研究

2024年

  1. F. Watanabe, T. Akimoto, R. B. Best, K. Lindroff-Larsen, R. Metzler, E. Yamamoto, “Diffusion of intrinsically disordered proteins within viscoelastic membraneless droplets,” arXiv.2401.10438.

2023

  1. I. Sakai and T. Akimoto, “Non-Self-Averaging of Current in a Totally Asymmetric Simple Exclusion Process with Quenched Disorder,” Phys. Rev. E 107, L052103 (2023). arXiv.2208.10102.
  2. I. Sakai and T. Akimoto, “Sample-to-sample fluctuations of transport coefficients in the totally asymmetric simple exclusion process with quenched disorders,”Phys. Rev. E 107, 054131 (2023). arXiv.2301.00563.
  3. K. Sakamoto, T. Akimoto, M. Muramatsu, M. Sanson, R. Metzler, and E. Yamamoto, “Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity,” PNAS Nexus 2, 1-12 (2023). arXiv.2301.07932.
  4. M. Kimura and T. Akimoto, “Non-Markovian effects of conformational fluctuations on the global diffusivity in Langevin equation with fluctuating diffusivity,” J. Chem. Phys. 159, 055102 (2023). arXiv.2304.12881.
  5. T. Akimoto, E. Yamamoto, and T. Uneyama, “Estimating relaxation times from single trajectory,J. Phys. Soc. Jpn. 92, 074005 (2023). arXiv.2305.11357.
  6. T. Akimoto, “Statistics of the number of renewals, occupation times and correlation in ordinary, equilibrium and aging alternating renewal processes,” Phys. Rev. E 108, 054113 (2023). arXiv.2306.00359.

2022

  1. E. Barkai, G. Radons, and T. Akimoto, “Gas of sub-recoiled laser cooled atoms described by infinite ergodic theory,” J. Chem. Phys 156, 044118 (2022). arXiv.2110.12418.
  2. T. Akimoto, E. Barkai, and G. Radons, “Infinite ergodic theory for three heterogeneous stochastic models with application to subrecoil laser cooling,” Phys. Rev. E 105, 064126 (2022). arXiv.2202.00274.
  3. M. Kimura and T. Akimoto, Occupation time statistics of the fractional Brownian motion in a finite domainPhys. Rev. E 106, 064132 (2022)

2021

  1. E. Yamamoto, T. Akimoto, A. Mitsutake, and R. Metzler, “Universal relation between instantaneous diffusivity and radius of gyration of proteins in aqueous solution,” Phys.Rev. Lett. 126, 128101 (2021). arXiv.2009.06829. Editors’ Suggestion and Featured in Physics. See synopsis: Shape-Shifting Proteins Follow Diffusion Rules.
  2. E. Barkai, G. Radons, and T. Akimoto, “Transitions in the ergodicity of subrecoil-laser-cooled gases,”arXiv.2104.03816.
  3. T. Kataoka, T. Miyaguchi, and T. Akimoto, “Detrended fluctuation analysis of earthquake data,” Phys. Rev. Res 3 , 033081 (2021) arXiv.2104.09222 .

2020

  1. T. Akimoto and K. Saito, “Trace of anomalous diffusion in a biased quenched trap model,” Phys.Rev. E 101, 042133 (2020). arXiv:2002.02101.
  2. T. Akimoto, E. Barkai, and G. Radons, “Infinite invariant density in a semi-Markov process with continuous state variables,” Phys. Rev. E 101, 052112 (2020). arXiv1908.10501.
  3. T. Akimoto, T. Sera, K. Yamato, and K. Yano, “Aging arcsine law in Brownian motion and its generalization,” Phys. Rev. E 102, 032103 (2020). arXiv.2004.00808.
  4. K. Sano, T. Mitsui, and T. Akimoto “Reduction of the synchronization time in random logistic maps,” Phys.Rev. E 102, 062209 (2020).

