

Deep Network Representation Learning for Market Structure Discovery

Yi Yang, HKUST Kunpeng (KZ) Zhang, University of Maryland

P. K. Kannan, University of Maryland

What is competitive market structure?

- Understanding the extent of competition among brands in a product-market
- Identifying sub-markets with the market, where competition within a sub-market is much stronger than competition across submarkets
- Given a focal brand, identifying brands in the market that compete very closely with it as compared to other brands

Early Market Structure Research

- Rao and Sabavala (1981)
- Journal of Consumer Research
- Input: panel data of consumer purchases/switching
- Similarity data using brand switching matrix
- Hierarchical clustering

 $^{a}C = Cola, L = Lemon/Lime, and G = Ginger ale.$

Extant Work

- Econometric Approach
 - Using cross-elasticities of demand to define competition
 - Product-market already identified
- Brand Switching data
 - Kalwani and Morrison (1977)
 - Grover and Dillon (1985); Grover and Srinivasan (1987)
 - Urban, Johnson and Hauser (1984)
- Perceptual maps and clustering
- Substitution in use
- Marketing mix
 - Carpenter and Lehmann (1985)
 - Kannan and Wright (1991)

Focus on a focal brand (Subset Selection Methodology, Kannan and Sanchez 1994)

(b) Subset Identification Graphs

significant switching from brand j to brand i.
significant switching from brand i to brand j.
Subsets for each brand guarantee a PCS of at least 0.90

Evolution of literature

- Survey
 - Urban, Johnson and Hauser (1984)
 - Brand concept maps (BCM) (John et al. 2006)
 - ZMET (Zaltman and Coulter 1995)
- Scanner Panel Data
 - Grover and Srinivasan (1987)
 - Erdem (1996)
 - Lots of others...
- User click streams
 - e.g., Moe 2006

Recent Resurgence in Big Data Context (Ringer and Skiera, MKS 2016), France and Ghose (MKS, 2016)

Figure 5 Visualization of Asymmetric Competitive Market Structure Map of 1,124 LED-TVs

Legend

Bubbles represent individual products (SKUs)

Bubble color indicates submarket membership

Bubble size indicates global competitive asymmetry (consideration frequency)

Arrows represent local competitive asymmetry and point at competitors of the product they originate in

Arrow weight indicates how intense a competitive relationship is: the darker and thicker the arrow, the more intense the relationship Submarkets are numbered 1 through 30

Evolution of literature

- Online search logs
 - Kim, Albuquerque, and Bronnenberg 2011
 - Ringel and Skiera 2016
- User-generated content
 - Reviews (Lee and Bradlow 2011)
 - Forum discussions (Netzer et al. 2012)
 - Chatter (Tirunillai and Tellis 2014)
 - Hashtags (Nam, Joshi, and Kannan 2017)
- Store-level sales data
 - Smith, Rossi, Allenby 2019

Smith et al technique to hotel data (Gu & Kannan 2019)

Hotel	Consortia	Contract	Corporate	Employee	Government	Group	Loyalty Redemption	Rack/BAR Rate
CO_NYCGIL	0	0	0	1	0	1	0	1
CO_NYCSMY	0	0	1	1	0	0	0	1
DN_AFF50	0	1	1	1	0	1	0	1
DN_AFFDUM	0	0	1	1	0	0	0	2
DN_AFFGAR	0	1	1	1	1	2	0	1
DN_AFFMAN	0	1	1	2	2	1	0	2
DN_AFFSHB	0	1	1	2	2	1	0	1
DN_BENHOT	0	0	1	2	0	0	0	2
DN_BENSUR	0	0	1	2	0	0	0	1
DN_JMSOHO	0	0	1	0	0	0	0	1
HI_3602	0	0	2	1	2	0	1	1
HI_3640	0	1	1	2	1	2	1	1
HI_3643	0	1	1	2	0	3	0	1
IH_NYCHC	0	0	2	1	0	2	1	1
LH_LPNYC	0	0	2	2	0	0	0	1
MI_NYCCP	1	0	2	2	0	2	1	2
MI_NYCRD	1	0	2	1	1	1	1	1
MI_NYCRW	1	0	2	2	2	0	1	1

Social Tags

- More than 5M monthly users
- Top 5 social bookmarking website
- 3 min/ visit; 35 sec/ pageview

Social Tags Example: Twitter

Greg B @g_begay 50m Got @APPLEOFFICIAL #apple #iwatch for my birthday! This thing rocks! Anyone want a gently used pebble steel?

