various

flow states exist. Figure 2 gives an overview for both positive and negative Ω spanning
the range ±30 and for Re up to 1000. The solid lines show the demarcation between
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Figure 4. Same as figure 3 but for high Reynolds numbers in the case of positive rotating.

the different flow states given in table 1, whereas the dashed lines show the demarcation
between different flow structures (see table 2) within a given flow state. As can be seen
it is a fairly complicated diagram, and the demarcations between different regions are in
some cases not clear cut.
Figure 3 shows an enlargement of the region 0 � Re � 400 and 0 � Ω � 30, where a

large number of both flow states and flow structures can be found. In this figure as well as
in figures 4 and 5, each symbol represents an experimental observation, and the heading
of the figure shows which procedure has been used (i.e. Case-Ω or Case-Re). In all cases,
we have found that the flow state observed at a given point in the Re-Ω plane does not
depend on how that point is approached. In figure 4 the region 200 � Re � 1050 and
0 � Ω � 30 is instead shown, whereas figure 5 shows a similar diagram for stabilizing
rotation. In section 5, we will describe the flow structures in the various regions in detail
based on flow visualization.

5. Flow regimes determined from experiments

In the following, we will take the reader through the varying landscape of RPCF and
describe the various regimes. We will use table 3 to keep track of the different regimes
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Figure 5. Same as figure 3 but for high Reynolds numbers in the case of negative rotating.

and will follow it row by row. Each section in the following corresponds to one or a group
of neighboring flow states, and the corresponding flow structures are described in some
detail. In all cases, one or several photographs are used to illustrate the flow state. We will
also point out common features with flow regimes observed in TCF where appropriate.

5.1. Laminar Couette flow (COU)

5.1.1. Laminar Couette flow: no roll cells

The laminar Couette flow regime with no imbedded roll cells or other structures occu-
pies a fairly large part of figure 2. For no rotation the results obtained in the present study
confirm the results from Tillmark & Alfredsson (1992) that below Re = 360 the flow is
laminar and all turbulent disturbances will decay, while other observations in slightly
different experimental configurations and numerical simulations have revealed lower or
higher values of the critical Reynolds number in the range of 320–370 (Lundbladh &
Johansson 1991; Daviaud et al. 1992; Dauchot & Daviaud 1995). This is obtained using
the protocol Case-Ω where the Reynolds number is sequentially decreased, Ω being main-
tained at zero. For stabilizing rotation Ω < 0, the laminar region is extended to higher
Reynolds numbers. For instance, for Ω = −25 laminar flow is obtained up to Re ≈ 600.
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(a) (b)

Figure 6. Front view photograph of the flow: laminar flow (COU) at Re = 531, Ω = −14.9. A
turbulent spot in (a) decays, and the flow becomes laminar 200 s after, as shown in (b).
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Figure 7. (a) Stable 2D roll-cells in laminar flow (COU2D); Re = 50.6, Ω = 2.58. (b) Relation
between roll cells and brightness reflected by flakes.

The good agreement with Tillmark & Alfredsson (1996) is even more satisfactory when
one takes into account the fact that their channel width was 20 mm whereas in this study
it is 10 mm.
For positive Ω, the simple PCF is found to exist below the curve given by eq. (2.8) in

accordance with the results of linear stability theory and the previous results of Tillmark
& Alfredsson (1996).
When entering the laminar region from a fully turbulent one, for instance by starting

at a high Reynolds number and then decreasing it, the situation in figure 6 usually
occurs. In the figure, a rotation number of Ω = −14.9 is shown to dramatically affect the
flow, which should be fully turbulent under a non-rotating condition, and in figure 6b no
turbulent motions are visible. The turbulence dies away and usually a turbulent region
forming a turbulent spot remains and may move slowly around until it finally decays and
the flow becomes fully laminar. The turbulent spot is clearly observed in the photograph
and even more clearly by direct observation with the naked eye. If one is close to the
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Figure 8. Two-point correlation coefficient of light intensity, for the laminar flow with stable 2D
roll cells (corresponding to the cases shown in figure 7), as a function of the spanwise distance
Δz.

stability border the relaminarization process may take a significant time (i.e. between
several and up to 30 min).

