Corrigendum to "Behavior-based Price Discrimination in a Horizontally and Vertically Differentiated Duopoly with Switching Costs"

Masashi Umezawa*
Department of Business Economics, School of Management, Tokyo University of Science, 1-11-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, JAPAN (umezawa@rs.tus.ac.jp)

January 26, 2023

Abstract

This note corrects errors in Umezawa (2022).

Umezawa (2022) studies behavior-based price discrimination (BBPD) in a horizontally and vertically differentiated duopoly with switching costs. In Section 3.1 of the article, the case of uniform pricing is considered as a benchmark. In the second period of the game, two cases of (a) $p_{A}^{U 2} \geq p_{B}^{U 2}$ and (b) $p_{A}^{U 2} \leq p_{B}^{U 2}$ are separately examined. Then, it is claimed that in the case of (a) $p_{A}^{U 2} \geq p_{B}^{U 2}\left((\mathrm{~b}) p_{A}^{U 2} \leq p_{B}^{U 2}\right)$, there are no switchers that buy from firm $B(A)$ in the first period and from firm $A(B)$ in the second period (i.e., $z^{U 2} \leq z^{U 1}\left(z^{U 2} \geq z^{U 1}\right)$). This claim, however, is not correct. That is, $p_{A}^{U 2} \geq p_{B}^{U 2}$ does not necessarily imply $z^{U 2} \leq z^{U 1}$. Similarly, $p_{A}^{U 2} \leq p_{B}^{U 2}$ does not necessarily imply $z^{U 2} \geq z^{U 1}$. Therefore, these two cases should be set up as (a) $z^{U 2} \leq z^{U 1}$ and (b) $z^{U 2} \geq z^{U 1}$, instead of (a) $p_{A}^{U 2} \geq p_{B}^{U 2}$ and (b) $p_{A}^{U 2} \leq p_{B}^{U 2}$. ${ }^{1}$

Accordingly, the constraint (9) of parameters is removed, and some figures in the article are modified, where each E of the areas that are examined in the models is expanded (see Figures 1, 2, 3, 4, and 5). Moreover, given these corrections, statements of some propositions in Umezawa (2022) will naturally be modified as follows. Note that with these modifications, the main conclusions in Umezawa (2022) remain unchanged.

Proposition 5 (iii) Firm A's total profit is lower under BBPD than under UHb. Firm B 's total profit is higher under BBPD than under UHb if $s<\sigma_{B}^{I I H b}$, where $\sigma_{B}^{I I H b}=$ $\frac{87 N_{A}^{2}-142 N_{A} N_{B}-201 N_{B}^{2}}{512\left(3 N_{A}+5 N_{B}\right)}$, while it is not higher otherwise (see Figure 1 of this note $\left.e^{2}\right) 3^{3}$

[^0]This is a similar result to Proposition 5-(i), where the firm profits under BBPD are compared with those under UHa, instead of UHb.

Proposition 6 (iv) Consider only the cases satisfying (11). Each firm's total profit is lower under BBPD than that under ULb.

Proposition 7 (iv) CS is lower under BBPD than under ULa, where we consider only the cases satisfying (7). CS is higher under BBPD than under ULb, where we consider only the cases satisfying (11).

Proposition 9 (i) Consider case (II). Firm A's total profit is higher under BBPD than under UHb if $s>\tau_{A}^{I I H b}$ and than under ULb if $s>\tau_{A}^{I I L b}$, where $\tau_{A}^{I I H b}=\frac{1}{42}\left(7 N_{B}+\right.$ $\left.\sqrt{36 N_{A}^{2}+1776 N_{A} N_{B}+589 N_{B}^{2}}\right)$ and $\tau_{A}^{I I L b}=\frac{3 N_{A}^{2}+148 N_{A} N_{B}+45 N_{B}^{2}}{98\left(3 N_{A}+N_{B}\right)}$. Firm B's total profit is higher under BBPD than under ULa if $s>\tau_{B}^{I L L a}$. $S W$ is higher under BBPD than under each of UHb and ULb if $s>\tau_{S W}^{I I b}$ (see Figure 3 of this note ${ }^{4}$).