13 ★1 ***

Keith @kinjapan86 - Jun 16 Apple iWatch. Pretty cool #iwatch #cool #apple @ Chiefs Castle instagram.com/p/3 s4C-mlma/

A 23 + 2 ···

Smorgasbord by Nash @nashfrias - Jun 16 Apple Watch Sells in Record Numbers ow.ly/MSWI1 #applewatch # #apple #iwatch #sport #edition #iphone #iOS

ト 13 ★1 …

	Primary Data	Text Mining	Social Tag-based	Search Data	Social Engagement
Data Volume	Small	Large	Large	Large	Very large
Data Veracity	Authentic	Noisy	Moderate noisy	Moderate noisy	Moderate noisy
Privacy preserve	Yes	Yes	Yes	No (need to insert a tracking pixel)	Yes
Data availability	Low (need to collect data daily)	High (publicly available)	High (publicly available)	Low (need to insert a tracking pixel)	High (publicly available)
Data pre- processing cost	Low (use consideration set directly)	High (text mining is error-prone)	High (text mining is error-prone)	Low (use consideration set directly)	Low (use network raw data)

Comparison of different types of data

Differences among extant literature

	Kim et.al 2011	Lee and Bradlow 2011	Netzer et.al 2012	Ringel and Skiera 2016	Culotta and Cutler 2016	Nam, Joshi and Kannan 2017	Our study
Objective	To visualize user search behavior and understand market structure	To visualize competitive market structure using text mining on customer review	To visualize competitive market structure using text mining on forum	To understand asymmetric competition in the product categories	To infer attribute-specific brand ratings	To analyze user generated tags for marketing research	To propose a novel deep network representation learning framework
Brands/Products	62 products, 4 brands	9 brands	discussion 169 products, 30 brands	1,124 products	200 brands	7 brands	for marketing research 5,478 brands
Consumers/Users	N.A.	N.A.	76,587	100,000+	14.6 million	N.A.	25,992,832
Data sources	Amazon	Customer review at Epinions	Online discussion forum	Product comparison website	Twitter	Social tagging platform Delicious	Facebook public fan page
Data type	Consumer search	Text	Text	Consumer search	Network	Social tags	Network
Brand association methodology	Consideration set	Text-mining	Text-mining	Consideration set	Network learning	Network learning	Network learning
Asymmetry	Yes	No	No	Yes	No	No	Yes
Dynamic	No	No	No	No	No	Yes	Yes
Dimension reduction	Yes	Yes	No	No	No	Yes	Yes
External validation	N.A.	N.A.	Purchase data, survey	Survey	Survey	Brand concept map (survey)	Event study, link prediction
Privacy preserve	Yes	Yes	Yes	No (need to insert a tracking pixel)	Yes	Yes	Yes
Data availability	Low (need to collect data daily)	High (publicly available)	High (publicly available)	Low (need to insert a tracking pixel)	High (publicly available)	High(publicly available)	High(publicly available)
Data preprocessing cost	Low (use consideration set directly)	High (text mining is error-prone)	High (text mining is error-prone)	Low (use consideration set directly)	Low (use network raw data)	Low (tags are well defined)	Low (use network raw data)

Proposed Methodology

- A method that can
 - Handle large data <u>efficiently</u>
 - Learn complex patterns from data <u>effectively</u>

Data

- From Social Media Platforms Facebook, Instagram
- "Likes" by users on Brands
- "Comments" on Brand Fan Pages
- "Sharing"
- Nature of the data:
- higher-level brand metrics as compared to SKU-level

"Liking" brands on Facebook

Close to 90% of users on Facebook say that they "Like" at least one brand on Facebook (Lab42 survey)

50% say that they find the brand's Facebook page more useful than the company's website.