5.1.2. Two-dimensional roll cell in laminar flow

According to linear stability theory two-dimensional roll cells will form above the
boundary given by eq. (2.8). A typical photograph of such structures is shown in figure 7.
Here Re = 50.6 and Ω = 2.58. At this Ω, the critical Re is 44, so we are only slightly
above the stability line.
The structures are, as can be seen, quite two-dimensional and steady, although a slight

drift of the structures towards the free surface was observed. The wavelength is larger
in the lower part of the channel and probably due to Ekman layers forming at the solid
boundary there.
When visualizing structures with reflective flakes, the resulting image depends on both

the location of the light source with respect to the flow structures and the location of the
observer. A tentative example of the visualization of non symmetric spanwise oriented
roll cells is seen in figure 7b where we have assumed that the platelets on average orient
themselves with the streamlines.
To obtain the average spanwise wavelength of the pattern, we use a correlation tech-

nique that correlates the brightness in the photograph. We make this correlation only in
the upper part of the channel to avoid the influence from the lower wall. As can be seen
from figure 8 this technique gives a strong spanwise correlation from which the spanwise
wavelength can be estimated to be 4.0h. This compares well with the spanwise scale of
a roll cell pair calculated from linear stability theory and with the picture in figure 7b.

5.1.3. Three-dimensional roll cell in laminar flow

We have also observed steady three dimensional disturbances in a rather small region
of the Re-Ω parameter space. Two such cases are displayed in figure 9. The photographs
show a quite surprisingly regular pattern over the full view, although there is also a
slightly larger wavelength close to the bottom of the channel. The case shown in figure 9a
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(a)

(b)

Figure 9. Stable 3D roll-cells in laminar flow (COU3D); (a) Re = 99.6, Ω = 8.65; (b) Re = 200,
Ω = 17.4. The rectangle show a blow up of the centre part of the pictures with a factor of 2.

(a) (b)

(c) (d)

Figure 10. Spatio-temporally intermittent three-dimensional roll cells in a laminar flow with
two-dimensional roll-cell (COU3Ds). At ΔT = 0 s, 12 s, 24 s, and 50 s from (a) to (d). Re = 151,
Ω = 1.32.
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Figure 11. Spatio-temporally intermittent 3D roll-cells and their breakdown to turbulence
(QTR3Ds). Left column, Re = 148, Ω = 2.58; right column, Re = 300, Ω = 1.04. The time
interval between photographs is 4 s (left column) or 5 s (right column).

is close in parameter space to one stable case reported by Hiwatashi et al. (2007), which
was also predicted theoretically by Nagata (1998).
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5.1.4. Unstable three-dimensional roll cells (COU3Ds) and quasi-turbulence (QTR)

In between the regions of two-dimensional and three-dimensional roll cells, there exist
regions that are spatially and temporally intermittent, meaning that two- and three-
dimensional roll cells develop, interact, break down and disappear intermittently.
In figure 10, we show a sequence of four photographs showing how the flow field, which

basically consists of 2D roll cells, at some random regions suddenly develop a number
of 3D cells that exist for some time before disappearing. In figure 10 two such regions
develop, in figure 10b one is fairly well developed on the left hand side of the photograph
whereas one is starting in the right-hand side. Figure 10c shows how the one on the left
hand side dies away whereas the other has grown in amplitude. Finally, in figure 10d the
flow again consists of 2D roll cells. The wavy structure of the 3D cells is not stable but
decays in amplitude and a pattern of nearly straight cells is again formed. In other words,
2D roll cells intermittently and locally change into 3D roll cells without turbulent-like
motion as 2D→3D→2D→ · · ·. Therefore, in this paper, such case is termed COU3Ds.
Nagata & Kawahara (2004) investigated the instability of the periodic (quaternary) so-
lutions bifurcating from the three-dimensional (tertiary) solution and reported that the
oscillatory instabilities gave rise to three-dimensional time-periodic motions, i.e. tempo-
rally intermittent 3D roll cells, within a certain range of Ω. It was confirmed by their
simulation that the periodic solutions at Re = 100 had been observed for Ω = 2.1–8.0.
Our observation with respect to COU3Ds is in agreement with this. In a higher-Re re-
gion than COU3Ds, disordered turbulent-like motion occurs for a short period after the
decay of 3D roll cells. In figure 11 we have two other cases of intermittent development.
Figure 11a (left hand column) shows a sequence of six photographs following the devel-
opment of a flow consisting mainly of 3D roll cells, however in this case the roll cells are
unstable, break down and two 2D cells appear in small regions, which after a while start
to become 3D again. This is a repeating, but random, process occurring across the full
flow field.
Figure 11b, on the other hand, is for a higher Reynolds number where both 2D and