2019

  1. T. Akimoto, E. Barkai, and G. Radons, “Infinite invariant density in a semi-Markov with continuous state variables,” arXiv:1908.10501.
  2. T. Miyaguchi, T. Uneyama and T. Akimoto, “Brownian motion with alternately fluctuating diffusivity:Stretched-exponential and power-law relaxation,” Phys. Rev. E 100, 012116 (2019).
  3. Y. Hachiya, T. Uneyama, T.Kaneko and T. Akimoto, “Unveiling diffusive states from center-of-mass trajectories in glassy dynamics,” J. Chem. Phys. 151, 034502 (2019).
  4. T. Akimoto and K. Saito, “Exact results for first-passage-time statistics in biased quenched trap models,” Phys. Rev. E 99, 052127 (2019). arXiv:1901.00624.
  5. T. Uneyama, T. Miyaguchi and T. Akimoto, “Relaxation functions of Ornstein-Uhlenbeck process with fluctuating diffusivity,” Phys. Rev. E 99, 032127 (2019). arXiv:1903.00624.

2018

  1. T. Kaneko, J. Bai, T. Akimoto, J. S. Francisco, K. Yasuoka, and X. C. Zeng, “Phase behaviors of deeply supercooled bilayer water unseen in bulk water,” Proc. Natl. Acad. Sci. USA, 115, 4389 (2018).
  2. T. Akimoto, E. Barkai and K. Saito, “Non-self averaging and ergodicity in quenched trap model with finite system size,” Phys. Rev. E 97, 052143 (2018). arXiv:1802.06524.
  3. T. Akimoto, A. Cherstvy, and R. Metzler, “Enhancement, slow relaxation, ergodicity and rejuvenation of diffusion in biased continuous-time random walks,” Phys. Rev. E 98, 022105 (2018). arXiv:1803.07232.
  4. R. Hou, A. Cherstvy, and R. Metzler and T. Akimoto, “Biased continuous-time random walks for ordinary and equilibrium cases: facilitation of diffusion, ergodicity breaking and ageing,” Phys. Chem. Chem. Phys. 20, 20827 (2018).
  5. M. Naruse, E. Yamamoto, T. Nakao, T. Akimoto, H. Saigo, K. Okamura, I. Ojima, G. Northoff, H. Hori, “Why is the environment important for decision making? Local reservoir model for choice-based learning,” PLoS ONE, 13, e0205161 (2018).

2017

  1. E. Yamamoto, T. Akimoto, A. C. Kalli, K. Yasuoka, M.S. P. Sanson, “Dynamic interations between a membrane binding protein and lipids iduce fluctuating diffusivity,” Sci. Adv. 3, e1601871 (2017).
  2. T. Akimoto and E. Yamamoto, “Detection of transition times from single-particle-tracking trajectories,” Phys. Rev. E 96, 052138 (2017) arXiv:1709.05456.

2016

  1. K. Tomobe, E. Yamamoto, T. Akimoto, M. Yasui, and K. Yasuoka, “Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R,” AIP Adv. 6, 055324 (2016).
  2. T. Akimoto and E. Yamamoto, “Distributional behaviors of time-averaged observables in Langevin equation with fluctuating diffusivity: Normal diffusion yet anomalous fluctuations,” Phys. Rev. E 93, 062109 (2016). arXiv:1602.07007.
  3. T. Miyaguchi, T. Akimoto, and E. Yamamoto, “Langevin equation with fluctuating diffusivity: a two-state model,”Phys. Rev. E 94, 012109 (2016). arXiv:1605.00106.
  4. K. A. Takeuchi and T. Akimoto, “Characteristic Sign Renewals of Kadar-Parisi-Zhang Fluctuations,” J. Stat. Phys. 164, 1167 (2016) arXiv:1509.03082.
  5. T. Akimoto, E. Barkai, and K. Saito, “Universal Fluctuations of Single-Particle Diffusivity in Quenched Environment,”Phys. Rev. Lett. 117<, 180602 (2016). arXiv:1604.06175.
  6. T. Akimoto and E. Yamamoto, “Distributional behavior of diffusion coefficients obtained by single trajectories in annealed transit time model,” J. Stat. Mech. 2016 (2016) P123201. arXiv:1605.01174.
  7. S.-J. Kim, M. Naruse, M. Aono, H. Hori, and T. Akimoto, “Random walk with chaotically driven bias,” Sci. Rep. 6, 38634 (2016). arXiv:1601.03587.