Of the Facebook users who "Like" brands:

- 82% said that Facebook is a good place to interact with brands
- 75% said that they felt more connected to the brand on Facebook
- 69% said that they Liked a brand because a friend in their network did

Why do they "like" the brands?

Reasons for Becoming a Brand Fan on Facebook

QUESTION: The following are the reasons of becoming a fan that were mentioned to us by others. Which, if any, of the following reasons led you to become a Fan or 'Like' the following brands on Facebook?

49%	To support the brand I like	27%	To share my interests / lifestyle with others
42%	To get a coupon or discount	21%	To research brands when I was looking for specific products / services
41%	To receive regular updates from brands I like	20%	Seeing my friends are already a fan or "liked"
35%	To participate in contests	18%	A brand advertisement (TV, online, magazines) led me to fan the brand
31%	To share my personal good experiences	15%	Someone recommended me to fan the brand

Syncapse/Hatspex U.S. Survey March 2013 (n=2,080). Primary brands under study included BMW, BlackBerry, Xbox , Disney,Zara, Levi's, H&M, Victoria's Secret, Adidas Originals, Nike, Monster Energy Drink, Caca-Cola, Dr Pepper , Oreo, Skitfes, Starbucks, McDonald's, Subway, Walmart, Target.

Source: Syncapse.com

Syncapse

Does Like Translate to Purchase? Loyalty?

- What Are Likes Worth? A Facebook Page Field Experiment (2017)
 - Daniel Mochon, Karen Johnson, Janet Schwartz, Dan Ariely
- Does "Liking" Lead to Loving? The Impact of Joining a Brand's Social Network on Marketing Outcomes (2017)
 - Leslie K. John, Oliver Emrich, Sunil Gupta, Michael I. Norton
- We are more interested in the information on content, user engagement with brand

Our proposed approach – overall framework

Deep autoencoders

Deep autoencoders Reconstructed Input 🚽 Ideally they are identical. $\mathbf{x} pprox \mathbf{x}'$ **Bottleneck!** Decoder Encoder \mathbf{X} \mathbf{Z}

 \mathbf{x}' f_{θ} g_{ϕ} An compressed low dimensional representation of the input.

input

Linear vs nonlinear dimensionality reduction

Data collection

- Facebook public pages
 - Top list of US brands based on #followers from Socialbakers
 - 25 different categories: **Brands (our focus)**, celebrities, community, entertainment, media, places, society and sport, etc.
 - <u>Graph API</u> to collect all user-brand interactions: posts, comments, likes, and shares.
 - Jan. 1, 2017 Jan. 1, 2018 for analysis

Number of brands	5,478
Number of users	25,992,832
Number of unique interactions	31,521,075

Data collection

- Data cleansing
 - Fake user removal (simple but effective rules following previous works [Zhang et al. 2016])

Network construction

- Social media participants (user, brand) interact in variety of ways.
 - User likes a brand
 - User writes comments on a brand
 - User shares a post from a brand
- A heterogeneous network (bipartite graph)
 - Nodes are users and brands
 - Links exist only between users and brands
 - The link width represents its weight, from the number of interactions

Deep network representation learning

• Mathematically, given a large information network, our method aims to represent each node into a low dimensional space.

- Learning objective: preserve local/global network structures and semantics in a low-dimensional space.
 - Minimize $L_{1st} + L_{2nd}$

First order similarity

- Similarity to neighbors
 - The local pairwise similarity between user node and brand node.
 - The edge weight indicates the similarity strength between two nodes. If there is no edge between two nodes, their first-order similarity is almost 0.

Second order similarity

- Similarity to neighbors of neighbors
 - The similarity of a node with its neighbor's neighbor, such as brand node and another brand node; user node and another user node.
 - If two nodes are not connected via any intermediate nodes, their second-order similarity is close to 0.