3D cells appear in the flow field, but when the 3D cells break down, the flow field seems
to first become turbulent like. After a while, the turbulence decays and new 2D and 3D
cells appears again. This is also a repeated process.
Finally we show photographs (figure 12) where the basic flow field consists of unstable

3D roll cells, which means that they break down to unorganized laminar-like motion (fig-
ure 12, left hand column) or a turbulence-like state which we denote by quasi-turbulence
(figure 12, right hand column). In this case we are closer in parameter space to the region
of the stable 3D roll cells.

5.1.5. Meandering laminar roll cells

We have also found a region which we call stable meandering 2D roll cells. This region
borders to the 3D roll cell region, but it seems that the roll cells have a quite different
internal structure in the 3D case. In the 2D meandering case the internal structure seems
to change as compared to the straight 2D cells, whereas the 3D cells seem to have a
complicated inner structure.

5.1.6. Laminar two-dimensional roll cells at high rotation rates

At high Ω and Re quite far away from the linear stability boundary, it is possible to
again obtain 2D roll cells. Figure 14 shows an example of such structures. The boundaries
between the light and dark regions in the flow field are sharper than those for low Ω and
the dark regions seem to have some internal structure as well. This photograph is taken
at the border of 2D meandering roll cells and as seen in figure 15 the flow field for these
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Figure 12. Unstable 3D roll-cells (QTR3D). Left column, Re = 151, Ω = 8.36; right column,
Re = 250, Ω = 10.6. The time interval between photographs is about 200 s (left column) or 8 s
(right column).

Figure 13. Stable meandering 2D roll-cells in laminar flow (COU2Dm); Re = 147, Ω = 20.1.

parameters changes slowly from meandering 2D cells to straight ones. In the blow-up
of the photographs in figure 15 the interior structure of the roll cells can be viewed in
some more detail. If Ω is increased to become larger than Re, the 2D roll cells must be
suppressed because it approaches the stability boundary given by eq. (2.8).

5.2. Turbulent Couette flow

In this section we describe various regions in parameter space where the flow is fully
turbulent but where rotation may give rise to roll cell structures that seem to be overlaid
on the turbulence. We chose mainly a Reynolds number of Re = 751 and then change Ω
(i.e. Case-Re) to illustrate the different flow regimes.

5.2.1. Turbulent Couette flow - featureless

First we describe briefly the fully turbulent case at high Reynolds numbers with weak
positive rotation or moderate negative rotation. In figure 16a, a short time (1/100 s)
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Figure 14. Stable 2D roll-cells in laminar flow (COU2Dh) at high Rotation number;
Re = 178, Ω = 24.6.

Figure 15. Sequential changes of structures from meandering 2D roll-cells to straight roll-cells
of the flow field at every 180 s (from left to right). Re = 178, Ω = 24.6.

exposure is shown giving an instantaneous picture of the flow field exhibiting many
small-scale turbulent structures. For Re = 751 and Ω = 1.08, the turbulence turn-over
time-scale is τo = 0.029 s. This exposure time is, therefore, a reasonable compromise for
a good still photograph.
In figure 16b we instead show a rather long time exposure of the same flow field, which

then averages out the small scale structures and show elongated streamwise structures.
Similar structures are also found in the case of Ω = 0 and are neither induced nor affected
by the rotation in this case. For the non-rotating turbulent case, it is well-known that
the central part contains large-scale streamwise velocity fluctuation extending over a very
long streamwise distance, which is caused by large longitudinal vortical structures, as was
indicated by Lee & Kim (1991). There exists a mechanism, not clarified yet, in Couette
flow that can sustain large-scale streamwise vortex structures (Kitoh et al. 2005). Direct
numerical simulations with a sufficiently long computational domain were performed by
Komminaho et al. (1996) and Tsukahara et al. (2006), and they revealed that the vortical
structures are of finite size and stationary neither in time nor space but fluctuating around
their average position. According to their result, the streamwise length and the spanwise
separation of the vortical structure are about 5–6h and 2h for Re = 750, respectively.
The finite elongated structures we observed in figure 16b are comparable in size to the
vortical structure and specifically different from a roll cell caused by the Coriolis force.
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(a)

(b)

(c)

Figure 16. Featureless turbulent flow (TUR); (a, b) Re = 751, Ω = 1.08; (c) Re = 948,
Ω = −14.9. The exposure time is 1/100 s in (a), 2.0 s in (b, c).