I would like to apologize for any inconvenience caused.

Figure 1: Correction of Figure 5 (b) (Comparison of firm profits and CS between BBPD in case (II) and UP)

References

[1] Umezawa, M., 2022. Behavior-based Price Discrimination in a Horizontally and Vertically Differentiated Duopoly with Switching Costs, Information Economics and Policy. 61, 101004. https://doi.org/10.1016/j.infoecopol.2022.101004.

[^1]

Figure 2: Correction of Figure 6 (b) (Comparison of firm profits, CS, and SW between BBPD in case (I) and UP)

Figure 3: Correction of Figure 7 (b) (Comparison of firm profits, CS, and SW between BBPD in case (II) and UP when $\delta=0$)

Figure 4: Correction of Figure 8 (b) (Comparison of firm profits, CS, and SW between BBPD in case (I) and UP when $\delta=0$)

Figure 5: Correction of Figure 9 (b) (Comparison of firm profits, CS, and SW between BBPD in case (III) and UP when $\delta=0$)

Appendix C. Supplemental Online Appendix

Proof of Proposition 6 (iv)

We have $\pi_{A}^{I}-\pi_{A}^{U L b}=\frac{1}{6084\left(N_{A}+N_{B}\right)}\left(-1373 N_{A}^{2}-2462 N_{A} N_{B}-665 N_{B}^{2}+\left(4640 N_{A}+1528 N_{B}\right) s+\right.$ $28 s^{2}$), which is a convex quadratic function of s that takes a minimum value for some negative value of s. Since $s \leq s_{U L}^{b}, \pi_{A}^{I}-\pi_{A}^{U L b} \leq \frac{-137\left(3 N_{A}+N_{B}\right)^{2}}{6084\left(N_{A}+N_{B}\right)}<0$.

Similarly, $\pi_{B}^{I}-\pi_{B}^{U L b}=\frac{1}{6084\left(N_{A}+N_{B}\right)}\left(-227 N_{A}^{2}-1658 N_{A} N_{B}-1607 N_{B}^{2}+\left(152 N_{A}+2056 N_{B}\right) s+\right.$ $\left.3700 s^{2}\right) \leq \frac{-\left(27 N_{A}^{2}+330 N_{A} N_{B}+107 N_{B}^{2}\right)}{3380\left(N_{A}+N_{B}\right)}<0$.

Proof of Proposition 7 (iv)

As for the proof of $C S^{I}-C S^{U L a}<0$, see Umezawa (2022). We have $C S^{I}-C S^{U L b}=$ $\frac{1}{6084\left(N_{A}+N_{B}\right)}\left(1151 N_{A}^{2}+3308 N_{A} N_{B}+2579 N_{B}^{2}-\left(4970 N_{A}+6394 N_{B}\right) s-226 s^{2}\right)$, which is a concave quadratic function of s. Let s_{7} and $s_{8}\left(s_{7}<s_{8}\right)$ be the solutions of $C S^{I}-C S^{U L b}=0$ for s. Clearly, $s_{7}<0$. It is confirmed that $s_{8}-s_{U L}^{b}>0$. Thus, $C S^{I}-C S^{U L b}>0$.

[^0]: *I gratefully acknowledge the financial support of the Japan Society for the Promotion of Science through KAKENHI Grant No. 20K01619. Any errors remaining are mine.
 ${ }^{1}$ Note that the equilibria under uniform pricing are separately investigated under each of the conditions (a) and (b).
 ${ }^{2}$ The dotted curve $\sigma_{B}^{I I H b}$ is added to the original figure.
 ${ }^{3}$ It is evident from the fact that $\pi_{B}^{I I}-\pi_{B}^{U H b}=\frac{1}{2304\left(N_{A}+N_{B}\right)}\left[87 N_{A}^{2}-142 N_{A} N_{B}-201 N_{B}^{2}-512\left(3 N_{A}+5 N_{B}\right) s\right]$.

[^1]: ${ }^{4}$ The dotted curve $\tau_{A}^{I I H b}$ is added to the original figure.