AutoEncoder input: user and brand vector representation using one-hot

Reconstruction process

• Encoder

$$w_i^1 = \sigma(W^1 x_i + b^1)$$

$$w_i^k = \sigma (W^k w_i^{k-1} + b^k), k = 2, ..., K$$

• Decoder

$$w_i^{K'} = \sigma(W^K x_i + b^K)$$

$$x'_i = \sigma(W^1 w^{1\prime} + b^{1\prime})$$

• The network parameters of the *k*-th layer are shared between encoder and decoder

Market structure discovery

• The representation in the *k*-th layer (last layer of encoder) is the learned representation (e.g., 300 dimensional vectors) for market structure discovery

- Dimension reduction
 - t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - L.J.P. van der Maaten (2014)

Evaluation

- Challenges
 - Lack of ground truth for market structure discovery
 - Using industry classification (e.g., SIC or NAICS) is not adopted
 - Static do not re-classify firms over time
- Key: brand representation
- Alternative evaluation method: link prediction
 - Good representation is able to capture latent and complicated semantic and structural information well among brands (Naylor, Lamberton, and West 2012; Kuksov, Shachar, and Wang 2013; Culotta and Cutler 2016)

Link prediction

- <u>Algorithm</u> (input: G_{0,1} and G_{1,2})
 - 1. Learn low-dimensional representation for each user and brand in the training period;
 - 2. Randomly select N users (e.g., N=100, N=1000);
 - 3. Initialize an empty set $S = \Phi$;
 - 4. Foreach user u_i in Nusers:

Foreach brand b_i in all existing brands, do:

Calculate the proximity score between u_i and b_j: s_{ij};

 $\mathsf{S} \leftarrow (\mathsf{u}_{\mathsf{i}'} \mathsf{\,} \mathsf{b}_{\mathsf{j}'} \mathsf{\,} \mathsf{s}_{\mathsf{ij}});$

- 5. End For
- 6. Sort S w.r.t. s_{ij} to get top *n* user-brand pairs (denoted as *P*);
- 7. Calculate precision@*n* and recall@*precision*@*n* = $\frac{|P \cap E_{1,2}|}{n}$, recall@*n* = $\frac{|P \cap E_{1,2}|}{|E_{1,2}^T|}$

The set of all newly formed links in $G_{1,2}$ for brands and users appeared in the training period

Link prediction

- Baselines and variants
 - 2 X 2 design

Network	Homogeneous	Brand-brand network derived from the original user-brand network (Zhang et al. 2016: Culotta and Cutler 2016: etc.)				
I VCTWORK	Heterogeneous	The original user-brand network (preserve semantics)				
Model	Shallow	Matrix factorization (user-brand matrix) (latent representation – not deep, ignore structural				
model		information)				
	Deep	Our deep AutoEncoder representation learning (capture deep structures and semantics encoded in the				
		network)				

Confusion	Positive	Negative
Matrix	(Predicted)	(Predicted)
Positive	True Positive	False Negative
(Actual)	(TP)	(FN)
Negative	False Positive	True Negative
(Actual)	(FP)	(TN)

Sensitivity or Recall = TP/(TP +FN) Specificity = TN/(TN + FP)

Accuracy = (TP + TN)/(TP + FP + FN + TN)

Precision = TP/(TP + FP) F1 = 2TP/(2TP + FP + FN)

precisi	on@n	n=10	n=100	n=500	n=1000	n=5000	n=10000	n=100000
	Shallow	0.400	0.262	0.132	0.078	0.022	0.012	0.001
Homogeneou s brand-	model	(0.109)	(0.023)	(0.018)	(0.008)	(0.002)	(0.000)	(0.000)
brand network	Doon model	0.410	0.271	0.139	0.082	0.023	0.014	0.001
	Deep model	(0.092)	(0.027)	(0.020)	(0.009)	(0.003)	(0.001)	(0.000)
	Shallow model	0.430	0.291	0.157	0.095	0.028	0.018	0.001
Heterogenou s brand-user network		(0.102)	(0.030)	(0.024)	(0.008)	(0.005)	(0.002)	(0.000)
	Deen model	0.52***	0.322**	0.173**	0.124***	0.034***	0.028***	0.001***
	Deep model	(0.092)	(0.022)	(0.051)	(0.011)	(0.008)	(0.001)	(0.000)