This flow, labelled TUR, lacks any apparent roll cell except the vortical structures and
is thus termed as “featureless turbulence”.

Figure 16c is also a long time exposure for a case Re = 948 with large negative rotation,
Ω = −14.9. The short time exposure is similar to that in figure 16a; however, as can be
seen the elongated structures have more or less disappeared in figure 16c. Tsukahara
et al. (2006) showed that the large-scale vortical structure became more prominent and
elongated as Re increased from 750 to 2150. However, the flow under the negative rotation
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(a) (b)

Figure 17. Stable 2D roll cells in a turbulent flow (TUR2D); Re = 751, Ω = 5.03. The
exposure time is 1/80 s in (a), 2.0 s in (b).

(a) (b)

(c) (d)

Figure 18. Spatio-temporally intermittent 3D roll cells in a turbulent flow (TUR3Ds) at
Re = 751; (a, b) Ω = 8.78, (c) Ω = 14.4, (d) Ω = 16.2. The exposure time is 1/80 s in (a)
and 2.0 s in (b–d).

indicates no large-scale structure as well as roll cells. The dominant visible lengthscale
was smaller than the channel width. This is probably an effect of the stabilizing rotation.

5.2.2. Turbulent Couette flow: with stable two-dimensional roll cells

Increasing the rotation rate (still with Re = 751) we go into a region where roll cells
are formed and seem to overlay the turbulence without any direct interaction (figure 17).
Figure 17a (short-time exposure) shows rather homogeneous fine-scale turbulent struc-
tures, while the time-averaged (a long exposure time) flow field reveals the coexistence
of 2D roll cells (figure 17b) of a much larger scale. When compared to the time-averaged
field for zero or weak rotation shown in figure 16b, the dominant structures show a reg-
ular pattern in the spanwise direction and are elongated in the streamwise direction.
These features are common to the 2D roll cells in the laminar background (cf. figure 7).

5.2.3. Turbulent Couette flow: with spatio-temporal developing three-dimensional roll
cells

In figure 18 we see an example where the flow field is turbulent on top of the roll cells.
However, with the long time averaging, it is clear that the roll cells are not stable but that
there exist regions where the roll cells have disappeared and other regions where they still
are strong. These regions are not stationary, and we denote the flow as spatio-temporally
developing.
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(a) (b)

Figure 19. Stable 3D roll-cells in turbulent flow (TUR3D); Re = 751, Ω = 21.8. The exposure
time is 1/80 s in (a), 2.0 s in (b).
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Figure 20. Two-point correlation coefficient of light intensity, for the flows with stable 3D roll
cells, as a function of streamwise distance Δx or spanwise distance Δz. The cases of COU3D
correspond to those shown in figure 9, whereas the case of TUR3D is at slightly lower Reynolds
number than that for the photograph given in figure 19b.
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(a) (b)

(c) (d)

Figure 21. Contained turbulence in 3D roll-cells (CNT3D); the exposure time is 1/30 s in (a),
1/100 s in (c), 2.0 s in (b, d). (a, b), Re = 300, Ω = 21.1; (c, d), Re = 500, Ω = 25.8.

5.2.4. Turbulent Couette flow: with stable three-dimensional roll cells

The stationary laminar 3D roll cells have their counterpart also for high Reynolds
numbers where the flow is turbulent. Figure 19 shows both a short- and long-time ex-
posure of the flow field. The long-time exposure is quite similar to the laminar case in
its structure; however, there is a distinct difference in both the spanwise and streamwise
scales.
Figure 20 shows both the streamwise and spanwise correlations of the 3D stable struc-

tures in the laminar and turbulent cases. In the turbulent case the correlation is obtained
from a long-time exposure of the flow such as in figure 19b. The laminar ones (at two
different combinations of Re and Ω) give a streamwise length scale of about 16h whereas
in the turbulent case the scale is about 26h. For the spanwise correlation, on the other
hand, the turbulent case gives the shortest spanwise length scale of about 4.5h, whereas
in the laminar cases the major correlation peak is at 6h. In comparison to the correlation
function for the purely 2D laminar case (figure 8), these correlation functions gave some
local peaks, which signifies that the flow structures have a more complicated structure
here.