2015

  1. T. Miyaguchi and T. Akimoto, “Anomalous diffusion in quenched trap model on fractal lattices,” Phys. Rev. E 91, 010102(R) (2015). arXiv:1409.0967.
  2. T. Akimoto, S. Shinkai, and Y. Aizawa, “Distributional behavior of time averages of non-L1 observables in one-dimensional intermittent maps with infinite invariant measures,” J. Stat. Phys. 158, 476 (2015). arXiv:1310.4055.
  3. T. Akimoto, M. Nakagawa, S. Shinkai, and Y. Aizawa, “Generalized Lyapunov exponent as a unified characterization of dynamical instabilities,” Phys. Rev. E 91, 012926 (2015). arXiv:1412.6867.
  4. E. Yamamoto, T. Akimoto, M. Yasui, and K. Yasuoka, “Origin of 1/f noise transition in hydration dynamics on a lipid membrane surface,” Sci. Rep. 5, 8876 (2015). arXiv:1404.4137.
  5. T. Akimoto and K. Seki, “Transition from distributional to ergodic behavior in an inhomogeneous diffusion process: Method revealing an unknown surface diffusivity,” Phys. Rev. E 92, 022114 (2015). arXiv:1412.6221.
  6. T. Uneyama, T. Miyaguchi, and T. Akimoto, “Fluctuation Analysis of Time-Averaged Mean-Square Displacement for Langevin Equation with Time-Dependent and Fluctuating Diffusivity,” Phys. Rev. E 92, 032140 (2015). arXiv:1411.5165.
  7. E. Yamamoto, A. Kalli, T. Akimoto, K. Yasuoka, and M. Sansom, “Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface,” Sci. Rep. 5, 18245 (2015).

2014

  1. T. Akimoto and T. Miyaguchi, “Phase diagram in stored-energy-driven Levy flight,” J. Stat. Phys 157, 515 (2014).
  2. E. Yamamoto, T. Akimoto, M. Yasui, and K. Yasuoka, “Origin of subdiffusion of water molecules on cell membrane surfaces,” Sci. Rep. 4, 4720 (2014). arXiv:1401.7776. [selected as a featured article in Nature Japan (in Japanese)]
  3. E. Yamamoto, T. Akimoto, Y. Hirano, M. Yasui, and K. Yasuoka, “1/f fluctuations of amino acids regulate water transportation in aquaporin 1,” Phys. Rev. E 89, 022718 (2014).
  4. N. Arai, T. Akimoto, E. Yamamoto, M. Yasui, and K. Yasuoka, “Poisson property of the occurrence of flip-flops in a model membrane,” J. Chem. Phys. 138, 064901 (2014). (selected as a featured article)

2013

  1. T. Akimoto and T. Miyaguchi, “Distributional ergodicity in stored-energy-driven Lévy flights,” Phys. Rev. E 87, 062134 (2013). (arxiv)
  2. T. Akimoto, T. Kaneko, K. Yasuoka, and X. Zeng, “Homogeneous connectivity of potential energy network in a solidlike state of water cluster,” J. Chem. Phys. 138, 244301 (2013).
  3. E. Yamamoto,T. Akimoto, Y. Hirano, M. Yasui, and K. Yasuoka, “Power-law trapping of water molecules on the lipid-membrane surface induces water retardation,” Phys. Rev. E 87, 052715 (2013).
  4. T. Akimoto and E. Barkai, “Aging generates regular motions in weakly chaotic systems,” Phys. Rev. E 87, 032915 (2013) (arxiv)
  5. T. Miyaguchi and T. Akimoto, “Ergodic properties of continuous-time random walks: Finite-size effects and ensemble dependencies,” Phys. Rev. E 87, 032130 (2013) (arxiv)

2012

  1. T. Uneyama, T. Akimoto, and T. Miyaguchi, “Crossover time in relative fluctuations characterizes the longest relaxation time of entangled polymers,” J. Chem. Phys. 137, 114903 (2012) (arxiv)
  2. E. Yamamoto,T. Akimoto, H. Shimizu, Y. Hirano, M. Yasui, and K. Yasuoka, “Diffusive nature of xenon anesthetic changes properties of a lipid bilayer: Molecular dynamics simulations,” J. Phys. Chem. B 116, 8989 (2012)
  3. T. Akimoto, “Distributional response to biases in deterministic superdiffusion,” Phys. Rev. Lett. 108, 164101 (2012) (selected for a publication in Virtual Journal of Biological Physics Research) (arxiv)
  4. T. Hasumi, C. Chen, T. Akimoto and Y. Aizawa, “The Weibull – log-Weibull transition of interoccurrence time of earthquakes,” Earthquake Research and Analysis – Statistical Studies, Observations and Planning, Sebastiano D’Amico (Ed.), ISBN: 978-953-51-0134-5, InTech (2012)
  5. T. Akimoto, “Generalization of the Einstein relation for single trajectories in deterministic subdiffusion,” Phys. Rev. E 85, 021110 (2012) (arxiv)