$$precision@n = \frac{|P \cap E_{1,2}|}{n}$$

reca	ll@n	n=10	n=100	n=500	n=1000	n=5000	n=1000 0	n=10000 0
	Shallow	0.031	0.260	0.488	0.602	0.828	0.918	0.996
us brand-	model	(0.008)	(0.002)	(0.060)	(0.050)	(0.036)	(0.016)	(0.005)
brand network	Deep	0.032	0.275	0.505	0.621	0.832	0.912	0.997
	model	(0.013)	(0.032)	(0.054)	(0.047)	(0.049)	(0.032)	(0.003)
	Shallow model	0.037	0.287	0.521	0.637	0.870	0.935	0.998
Heterogeno us brand- user network		(0.015)	(0.065)	(0.074)	(0.045)	(0.023)	(0.047)	(0.000)
	Deep	0.056**	0.311**	0.582**	0.686**	0.897**	0.967**	0.999**
	model	(0.013)	(0.035)	(0.077)	(0.054)	(0.078)	(0.024)	(0.002)

$$recall@n = \frac{|P \cap E_{1,2}|}{|E_{1,2}^T|}$$

precisi	on@n	n=10	n=100	n=500	n=1000	n=5000	n=10000	n=100000
	Shallow	0.460	0.387	0.331	0.291	0.130	0.078	0.012
Homogeneou	model	(0.132)	(0.112)	(0.021)	(0.012)	(0.004)	(0.003)	(0.000)
network	Doop model	0.490	0.393	0.332	0.295	0.131	0.078	0.012
	Deep model	(0.020)	(0.003)	(0.018)	(0.017)	(0.003)	(0.003)	(0.000)
Heterogenous brand-user network	Shallow model	0.500	0.422	0.344	0.320	0.162	0.087	0.012
		(0.102)	(0.060)	(0.022)	(0.072)	(0.010)	(0.017)	(0.000)
	Doop model	0.522***	0.436***	0.365***	0.355***	0.187***	0.091***	0.013***
	Deep model	(0.092)	(0.040)	(0.012)	(0.035)	(0.014)	(0.047)	(0.000)

recal	ll@n	n=10	n=100	n=500	n=1000	n=5000	n=10000	n=100000
	Shallow model	0.031	0.033	0.128	0.223	0.509	0.607	0.915
Homogeneous	Shallow model	(0.008)	(0.021)	(0.008)	(0.008)	(0.013)	(0.013)	(0.008)
network	Doop model	0.032	0.035	0.131	0.226	0.510	0.605	0.921
	Deep model	(0.005)	(0.047)	(0.018)	(0.011)	(0.010)	(0.015)	(0.007)
Heterogenous brand-user network	Shallow model	0.049	0.056	0.365	0.241	0.549	0.658	0.981
		(0.022)	(0.009)	(0.012)	(0.010)	(0.012)	(0.024)	(0.015)
	Deep model	0.049***	0.076***	0.412***	0.352***	0.584***	0.743***	0.990***
		(0.009)	(0.003)	(0.010)	(0.007)	(0.009)	(0.008)	(0.002)

Impact of training size

precision@1000		10%	30%	50%	70%	90%	100%
	Shallow model	0.103	0.195	0.248	0.263	0.282	0.291
Homogeneous brand-brand		(0.012)	(0.008)	(0.008)	(0.012)	(0.015)	(0.012)
network	Deen model	0.097	0.190	0.248	0.267	0.284	0.295
		(0.042)	(0.010)	(0.021)	(0.031)	(0.023)	(0.017)
	Shallow model	0.143	0.225	0.256	0.283	0.312	0.320
Heterogenous brand-user network		(0.015)	(0.031)	(0.042)	(0.008)	(0.052)	(0.072)
	Deen model	0.183***	0.242***	0.273***	0.301***	0.337***	0.355***
	Deep model	(0.024)	(0.032)	(0.037)	(0.012)	(0.032)	(0.035)