5.3. Contained turbulence in roll cells

In another region of parameter space at high Re and Ω, we find that the turbulence seems
to be contained in the roll cells and not connected to turbulence in neighbouring cells.
This observation has been done both for 3D roll cells (figure 21) and for 2D meandering
cells (figure 22). Considering the scenario of roll-cell modifications in the laminar back-
ground described in section 5.1, it is conjectured that the 2D meandering cells that are
embedded in turbulence should change to straight cells, labelled 2Dh, at high rotation
numbers.
If the rotation number is increased further, the turbulent motion and the roll cells are

expected to be quenched for Ω > Re, as demonstrated by Alfredsson & Tillmark (2005).

5.4. Intermittent turbulence, turbulence stripes or turbulent spots

For stabilizing rotation there is a wedge shaped region in the flow regime diagram (fig-
ure 2) where the flow is found to have coexisting laminar and turbulent regions. To
describe the development in this region let us decrease the Reynolds number at a fixed
(negative) Ω. For high enough Reynolds number the flow is fully turbulent (which we
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(a) (b)

(c) (d)

Figure 22. Contained turbulence in 2D meandering roll-cells (CNT2Dm); the exposure time
is 1/30 s in (a, c), 2.0 s in (b, d). (a, b), Re = 350, Ω = 25.5; (c, d), Re = 350, Ω = 29.0.

call featureless turbulence). Decreasing Re we enter a region that we denote the intermit-
tent turbulence region (INT), that is a subregion of the above-mentioned wedge-shaped
region. Most part of the flow field shows featureless turbulence, although in some ran-
domly spaced and shaped regions, a localized laminar region appears for a short time. A
typical such flow case is seen in figure 23a. By further decreasing Re we enter a region
(TRS) where stripes are observed which stretch across the channel and consist of a peri-
odic alternation of turbulent and laminar bands. The inclination of the stripes seems to
decrease with decreasing Reynolds number. Such a flow situation is seen in figure 23b.
However the orientation of the inclination is not given by the apparatus but changes
from case to case. The pattern itself is essentially stationary in space and persists for
many hours, it presumably has an indefinite lifetime. Decreasing Re even further there
is another, relatively narrow, sub-region (SPT) neighboring the laminar Couette flow
region where isolated turbulent spots move around randomly, they are born and they die
(see figure 23c). Note that with increasing negative rotation the Reynolds number for
which the flow is fully laminar increases showing the stabilizing effect of rotation.

Similarly, earlier PCF experiments produced localized turbulent patches as the result
of a distinct transition to a fairly regular pattern with finite wavelengths of the order of
40–60h: cf., Prigent et al. (2002); Prigent & Dauchot (2005). Here, the wave vector is
in a direction perpendicular to the relevant observed turbulence bands. The wavelength
of the pattern in figure 23b is approximately 60h, and the wave vector is inclined at
an angle of about 37◦ against the streamwise direction. Although only a few turbulent
stripes are observed simultaneously because of the rather low aspect ratio of the present
channel, the wavelength and the inclination angle roughly agree with those obtained by
Prigent et al. (2002), and it is hypothesized that the turbulent stripes in the RPCF (as
well as PCF) and the spiral turbulence in TCF are similar.

Figure 24 shows how this pattern changes when the Reynolds number decreases for a
given Ω. For the lowest Reynolds number, the flow is close to the SPT region. However,
the range of Reynolds numbers where one can observe isolated turbulent spots is quite
narrow even if the stabilizing rotation rate |Ω| is high. On the other hand, as Re increases
the width of the turbulent band increases until no well-defined large-scale pattern can
be observed in the INT region.
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(a)

(b)

(c)

Figure 23. Intermittent turbulence: (a) localized laminar region occurs in turbulent flow (INT)
at Re = 751, Ω = −14.4; (b) turbulence stripes (TRS) for Re = 751, Ω = −25.8; (c) turbulent
spots in a laminar flow (SPT) at Re = 600, Ω = −24.4.