2011

  1. T. Kaneko, T. Akimoto, K. Yasuoka, A. Mitsutake, and X. Zeng, “Size dependent phase changes in water clusters,” J. Chem. Theory Comput. 7, 3083 (2011) (Top 20 most downloaded articles over the last 12 months)
  2. T. Akimoto, E. Yamamoto, K. Yasuoka, Y. Hirano and M. Yasui, “Non-Gaussian fluctuations resulting from power-law trapping in a lipid bilayer,” Phys. Rev. Lett. 107, 178103 (2011) (selected for a publication in Virtual Journal of Biological Physics Research and see also JST News in Englsih and in Japanese )
  3. T. Miyaguchi and T. Akimoto, “Ultraslow convergence to ergodicity in transient subdiffusion,” Phys. Rev. E 83, 062101 (2011) (selected for a publication in Virtual Journal of Biological Physics Research) (arxiv)
  4. T. Miyaguchi and T. Akimoto, “Intrinsic randomness of transport coefficient in subdiffusion with static disorder,” Phys. Rev. E 83, 031926 (2011) (selected for a publication in Virtual Journal of Biological Physics Research)

2010

  1. T. Akimoto and T. Miyaguchi, “Role of infinite invariant measure in deterministic subdiffusion,” Phys. Rev. E 82, 030102(R) (2010) (selected for a publication in Virtual Journal of Biological Physics Research)
  2. T. Akimoto and Y. Aizawa, “Subexponential instability in one-dimensional maps implies infinite invariant measure,” Chaos 20, 033110 (2010) (Top 20 Most Downloaded Articles, September 2010) (arxiv)
  3. T. Hasumi, C. Chen, T. Akimoto and Y. Aizawa, “The Weibull–log Weibull transition of interoccurrence time for synthetic and natural earthquakes,” Tectonophysics 485, 9 (2010)
  4. T. Akimoto, T. Hasumi, and Y. Aizawa, “Characterization of intermittency in renewal processes: Application to earthquakes,” Phys. Rev. E 81, 031133 (2010)

2009

  1. T. Hasumi, T. Akimoto and Y. Aizawa, “The Weibull – log Weibull distribution for interoccurrence times of earthquakes,” Physica A 388, 491 (2009)
  2. T. Hasumi, T. Akimoto and Y. Aizawa, “The Weibull – log Weibull transition of the interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model,” Physica A 388, 483 (2009) (arxiv)

2008

  1. T. Akimoto, “Generalized arcsine law and stable law in an infinite measure dynamical system,” J. Stat. Phys. 132, 171 (2008) (arxiv)
  2. T. Akimoto, ”On the definition of equilibrium and non-equilibrium states in dynamical systems,” AIP Conf. Proc. 1076, 5 (2008)

2007

  1. T. Akimoto and Y. Aizawa, “New aspects of the correlation functions in non-hyperbolic chaotic systems,” J. Korean Phys. Soc. 50, 254 (2007)

2006

  1. T. Akimoto and Y. Aizawa, “Scaling exponents of the slow relaxation in non-hyperbolic chaotic dynamics,” Nonlinear Phenom. Complex Syst. 9, 178 (2006)
  2. T. Akimoto and Y. Aizawa, “The breakdown of the adiabaticity in the stationary-nonstationary chaos transition process,” J. Phys.: Conf. Ser. 31, 209 (2006)
  3. T. Akimoto and Y. Aizawa, “Weibull and log-Weibull laws in the stationary-nonstationary chaos transition process,” Prog. Theor. Phys. Suppl. 161, 148 (2006)

2005

  1. T. Akimoto and Y. Aizawa, “Large fluctuations in the stationary-nonstationary chaos transition,” Prog. Theor. Phys. 114, 737 (2005)

2003

  1. T. Akimoto and Y. Aizawa, “Logarithmic scaling in the stationary-nonstationary chaos transition,” Prog. Theor. Phys. 110, 849 (2003)

contact
〒278-8510 千葉県野田市山崎2641 東京理科大学 創域理工学部 先端物理学科
秋元琢磨准教授 (4号館4階 44N11)