Impact of training size

recall@1000		10%	30%	50%	70%	90%	100%
Homogeneous brand-brand network	Shallow model	0.080	0.153	0.193	0.203	0.219	0.223
		(0.009)	(0.006)	(0.006)	(0.007)	(0.011)	(0.008)
	Deep model	0.075	0.150	0.194	0.204	0.220	0.226
		(0.005)	(0.010)	(0.007)	(0.003)	(0.005)	(0.011)
Heterogenous brand-user network	Shallow model	0.108	0.179	0.223	0.257	0.271	0.241
		(0.031)	(0.018)	(0.013)	(0.026)	(0.017)	(0.010)
	Deep model	0.124***	0.198***	0.24***	0.289***	0.314***	0.352***
		(0.009)	(0.008)	(0.019)	(0.029)	(0.008)	(0.007)

Global market structure visualization

Zoom-in on cluster 1, 2, 3 and 4

(1)				(2)	Golden Corral Tabasco	
U		Orange Co	ounty Chopp काहर्स्ट्रा horagank हर्मा	STR2	Crayola	McMenamins Pubs, Breweries & Histor
			BEGoodrich Tires	Gr	and Hotel	Crate, and Barrel
		ISP CV	CCW Forged Wheels	Gayleryheed	എറ്റെപ്പോd Resort & Conventio	n Center
		β α ^γ εγ	Pęnnzoil			Hyatt,Regency Lost Pines Resort and Spa
			DENSO Auto Parts	Cousha	atta Casino Resort Palace New	Resort Flite Island Resorts The Time New York
			Biltwell Inc.	elir	TradeWinds Island Re Hotel Monteleone	The Standard Spa, Miami Beach
			Edelbrock Performanod gdge Vip	er Hiltor	n Sandestin Beach Golf Resor	tations Resorts, by Karisma
Subaru of A	merica, Inc.				Coconut Bay Beach Res	ort & Spa
voikswage	1		NGK Spark Plugs Sea-Doo		The Kahala Hotel & Res	rContinental Miami ort
Toyota USA Nissan	Alfa Romeo U FIAT USA	Arctic Cat - S	Snowmo		Hilton Hawaiian Village Mauna Lani Ba	Waikiki Beach Roservood Hotels & Resorts y Boreland Bundakoost
Mazda		Sm	ittybilt Pirelli		The	Rittheartencalatom 293 And Niguel
Kia Moto	rs America	Polaris Snowmob	Bigid Industries - LED Lighting	Tu das added a data data data data data data d	iMsGregals Ho	otel del Coronado
			BD DignethBattarmance	Is	Harrah's Reso South Point Hotel, Casi	rt Southern වේක්ෂිය හිදින ch Resorts no & Spa
	Jaguar			т	ropicana Las Vegas	

Paul Jr. Designs

Air China All Nippon Airways Air New Zeala	ind	3	Zoya Nail Polista ନ୍ୟୁତ୍ୟ Clanisenties Choice	
LATAM Airlines			FLOWER Beauty L.A	. Girl Cosme
Lufthansa			Tweezerman	
			Impress Manicure	rglass Cosm
Miami International Airport - MIA	Hyatt			
			Lumines BioBoilabiBe sBlowout	
Angegan Airlines	Virgin America			Honest E
Delţa		Bz	zAgent mazon Toys & Games evamor Hint	Natur Prina
Di: Southwe	sney Cruise Line st Airlines	Cr	ablateuse Maadyen USeatial Caffada	Facial Lissu
		Alaska Airlines Pride of Maui	Baby, Magic	a Roche-Por
Frontier Airl	lines	Hawaiian	Tom's Of Maine Ouida	id
Allegiant		h	nvisalign Aquaphor US DenTek Oral Care Sundown N	Gold, B laturals
Airfarewat	tchdog		Eight O'Clock Coffee Teflon Brand Sc SunnyDTetley Teld Orcha FIJI Waterma	U by K A cnci Hair AB rc Brands Imers Silk Imers Silk
Orbitz	z		Zappos.ccm Little Huggigelow	DERMACE