6. Summary and conclusions

We have reported the first extensive mapping of the Re-Ω plane in a rotating plane
Couette flow. Our measurements are taken in the ranges 0 < Re < 1050 and −27 <
Ω < 30, thereby covering laminar, transitional and turbulent flow regimes. During this
mapping we have identified 17 different flow states, both laminar and turbulent, with
and without roll cells, as well as states that can be described as transitional, i.e. states
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(a) (b)

(c) (d)

Figure 24. Sequence change of turbulence stripes as Re was decreased for fixed Ω = −14.9:
Re is 720, 654, 591, and 563, in (a–d).

that contain both laminar and turbulent regions at the same time. The Re-Ω plane has
been covered by keeping Ω constant varying Re and vice versa.
The mapping has been documented not only through flow visualization using reflective

flakes and still photography but also through direct observation by the naked eye. In order
to enhance the contrast of the photographs, they have been digitally enhanced to take
into account the varying brightness of the pictures. For some flow fields photographs have
been taken with both short- and long-time exposures, the short-time exposure gives an
instantaneous picture of the turbulent flow field, whereas the long-time exposure averages
the small, rapidly varying scales and only shows the large scales.
In some cases the photographs have been used to obtain the scales of the structures by

applying correlation techniques to the light intensity of the photographs. In this way it
was easy to obtain, in an objective manner, both the spanwise and streamwise wavelength
of the flow structures.
The conclusions from our study can be summarized as follows:
• The Re-Ω plane of rotating plane Couette flow shows a very rich atlas of various

flow states, comparable with that found for Taylor-Couette flow. Some of the flow states
seem to have similar characteristics whereas others seem to be unique for the present
case.
• The RPCF does not seem to be susceptible to hysteresis effects, i.e. it is not sensitive

to from which direction a certain point in the Re-Ω plane is reached.
• The transitional Reynolds number obtained without rotation is consistent with the

values obtained earlier in the present apparatus. This value is about 10% higher than
the value obtained by other groups and the reason for this is still not clear.
• For stabilizing rotation, not only the transitional Reynolds number increases as ex-

pected but also the range of Reynolds numbers where a striped pattern of inter-weaved
laminar-turbulent regions is observed becomes wider, and the width increases with in-
creasing stabilizing Ω. In the present flow, only a few (2–3) turbulent stripes could be
observed simultaneously because of the rather low aspect ratio of the present channel.
The range of Reynolds numbers where one can observe isolated turbulent spots is however
quite narrow, independent of the stabilizing rotation rate.
• For destabilizing rotation, a number of interesting phenomena are observed. In the

laminar regime regions, where 3D roll cells seems to be stable, are observed, which is
consistent with the results of Nagata (1998) and Hiwatashi et al. (2007). For other pa-
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rameter values, the 3D roll cells are spatially and temporally intermittent, i.e. they are
suddenly observed on top of 2D cells as predicted by Nagata & Kawahara (2004), where
after they decay. In other ranges, 3D cells break down to turbulence and then they are
again re-established in a repeating pattern.
• At high Re and/or high Ω, roll cells are observed to become turbulent, although

in the photographs the underlying roll-cell structure is still observed. Both 2D and 3D
turbulent roll cells have been observed. By taking long-time exposures of the flow it has
been shown that the roll cell structures are sustained more or less as in the laminar case,
although both the spanwise and the streamwise (in the 3D case) wavelengths increase.
The observations put forward in this paper give many opportunities to study the effect

of rotation on the stability, transition and turbulence in shear flows. With the mapping
carried out it is easy to find the parameter range where a specific flow state occurs. This
will be especially valuable for those studying such flows and phenomena in detail using
direct numerical simulations because the mapping gives a good indication where different
states can be found.
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Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & van Saarloos, W. 2002 Large-scale
finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.

Rayleigh, L. 1880 On the stability, or instability, of certain fluid motions. Proc. London Math.
Soc. 174, 57–70.

Reynolds, O. 1883 An experimental investigation of the circumstances which determine
whether the motion of water shall be direct or sinuous, and of the law of resistance in
parallel channels. Phil. Trans. Roy. Soc. Lond. A 174, 935–982.
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