Zoya Nail Poliphan Bag	Raterskin Care	`
Clarisentes Choice	EIGE USA)
FLOWER Beauty L.A. G	Girl Cosmetics	
Tweezerman		
Impress Manicure	ass Cosmetics	
	CELSIUS	
	Annmarie Skin Care	
Lumines BioBook Hiske sBlowout	Honest Beauty Numi Organic Tea Nordic Naturals	oducts
gent Mazon Toys & Games evamor Na	THE RECOMBER Dester Good Brilbow Light	
Hint Scotties Fa	icial Tissue Yogi Hydroxycut	liss
Baby, Magic	Andis Com	pany
Tom's Of Maine Ouidad	First Aid Beauty	
align Aquaphor US DenTek Oral Care Sundown Natu	Gold Bond PowBerosmetics	TARMOR
Eight O'Clock Coffee	U by Kote Bai	
Teflon Brand Scnc SunnyD Tetley 704 FIJI Water Palme Juicy Juice	i Hair ABUSS ories Pronts Sensationadamia Professio Ity Corregiona jane iredale	nal

Josie Maran Cosmetics

Taco Bueno

				NYO	DNair
All Nippon /	Air C h Airways	ina Air New Zeala	China Eastern LAT and Lufthans	n Airlines TAM Airlines sa	
		America Unite	an Airlines d		
JetBlue		De	elta		
Sout	hwest Airline:	s	Alas	ska Airlines	
Disney Cruise Line	Vir	Frontier Air rgin America	rlines	unc	
Hyatt			Airfarewatchd	og Orbitz	

Identify similar brands

Focal brand		United	Southwest Airlines	Audi USA	Nissan
	1	American	JetBlue	Mercedes- Benz USA	Mazda
	2	Delta	Frontier	BMW USA	Toyota
	3	Lufthansa	Allegiant	Land Rover	Volkswagen
Rank 5		Southwest	Delta	Lexus	Kia Motors America
		Alaska	Alaska	Chevrolet Camaro	Subaru of America
	6	All Nippon	United	Maserati USA	Chrysler
	7	Air China	Airfarewatchdog	Kawasaki USA	FIAT
Ī	8	LATAM	American	Firestone Tires	Jaguar
	9	Air New Zealand	Virgin America	Tesla	Alfa Romeo
	10	Airfarewatchdog	Hyatt	Ram Trucks	KLIM

Case study

- Amazon acquires Whole Foods (August, 2017)
- Tesla delivers model 3 (July, 2017)

Conclusions

Apply deep network representation learning on large-scale social media data for market structure discovery.

Add on to existing research on market structure discovery from a network analysis perspective.

Able to pin a large amount of brands on the market structure map to precisely visualize brand relationships.

Showcase how new technology can be used to better tackle a traditional marketing task.

Conclusions

The research contributes to understanding the market boundaries and overlaps among different product categories

Strategic implication for mergers and acquisition

Dynamic analysis of changes in market structure and boundaries

Different implications of likes, comments and shares?

Big Mergers and Acqui				
Buying Firm	Target Firm	Date of Acquisition	Deal Value	Industry
Financial & Risk US Holding Inc	Refinitiv	1/30/2018	\$17 billion	E-commerce
Boardcom Inc	Ca Inc	7/11/2018	\$18.3 billion	Software
Dell Technologies	Vmware Class V Tracking Stock	7/2/2018	\$21.7 billion	Computers
Keurig Green Mountain Inc	Dr Pepper Snapple Group Inc	1/29/2018	\$26.6 billion	F&B
Marathon Petroleum Group	Andeavor Corp	4/30/2018	\$31.3 billion	Oil & Gas
Shareholders	Altice USA Inc	1/8/2018	\$32.1 billion	Cable TV
T-Mobile US Inc	Sprint Corp	4/29/2018	\$58.7 billion	Wireless comm
Energy Transfer Equity LP	Energy Transfer Partners LP	8/1/2018	\$61.8 billion	Pipelines
Cigna Group	Express Script Holding Co.	3/8/2018	\$68.5 billion	Healthcare
IBM	Red Hat	10/28/2018	\$33.4 billion	Tech
Oracle	DataFox	Oct, 2018	undisclosed	Tech
Adobe	Marketo	Sep, 2018	\$4.75 billion	Tech
AT&T	AlienVault	Aug, 2018	undisclosed	Tech
Cisco	Accompany		\$270 million	Tech
Accenture	Certus	May, 2018		Tech

